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Abstract This paper studies the multi-depot open vehicle routing problem
(MDOVRP), a variant of the vehicle routing problem (VRP), in which vehicles start
from several depots and are not required to return to the depot. Despite the vast amount
of literature about VRPs, the MDOVRP has received very little attention from research-
ers. In this paper, a new hybrid genetic algorithm is presented for finding the routes
that minimize the traveling cost of the vehicles. Computational results on a number of
test instances indicate the proposed algorithm dominates the CPLEX solver and the
existing approach in the literature. Meanwhile, experiments are conducted on multi-
depot VRP benchmarks, and the results are compared with a sophisticated tabu search
approach and an exact method.

Keywords Multiple depots · Open vehicle routing · Hybrid genetic algorithm

1 Introduction

The open vehicle routing problem (OVRP) is a variant of the classical vehicle routing
problem (VRP) (Dantzig and Ramser 1959). The OVRP differs from the well-known
VRP in that the vehicles do not return to the depot after serving the customers. The
OVRP arises in several practical cases (Sariklis and Powell 2000; Russell et al. 2008).
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For example, when a company does not own a vehicle fleet, or its private fleet is inad-
equate for fully satisfying customer demand, the company has to rent some vehicles to
satisfy the demand of customers. Since the hired vehicles do not need to return to the
depot after the completion of the task, the routing is open. In the OVRP, each customer
is visited once by a single vehicle, the total demand of the customers assigned to a
route does not exceed vehicle capacity, and the overall travel cost of the designed route
set is minimized.

Since 2000, various heuristics and exact methods were proposed to solve the OVRP
with some success. Sariklis and Powell (2000) first presented a heuristic method for
solving the OVRP, based on a minimum spanning tree with penalties procedure. Some
effective tabu search heuristics were implemented to solve the OVRP with different
constraints, such as vehicle capacity and maximum route length (Brandão 2004; Fu
et al. 2005). Tarantilis et al. (2005) solved the OVRP by adopting a simple thresh-
old-accepting algorithm, called list based threshold accepting (LBTA) algorithm. The
computational results on OVRP benchmark instances showed the LBTA algorithm
was effective. Pisinger and Ropke (2007) presented an adaptive large neighborhood
search (ALNS) approach to several variants of the VRP, including the OVRP. Li et al.
(2007) proposed a record-to-record travel heuristic and a deterministic variant of sim-
ulated annealing to solve the OVRP. Recently, Repoussis et al. (2010) presented a
hybrid evolution strategy for solving the OVRP. Based on integer linear programming
(ILP) techniques, Salari et al. (2010) gave a heuristic improvement procedure for
OVRP. Zachariadis and Kiranoudis (2010) proposed an OVRP meta-heuristic based
on the static move descriptor technology, which reduces the computational complexity
required for applying local search-based methods. For the exact method, Letchford
et al. (2006) developed a branch-and-cut algorithm for the OVRP.

In terms of the OVRP, most researchers assume that all the vehicles start from the
same central depot and end at a customer node, i.e., the single-depot OVRP. However,
in many real-life transportation, logistics and supply chain practice, companies usu-
ally utilize a large vehicle fleet and operate from several depots or warehouses. The
vehicles operate from one of several depots instead of only one. This kind of problem
is much more complex than the single-depot OVRP, and can be called multi-depot
OVRP (MDOVRP). The MDOVRP is also similar to another variant of the basic VRP,
i.e., MDVRP (Chao et al. 1993; Renaud et al. 1996; Cordeau et al. 1997; Lim and Wang
2005; Lau et al. 2010). The MDVRP extends the VRP by allowing multiple depots,
however, it requires that every vehicle route must start and end at the same depot.
Clearly, the single-depot OVRP can be viewed as a special case of the MDOVRP. Since
the single-depot OVRP is known to be NP hard in the strong sense (Brandão 2004), the
MDOVRP is also NP hard. To the best of our knowledge, although many good research
exist for the OVRP and MDVRP, only Tarantilis and Kiranoudis (2002b) presented
a metaheuristic for solving the MDOVRP. In the work of Tarantilis and Kiranoudis
(2002b), a real-life fresh meat distribution problem encountered by a major Greek
industry distributing fresh meat from several depots to customers was studied. The
problem was formulated as the MDOVRP and solved by a list-based threshold-accept-
ing (LBTA) algorithm, which is a metaheuristic belonging to the class of threshold
accepting based algorithms (Dueck and Scheuer 1990). The LBTA iteratively search
the solution space guided by a control parameter, which is modified throughout the
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iterations and is termed as threshold. Several kinds of local move methods are adopted
in the LBTA, such as 2-opt move, 1-1 and 1-0 exchange moves, to search better neigh-
bor solution and compute the new threshold value. For more details about the LBTA
algorithm, readers refer to Tarantilis and Kiranoudis (2002b).

In this paper, we present a mixed integer programming (MIP) mathematical for-
mulation for the MDOVRP. Meanwhile, we give an effective meta-heuristic solution
approach, i.e., a hybrid genetic algorithm (HGA), for solving the MDOVRP. The HGA
is constructed on the classical evolutionary algorithm framework (Reeves 2003) and
hybridized with some kinds of local search methods (Sörensen and Sevaux 2006).
It has been shown that the HGA is powerful for the classical VRP and its variants
(Prins 2004, 2009; Ke et al. 2009; Mendoza et al. 2010). The remainder of this paper
is organized as follows. In Sect. 2, the MDOVRP is formally introduced, and the
mathematical formulation is defined. Then, our HGA for solving the MDOVRP is
described in Sect. 3. In Sect. 4, we present a computational study that analyzes the
proposed solution approach. Finally, we summarize our findings and suggest a future
work direction in Sect. 5.

2 Problem definition and formulation

The MDOVRP can be defined as follows. Let G = (V, A) be a directed graph, with
V = N ∪ D is the vertex set, and A is the arc set. Vertex set N = 1, 2, . . . , n repre-
sents the customers to be served, and set D = 1, 2, . . . , m represents the uncapacitated
depots. A travel cost ci j is defined between each pair of vertices (i, j), i, j ∈ V, i �= j .
Each depot d ∈ D stores and supplies products and has an unlimited fleet of iden-
tical vehicles with the same capacity of Q. Some researchers take into account the
limited fleet constraint (also called capacitated depot). In this paper, we relax this con-
straint like the works of Salhi and Sari (1997), Branke et al. (2007) and Baldacci and
Mingozzi (2009). Each customer i ∈ N has a demand qi , 0 < qi ≤ Q. For each depot,
its demand equals zero. The MDOVRP consists of determining the routes of minimal
traveling cost satisfying the following conditions: (1) every customer node is visited on
exactly one route; (2) each vehicle starts from one of several depots, and end at the last
customer it serves; (3) the total demand of the customers on any route does not exceed
Q; (4) the traveling distance of any vehicle route cannot exceed a preset value H . In
our proposed approach for solving the MDOVRP, we firstly set the distances from the
customer nodes to each depot to be zero. That is to say, we set ci j = 0,∀i ∈ N , j ∈ D.
Then, the following decision variables are used in the formulation:

xi jk =
⎧
⎨

⎩

1 if a vehicle starting from depot k travels directly from customer
i to customer j

0 otherwise

ui An upper bound on the load of a vehicle upon leaving node i
hi An upper bound on the traveling distance of a vehicle upon leaving node i

Min
∑

i∈V

∑

j∈V

∑

k∈D

ci j xi jk (1)
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Subject to:

∑

i∈V

∑

k∈D

xi jk = 1 ∀ j ∈ N (2)

∑

i∈V

xi jk =
∑

i∈V

x jik ∀ j ∈ V, k ∈ D (3)

ui − u j + Q · xi jk ≤ Q − q j ∀i ∈ N , k ∈ D, j ∈ V \k (4)

qi ≤ ui ≤ Q ∀i ∈ N (5)

uk = 0 ∀k ∈ D (6)

hi − h j + H · xi jk ≤ H − ci j · xi jk ∀i ∈ N , k ∈ D,∀ j ∈ N\k (7)

0 ≤ hi ≤ H ∀i ∈ N (8)

hk = 0 ∀k ∈ D (9)

xi jk ∈ {0, 1} ∀i ∈ V, j ∈ V, k ∈ D, i �= j (10)

The objective function (1) minimizes the total travelling distance. Constraints (2)
ensure that each customer node is served by exactly once. Constraints (3) impose the
degree balance for each node, including both the customer nodes and depots. Con-
straints (4)–(6) eliminate the sub-tours in the solution, and ensure that the given vehicle
capacity is not exceeded, which is based on the Miller–Tucker–Zemlin sub-tour elim-
ination for the classical VRP (Miller et al. 1960; Kara et al. 2004; Bolduc et al. 2010).
Note that in constraints (4) j belongs to set V \k, while in similar VRP sub-tour elimi-
nation constraints j belongs to the customer set N . Our constraints forbid not only the
classical sub-tour but also a kind of special tour in our formulation, which connects
two or more depots. For example, consider a tour (d1,n1, d2, n3, d1), where d1, d2 are
two depots, n1, n2 are customer nodes. Supposed this tour starts from d1, constraints
(4) imply ud2 ≥ un1 +qd2 = un1 ≥ qn1 > 0. Since this inequality violates constraints
(6), such kind of illegal tour is forbidden. Similarly, constraints (7)–(9) ensure that
each vehicle route cannot exceed the distance span H .

This vehicle flow formulation is simple and flexible. Clearly, it can be used for
the multi-depot closed VRP. Meanwhile, some OVRP researches consider the fixed
cost of using a vehicle in the objective function (Repoussis et al. 2006, 2010; Li et al.
2007). If the objective is keeping the trade-off between route distance and vehicle
fixed cost, we modify the distance matrix by adding the fixed cost of a vehicle to the
distance from the depots to each customer. If the first objective is to find the minimum
required vehicles and the second is to minimize the vehicle traveling cost, this can be
satisfied by adding a sufficiently large number M to the distance from the depots to
each customer. This forces the algorithm towards solutions with minimal number of
vehicles to avoid the penalty.

3 Hybrid genetic algorithm

Genetic algorithms (GAs) are global search optimization techniques based on the
mechanics of natural selection and reproduction, which have been found to be very
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effective in solving complex optimization problems (Cvetkovic and Parmee 2002;
Kim et al. 2003). In the area of VRPs, the basic and simple GA may not perform very
well. Therefore, some good hybrid genetic algorithms (HGAs) are designed to com-
pete with other powerful meta-heuristics, such as tabu search and simulated annealing.
The process of HGA additionally generates the initial population using random and
heuristic techniques for better values (Berger and Barkaoui 2004; Jeon et al. 2007),
and uses the simple heuristics, e.g., local search procedures, to replace the simple
mutation operators (Potvin and Bengio 1996; Prins 2004, 2009). In this work, we
propose a HGA to solve the MDOVRP. The flowchart of the proposed HGA for the
MDOVRP is shown in Fig. 1. The algorithm starts with an initial population, i.e., a
set of solutions of the MDOVRP. Each solution in the population is called a chro-
mosome, which is evaluated by the measure of fitness. Then, during each generation,
the algorithm applies the crossover to two chromosomes (called parents) so as to get
two new chromosomes (also called offspring). Then, the algorithm applies some local
search methods to a new child chromosome. If the termination condition is satisfied,
the algorithm reports the best chromosome found so far and stops. Otherwise, the
algorithm goes on to repeat the evolution process. In the following sections, the basic
components of the HGA, e.g., chromosome representation, population initialization,
crossover method, and local search methods integrated in our HGA, are described.

3.1 Solution coding and decoding of chromosome

Chromosome used in the proposed genetic algorithm is encoded as permutation of all
the customer nodes without trip delimiters, just like a giant traveling salesman problem
(TSP) tour visiting all the customer nodes. Each chromosome has a cost, which cor-
responds to the cost of the best MDOVRP solution extractable from the chromosome.
Such kind of chromosome cannot represent the MDOVRP solution directly. However,
the advantage of such kind of chromosome coding is: (1) It is simpler to apply the
crossover methods to the chromosome; (2) The algorithm can transmit good genetic
information from parent chromosomes to children chromosomes when executing the
crossover operator; (3) The algorithm can get the optimal MDOVRP solution for a
sequence of all the customer nodes, i.e., for each chromosome the algorithm can get
its optimal fitness. Similar chromosome encoding method is used in some excellent
genetic algorithms for solving the VRP (Prins 2004) and its variant problems (Fallahi
et al. 2008; Prins 2009). In this study, the following split procedure is adopted to eval-
uate the fitness of a chromosome, and to partition a chromosome into a set of feasible
routes, i.e., the solution of the MDOVRP.

Given a chromosome S = (s1, . . . , sn), we build an acyclic auxiliary graph T =
(X, Y ) with n + 1 nodes, where vertex set X contains nodes indexed from 0 to n,
and Y is the directed arc set. One arc (i, j), i < j is contained in set Y , iff a vehicle
visiting customers subsequence (si+1, . . . , s j ) in S is feasible in terms of following
load constraints (11) and traveling distance constraints (12). In constraints (12), zi j is
the cost of this arc (i, j).

j∑

k=i+1

qSk ≤ Q (11)
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Fig. 1 General structure of the
hybrid genetic algorithm

zi j = min

⎛

⎝cd,Si+1 +
j∑

k=i+1

cSk,Sk+1

⎞

⎠ ≤ H, ∀d ∈ D (12)

The optimal partition of the chromosome S corresponds to a shortest path problem,
i.e., defining the shortest path from node 0 to node n in graph T . The cost of shortest
path from node 0 to node n in graph T is adopted as the fitness of chromosome S. To
describe chromosome partition method more clearly, an example is shown in Fig. 2.
The first part of Fig. 2 shows a small instance with two depots (depots 1 and 2), and four
customer nodes (a, b, c, d). The visiting sequence of nodes, i.e., the chromosome, is
(a, b, c, d) withQ = 10, H = 35. The demand of each customer is shown in brackets,
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a:15,depot1 b:10,depot1

ab: 23,depot1

bc:30,depot1 

45

20

a(5) 
b (4)

depot1

32

15

35

10

c(5)

8

30
15

15

c:15,depot2 d:20,depot2

cd: 30,depot2

a(5) b (4)

depot1

depot2

15

c(5)
d(3)

8

15
15

1 2 3 4 5

The first part

The second part

The third part

depot2

20

d(3)

Fig. 2 The split procedure applied to a small instance

and the distances between each two nodes are given beside the arc. In the second part
of Fig. 2, each arc in the auxiliary graph represents a possible vehicle route, with the
label of traveling distance and the starting depot. The shortest path from nodes 1 to 5
is (1 → 3 → 5) with the cost of 55. Then, the corresponding MDOVRP solution is
given in the third part, consisting of two vehicle routes. Two routes start from deopt1
and depot2, separately.

3.2 Population structure and initialization

The HGA population consists of chromosomes of various costs (i.e., fitness), which
are sorted in an ascending cost order. In the initial population, three chromosomes are
generated via three heuristics, and the others are generated as random permutations
of customer nodes.

The first heuristic is a simple two-stage procedure, based on the saving algorithm
for the single-depot VRP (Clarke and Wright 1964). The saving algorithm is one of
the most famous and effective heuristic for the VRP, which is based on the notion of
saving. In our study, firstly each customer is assigned to the closest depot. Then, for
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each depot a single-depot OVRP is solved by the saving algorithm. For the single-
depot OVRP, the calculation of savings values should consider the fact that vehicles
need not return to the depot. The second heuristic is based on the approach of sweep
(Gillett and Miller 1974). Similarly, each customer is assigned to the closest depot.
Then, for each depot feasible routes are created by rotating a ray centered at the depot
and gradually including customers in a vehicle route until the capacity or route length
constraint is attained. A new route is then initiated and the process is repeated until the
entire plane has been swept. The third heuristic is proposed by Salhi and Sari (1997),
which is more complex than the first two heuristics. Firstly, customers are divided into
core customers and borderline customers by looking at the ratio between the distance
to their nearest depot and the distance to the second-nearest depot. In this paper, we
set the ratio to be 0.5. Then, the core customers are assigned to their nearest depots.
We use the saving method to solve the VRPs for each depot with its core custom-
ers. Finally, borderline customers are inserted one by one in the order of decreasing
opportunity cost, where opportunity cost is the absolute difference between inserting
the customer into a tour starting at the closest depot, and inserting the customer into a
tour starting at the second closest depot. The customer is inserted where the additional
cost is minimal, and the vehicle capacity and route length constraint is satisfied. At
this step, if a borderline customer cannot be inserted into all existing routes duo to
vehicle capacity or route length constraint, a new route is generated, connecting this
customer and the nearest depot.

Besides the chromosomes generated by three simple heuristic algorithms, the rest
of the population is composed of chromosomes generated randomly, each of which is
a random sequence of customer nodes. Each initial chromosome is partitioned by the
split algorithm mentioned in previous section to define its exact cost (fitness).

3.3 Selection and crossover

In the proposed HGA, two parent chromosomes P1 and P2 are selected with the tour-
nament selection method to generate their offspring. First, a few chromosomes are
chosen randomly from the population. Then, the chromosome with the smallest cost
is selected to be P1. The procedure is repeated to get the second parent P2. Selection
pressure can be adjusted by changing the tournament size. With the increase in the
tournament size, weak chromosomes will have smaller chance to be selected in the
tournament selection. In this study, from the preliminary experimental results, we find
that the tournament size of three can produce better result.

Since our chromosomes do not contain route and depot delimiters, they can undergo
classical recycling crossover methods designed for the TSP. In the proposed algorithm,
the crossover method of OX (Oliver et al. 1987) is used to perform the permuta-
tion representation, because OX rather concerns circular permutations. For a detailed
description of OX used in this work, see Liu et al. (2009) and Prins (2009). The OX
generates two children solutions. One child is selected randomly and undergoes local
search methods (described in Sect. 3.4). Then, if the cost of this child chromosome
is less than the worst chromosome in the existing population and this child does not
violate the diversity of the population, it replaces one chromosome randomly selected
in the worst half of the population.
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depot1 depot2depot1 depot2depot1 depot2depot1 depot2

Fig. 3 Local search methods for the routes starting from different depots

3.4 Local search

The basic genetic algorithm with simple mutation methods (e.g., swapping or relocate
some nodes) (Holland 1975) is hard to compete with other modern heuristics, such as
simulated annealing and tabu search. So, in this work we hybridize the local search
with the basic genetic algorithm to make the algorithm more effective. A large number
of local search schemes were developed for the VRP, OVRP, MDVRP and some rela-
tive problems (Fleszar et al. 2009; Ho et al. 2008; Liu et al. 2010). In our work, three
kinds of local search methods are used, i.e., 1-0 exchange move, 1-1 exchange move
and 2-opt move. Tarantilis and Kiranoudis (2002b) and Prins (2009) also adopted these
local search methods in their algorithms. The descriptions and pictorial illustrations
of these local search methods for single and multiple routes originating from only one
depot can be found in their works. Meanwhile, these methods are applied to various
routes originating from different depots in our algorithm. Four examples in Fig. 3 show
how 1-0 exchange, 1-1 exchange and 2-opt move are applied to customers served by
the vehicles starting from two depots. In the top part of Fig. 3, the 1-0 exchange and
1-1 exchange are applied to two routes, which originate from depots 1 and 2, respec-
tively. And, the bottom part of Fig. 3 demonstrates how the 2-opt move are adopted
in such kind of case. Note that when 2-opt move is applied to two routes, there are
two possible ways to re-connect route segments: the arcs (i, i + 1) and ( j, j + 1) are
replaced either by (i, j + 1) and ( j, i + 1), or by arcs (i, j) and (i + 1, j + 1).

These local search procedures are employed to the selected child chromosome
with a probability. During the local search procedure, we adopt ‘first-accept’, not
‘best-accept’ strategy, i.e., during a local search procedure once a feasible and better
solution is found, it is adopted as the new seed for repeating this local search. The local
search on the selected child chromosome is repeated until no improving move can be
found. Note that the local search procedures operate on a ‘real’ problem solution, not
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on the chromosome itself. The local search result (a real solution) is then converted
into its corresponding chromosome by concatenating its routes and deleting all the
depots. Finally, the split algorithm is applied to this resulting chromosome since it
may find a better partition and cost for the same chromosome.

3.5 Algorithmic variables and stopping criterion

The proposed genetic algorithm has some parameters, such as population size and
local search probability. Based on the guidance given by Prins (2004) and our exper-
imental results, we use a relative small population size of 30, and a low local search
probability of 0.25.

It has been proven that controlling the diversity of population is important since it
can diminish the risk of premature convergence (Hertz and Widmer 2003). In our work,
a simple rule is imposed to keep the diversity of the HGA population, i.e., the costs
of any two chromosomes must be different. This rule is checked when generating the
initial population and trying to insert an offspring, which is generated from crossover
operator and undergoes local search methods, into the population. When initializing
the population, three chromosomes are generated by simple heuristic algorithms, the
rest of the population are generated randomly. Then, the diversity of the population
is checked. If the diversity requirement is not satisfied, all the violated chromosomes
are removed from the population. That is to say, if several chromosomes have the
same fitness, only one of them is reserved and the others are deleted. Then, the empty
spaces in the population are filled with new randomly generated chromosomes. We
checked the population again. This procedure is repeated until the population satisfies
the diversity requirement. Similarly, after a child chromosome is generated and under-
goes local search, we must confirm that it will not break the diversity of the population
when inserting it into the population. Otherwise, this child chromosome is discarded.

The stopping criterion can be defined in terms of elapsed CPU time, the num-
ber of iterations, or number of iterations with no improvement in the best solution
can be found. In the proposed HGA, we use a simple criterion: a variable is used to
record the number of algorithm iterations. Once a pair of offspring is created, this
variable increases by one. The algorithm stops when this variable reaches the defined
limitation.

4 Computational experiments

4.1 Experiments on the MDOVRP instances

To the best of our knowledge, there are no benchmark test instances for the MDOVRP
with which to test the HGA proposed in this paper. Thus, we modify the classical
MDVRP benchmark instances and randomly generated our test instances with differ-
ent scales. In this section, we explain how to generate the MDOVRP test instances,
and report the results.
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4.1.1 Experimental data

Firstly, we construct the MDOVRP test instances based on the MDVRP benchmark
instances proposed by Cordeau et al. (1997), which are widely used in the literature.
Clearly, most information in these MDVRP benchmark instances can be used for the
MDOVRP directly. Note that in these instances the depot is capacitated, i.e., the num-
ber of the vehicles in each depot is limited, while in our MDOVRP such constrains
are relaxed. Meanwhile, the heuristic approach proposed by Tarantilis and Kiranoudis
(2002b) does not consider the vehicle route length constraint. To give a fair comparison,
we also relax the constraint of the route length in this series of experiments (route length
constraint will be taken into consider in the third series of experiments, in Sect. 4.2).
Meanwhile, we find that there exist some similar MDVRP instances (e.g., p12, p13
and p14), between which the only difference is the maximum duration of the route. For
such kind of similar MDVRP instances, only one of them is adopted in our experiment.

Meanwhile, the performance evaluation of the proposed approach on the MDOVRP
was carried on three sets of randomly generated instances, which contain: (1) 5 depots
and 50 customers; (2) 5 depots and 100 customers; and (3) 10 depots and 350 cus-
tomers, respectively. In each test instance, the depots and customers spread randomly
in a rectangle of width and height of 1,000. The demand quantity of each customer
was randomly generated between 10 and 100. In first two sets of instances, the vehicle
capacity is 500. In the third set large scale instances, we set the vehicle capacity to
be 2,000. In all the test instances used in this paper, both travel cost and distance are
given by the Euclidean distance between points, without rounding.

The performance of the proposed hybrid genetic algorithm was compared with
(1) a powerful commercial MIP solver, CPLEX 12.2, and (2) the list-based threshold
accepting (LBTA) heuristic proposed by Tarantilis and Kiranoudis (2002b) for solving
the MDOVRP. As our demands to get the code of LBTA heuristic have been unfruit-
ful, we developed our own implementation. All the algorithms were implemented
in C++. All experiments are carried out on a 3.2 GHz Dual Core computer with a
memory of 4 GB under Windows XP. We set a long time limit of 12 h on running
CPLEX for each instance. For each instance, CPLEX runs with default settings when
finding an optimal solution, or until exhausting the memory or predetermined maxi-
mum computation time. If CPLEX can solve the instance to optimality, or terminates
because of exhausting the memory within 12 h, we report the running time of CPLEX.
Otherwise, if CPLEX is still running when the maximum computation time is reached,
the CPLEX computing time is considered to be 12 h. In our preliminary experiments,
we also try different CPLEX parameter settings, e.g., strong branching, depth-first
search, MIP emphasis feasibility or optimality, to tune Cplex’s performance. But such
settings cannot lead to obvious performance improvement.

4.1.2 Computational results for Cordeau’s instances

We first test the proposed algorithm on 24 instances originated from MDVRP bench-
marks (Cordeau et al. 1997), with 48 to 288 customers, and 2 to 6 depots. Two heu-
ristics, HGA and LBTA, were run 20 times on each instance. The best results, the
average results and average running time were got from these 20 runs. The setting
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of HGA parameters is explained as follows. The population size is 30, the stopping
criteria, i.e., the maximal number of algorithm iterations equals 30,000, and the local
search probability is 0.25. The computational results are presented in Table 1, which
contains the solution information obtained from the CPLEX, HGA and LBTA.

In Table 1, the first to forth columns ‘Instance’, ‘CN ’, ‘DN ’ and ‘Q’ present the
instance name, the number of the customers and the depots, and the vehicle capacity.
The columns with the headers ‘CplexUB’, ‘Cplex ′

LB and ‘tc’ refer to the solution
value, the lower bound and running time (in seconds) of CPLEX solver, respectively.
The columns headed ‘HGAb’, ‘HGAavg’ and ‘th’ present the best and average HGA
solution costs over 20 runs, and average computational time of one run in seconds.
Similarly, the columns headed ‘LBTAb’ and ‘tl’ present the corresponding best solu-
tion cost and running time of the LBTA. The column ‘C–H%’ contains the percentage
deviation between the CPLEX solution cost CplexUB and HGA best solution cost
HGAb, which is calculated as: 100 × (CplexUB − HGAb)/CplexUB. And, the last
column ‘L-H%’ represents the deviation between best solution costs of two heuristics
HGA and LBTA, calculated by 100 × (LBTAb − HGAb)/LBTAb. If an instance is
proven to be solved to optimality, it is marked with an asterisk.

Three remarkable conclusions can be drawn from these experimental results. First,
the proposed HGA is able to provide high quality solutions for these instances. As
shown in Tables 1 and 5, the instances are solved to optimality by CPLEX. The pro-
posed HGA also obtains the optimal solutions for these instances within rather shorter
running times. For other test instances, CPLEX fails to provide the optimal solution
(its objective value cannot reach the lower bound), while HGA can get much bet-
ter solutions. For total 24 instances, the average deviation between CPLEX objective
values and HGA best solution costs is 19.93 %. Meanwhile, LBTA can find optimal
solutions for four instances. For each instance the solution obtained by HGA is equal
to, or better than the solution got by LBTA. For all other 20 test instances, the solu-
tions found by the HGA clearly dominate the solutions of the LBTA. For all 24 test
instances, the average gap between HGA and LBTA best solution costs (i.e., HGAb
and LBTAb) is 6.16 %. Second, we find that the proposed HGA is very robust with
respect to different test instances. It always finds the best solution (among CPLEX,
HGA and LBTA) for each instance. And, we see that HGA can obtain these good
solutions in a reasonable computational time. The average running time of CPLEX
for all these instances is about 270 min, while the average running time of HGA is less
than 10 min. Compared with CPLEX solver, the running time of HGA is much shorter.

4.1.3 Computational results for randomly generated instances

In Tables 2, 3 and 4, we present the experimental results on three sets of randomly
generated instances, where the first set is small scale, and the second and the third set
are moderate and large size. Here, HGA uses the parameters as used for Cordeau’s
instances. We find that for the first set of small scale random instances, CPLEX can
solve 9 out of 12 instances optimally. For the other 3 ‘hard’ instances, CPLEX is able
to provide good lower bounds. For the second set moderate size instances, CPLEX
fails to get any optimal solution within the time limit of 12 h, but it still can provide
feasible solutions. For large scale instances containing 350 customers and 10 depots,
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Table 4 Computational results on the third set random instances

Instance CN DN HGA LBTA L − H (%)

HGAb HGAavg tHGA (s) LBTAb tl (s)

R3-1 350 10 14,274.78 14,755.79 2,899.4 14,957.80 1,642.2 4.57

R3-2 350 10 14,302.28 14,687.76 2,917.5 15,086.12 1,695.0 5.20

R3-3 350 10 14,063.04 14,191.31 2,817.9 14,721.30 1,610.9 4.47

R3-4 350 10 14,621.31 14,729.87 3,000.9 15,177.62 1,770.4 3.67

R3-5 350 10 15,020.28 15,164.49 2,901.2 15,020.28 1,635.9 0.00

R3-6 350 10 13,582.80 13,615.44 2,987.1 15,830.20 1,508.6 14.20

R3-7 350 10 14,839.89 14,937.05 2,841.5 15,542.84 1,588.3 4.52

R3-8 350 10 13,702.25 13,959.19 2,871.0 14,184.94 1,662.9 3.40

R3-9 350 10 14,441.78 14,549.82 2,927.5 14,749.17 1,718.1 2.08

R3-10 350 10 15,209.81 15,289.54 2,996.3 15,881.18 1,634.0 4.23

R3-11 350 10 15,541.97 15,780.26 2,813.2 16,700.79 1,710.9 6.94

R3-12 350 10 14,837.43 14,967.59 2,926.7 15,787.96 1,627.5 6.02

Average 14,536.47 14,719.01 2,908.4 15,303.35 1,650.4 4.94

the CPLEX solver is unable to obtain feasible solution for all instances. Therefore,
Table 4 does not present the CPLEX performance. It only compares the performances
between HGA and LBTA for these large test instances.

The computational results shown in Tables 2, 3 and 4 are discussed as follows.
Firstly, the performance of the proposed HGA is always better than CPLEX solver
and LBTA in terms of solution quality. Concerning the small scale instances, the per-
formances of CPLEX, HGA and LBTA are rather promising. As shown in Table 2, both
HGA and CPLEX can get optimal solutions for 9 out of 12 small instances, and LBTA
can find optimal solutions for 6 instances. For all 12 instances in Table 2, the average
percentage deviation between HGA best solution costs and lower bounds provided
by CPLEX is only 0.53 %, and the corresponding percentage ratio between LBTA
and lower bound is 0.55 %. This proves that both two heuristics, HGA and LBTA,
can find near-optimal solutions for small scale instances. For 12 moderate instances
shown in Table 3, we find that HGA absolutely dominates the CPLEX solver, and the
performance of the LBTA begins to deteriorate. For example, the average gap between
HGAb (the HGA best solution cost) and CPLEX solution cost is 2.78 %, the maximum
and average gap between HGAb and LBTAb (best solution provided by the LBAT) is
5.47 and 2.23 %. Then, concerning the large scale instances shown in Table 4, we find
that for each one instance the solution quality of HGA is much better than LBTA: the
maximum and average percentage deviations between HGAb and LBTAb increase to
14.20 and 4.94 %. For total 36 random instances, the maximum and average percent-
age gaps between HGAb and LBTAb are 14.20 and 2.40 %, respectively. Summarizing
the results shown in Tables 2, 3 and 4, we can say that the proposed HGA outperforms
the CPLEX solver and the existing heuristic in terms of the quality of solutions. The
superiority of the HGA is more apparent in medium and large size test instances.

Meanwhile, we find that the computing time of the HGA is still always reasonable.
For medium size test instances, the proposed HGA can get the solution in 2 min. For
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the large scale test instances, the average running time of HGA is less than 50 min.
Of course, you may and the running time of the LBTA is less than that of the HGA.
Compared with the LBTA, the improvement in the HGA solution quality is obtained
by elapsing a larger CPU time. This may be due to two reasons. Firstly, compared
with the local search operator used in the LBTA, our HGA adopts more complex local
search methods as intensification strategy. Secondly, the frame of the genetic algorithm
is more complex and time consuming than the basic structure of the LBTA. It has been
shown that for some other computational optimization problems, e.g., job shop sched-
uling problems, the computational time of LBTA is less than most modern heuristics,
such as tabu search and simulated annealing method (Tarantilis and Kiranoudis 2002a).
However, on the other hand, though the running time of HGA is not as good as LBTA,
in general, it is still acceptable. Furthermore, to give a fair comparison between HGA
and LBTA, we adopt two strategies to improve LBTA. (1) We increase the running
time of the LBTA to the same with the HGA for each randomly generated instance.
We find that HGA still always outperforms the LBTA, leading to a maximum gap of
13.87 % (against 14.20 %) and average gap of 2.25 % (against 2.40 %). (2) We adopt a
simple multi-start strategy to extend the running of LBTA to the same time of HGA.
The fundamental principle of multi-start strategy used here is to create new seed solu-
tion, and let LBTA continue to search from the new seed. We let LBTA not only record
the best solution obtained thus far, but also record the second best solution during its
search. When the searching of LBTA falls into stagnation, it restarts from the second
best solution obtained thus far. This procedure is repeated until the running time of the
LBTA to the same with the HGA. Unfortunately, we find when LBTA integrated this
multi-start strategy still provides slight improvement in its solution. The maximum
percentage gaps between tb and LBTAb is not changed, while the average gap is 2.23 %.

4.2 Experiments on the MDVRP

As stated above, in our formulation and algorithm the traveling distance (cost) from
each customer node back to the depot is set to be 0. But if we do not adopt this setting,
i.e., using the real value to represent the distance (cost) from each customer back to
the depot, clearly our HGA can solve the closed MDVRP. It is very interesting to test
our HGA on the MDVRP, and compare our results with other sophisticated heuris-
tics and exact method. Here, 33 well-known MDVRP benchmark instances created by
Cordeau et al. (1997) were chosen again. In Cordeau et al. (1997), the authors proposed
a powerful tabu search heuristic, consisting of the GENI heuristic which was used to
insert unrouted customers or remove customers from their current routes and then
reinsert them into different routes. The tabu search proposed by Cordeau et al. (1997)
has a good performance for the MDVRP. Thus, the results obtained by our HGA are
compared with the results obtained by tabu search proposed by Cordeau et al. (1997).
Note in Cordeau’s tabu search the vehicles located at each depot is limited, and their
s results reported in Cordeau et al. (1997) were got under this constraint. In our study,
we relax this constraint and use Cordeau’s heuristic to solve these benchmarks again.
Meanwhile, our heuristic results are compare with the solutions achieved by the exact
method proposed by Baldacci and Mingozzi (2009). In the work of Baldacci and
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Table 5 Computational results on the MDVRP benchmarks

Instance CN DN Q H HGA Cordeau et al. Baldacci and Maingozzi

HGAb th (s)

p01 50 4 80 ∞ 576.87* 13.80 576.87* 576.87*

p02 50 4 160 ∞ 473.53* 14.51 473.53* 473.53*

p03 75 5 140 ∞ 640.65* 40.82 640.65* 640.65*

p04 100 2 100 ∞ 1,001.59 85.96 1,004.38 999.21*

p05 100 2 200 ∞ 752.96 91.25 751.16 751.26

p06 100 3 100 ∞ 876.50* 91.24 876.50* 876.50*

p07 100 4 100 ∞ 886.68 87.70 889.10 881.97*

p08 249 2 500 310 4,439.29 1,101.54 4,421.79 –

p09 249 3 500 310 3,888.49 1,116.63 3,913.95 –

p10 249 4 500 310 3,666.98 1,133.34 3,662.74 –

p11 249 5 500 310 3,594.08 1,128.28 3,573.06 –

p12 80 2 60 ∞ 1,318.95* 49.40 1,318.95* 1,318.95*

p13 80 2 60 200 1,318.95 49.28 1,318.95 –

p14 80 2 60 180 1,360.12 48.73 1,360.12 –

p15 160 4 60 ∞ 2,505.42 337.10 2,505.42 2,505.42

p16 160 4 60 200 2,572.23 369.20 2,572.23 –

p17 160 4 60 180 2,709.09 332.76 2,709.09 –

p18 240 6 60 ∞ 3,702.85 1,039.40 3,702.85 –

p19 240 6 60 200 3,827.06 1,040.72 3,827.06 –

p20 240 6 60 180 4,058.07 1,039.67 4,075.36 –

p21 360 9 60 ∞ 5,474.84 2,876.77 5,474.84 –

p22 360 9 60 200 5,712.10 2,853.40 5,702.16 –

p23 360 9 60 180 6,078.75 2,910.91 6,078.75 –

pr01 48 4 200 500 861.32 12.85 861.32 –

pr02 96 4 195 480 1,275.61 88.30 1,307.99 –

pr03 144 4 190 460 1,799.93 319.47 1,806.37 –

pr04 192 4 185 440 2,064.64 369.12 2,055.90 –

pr05 240 4 180 420 2,338.57 1,027.84 2,338.75 –

pr06 288 4 175 400 2,682.46 1,699.01 2,674.02 –

pr07 72 6 200 500 1,073.63 39.30 1,078.83 –

pr08 144 6 190 475 1,668.75 251.95 1,666.63 –

pr09 216 6 180 450 2,171.18 783.54 2,162.40 –

pr10 288 6 170 425 2,824.90 1,759.30 2,833.69 –

Average 2,430.21 2,430.77
∗ Indicates the optimal solution

Mingozzi (2009), the fleet of vehicles located at each depot is unlimited, so their
results can be adopted directly.

Table 5 reports the results obtained by our HGA, Cordeau’s tabu search, and the
exact method of Baldacci and Mingozzi. The first five columns describe the test
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instance, where column ‘Instance’ shows the problem name, columns ‘CN’ and ‘DN’
give the number of the customers and depots, columns ‘Q’ and ‘H ’ show the vehicle
capacity and maximum traveling distance. The following one major column displays
the results of our HGA. The last two columns show best solution costs of tabu search
and exact method. Note that Baldacci and Mingozzi (2009) do not consider all the
instances, solving 9 out of 33 test instances. The best results among three methods are
marked in bold.

Firstly, we compare two heuristic methods with the exact algorithm of Baldacci
and Mingozzi (2009). The exact algorithm can solve to optimality seven out of nine
instances. For these seven optimally solved instances, we find that both our HGA
and Cordeau’s tabu search can also find the optimal solutions. Then, we compare
two heuristics. We find that Cordeau’s tabu search is able to find 25 best solutions
(among three methods) out of 33 instances considered, while our HGA can find 22
best solutions. The average value of HGAb is equal to 2430.21, while the average
value of Cordeau’s best solution costs is 2430.77. Clearly, concerning the classical
MDVRP, the performance of our HGA is satisfied and is competitive to the existing
sophisticated methods.

5 Conclusions and future research

In this paper, we investigate MDOVRP, an extension of the classical MDVRP and
the OVRP. An effective hybrid genetic algorithm is proposed to solve the problem.
In the proposed approach, three classical heuristic algorithms are adopted to provide
good initial solutions. A split method is designed for computing the exact fitness of
each chromosome. Several simple and powerful local search methods are utilized to
improve the offspring generated by the crossover procedure. The performance of the
proposed HGA is tested on a range of test instances. Computational results indicate
that the proposed HGA is a promising approach to solve the multi-depot open vehi-
cle routing problem (MDOVRP). Meanwhile, since our algorithm is also capable of
solving the classical MDVRP, computational experiments were carried out on the
MDVRP benchmark instances taken from the literature. The computational results on
the classical MDVRP are satisfied.

The MDOVRP studied in this paper can be extensively studied in the future. Its
formulation could be extended to cover more operational constraints, such as time
windows and heterogeneous fleet of vehicles. From the methodological point of view,
one goal is to speed up the local search in the proposed genetic algorithm to reduce
its running time.
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