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Abstract In contrast with sick people who need urgent medical attention, the clien-
tele of preventive healthcare have a choice in whether to participate in the programs
offered in their region. In order to maximize the total participation to a preventive
care program, it is important to incorporate how potential clients choose the facilities
to patronize. We study the impact of client choice behavior on the configuration of a
preventive care facility network and the resulting level of participation. To this end,
we present two alternative models: in the “probabilistic-choice model” a client may
patronize each facility with a certain probability, which increases with the attractive-
ness of the available facilities. In contrast, the “optimal-choice model” stipulates that
each client will go to the most attractive facility. In this paper, we assume that the prox-
imity to a facility is the only attractiveness attribute considered by clients. To ensure
the quality of care, we impose a bound on the mean waiting time as well as a mini-
mum workload requirement at each open facility. Subject to a total capacity limit, the
number of open facilities as well as the location and the capacity (number of servers)
of each open facility is the main determinant of the configuration of a facility network.
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Both models are formulated as a mixed-integer program. To solve the problems effi-
ciently, we propose a probabilistic search algorithm and a genetic algorithm. Finally,
we use the models to analyze the network of mammography centers in Montreal.

Keywords Preventive care · Client choice · Network design · Congestion

1 Introduction

Preventive healthcare involves measures taken to circumvent the development of a
disease or for early detection of a condition. It is well established that prevention
is more humane and more economical than curing diseases or treating their symp-
toms. For example, the American Heart Association1 believes that “basic preventive
healthcare services should be an integral part of an equitable, comprehensive health-
care plan, accessible to all” and the decline in the death rates from cardiovascular
disease during the past three decades can be attributed to better prevention as well as
the improvements in treatment of heart disease and stroke. As another example, from
the economical perspective, World Health Organization2 estimates that people with
diabetes generate healthcare costs that are two to three times those without the condi-
tion, and in Latin America the costs of lost production due to diabetes are about five
times the direct health care costs. In general, preventive services include screenings for
certain diseases, immunizations, regular measurements of weight, cholesterol levels,
and blood pressure as well as advice about diet, exercise, tobacco, alcohol and drug
use, stress, and accident prevention. For example, according to the National Cancer
Institute (2011), women should have a Pap test every 3 years to screen for cervical can-
cer starting at age 21 and a mammogram every 2 years to screen for breast cancer after
the age of 50, whereas everyone older than 50 should be tested for colorectal cancer.

Many costly and disabling conditions, including cardiovascular diseases, cancer,
diabetes, and chronic respiratory diseases, are linked by common preventable risk
factors. World Health Organization (2002) pointed out, however, that the healthcare
systems around the globe are primarily based on responding to acute problems and
urgent needs of patients, while healthcare providers often fail to seize patient interac-
tions as opportunities to inform patients about health promotion and disease prevention
strategies. Nonetheless, there are examples of success that strengthen the motivation to
design and improve preventive healthcare programs worldwide. Feachem et al. (2002)
reports on the redesign of Kaiser Permanente’s primary care clinics to emphasize
prevention, patient education, and self-management. Not only the health outcomes
have improved for patients with heart disease, asthma, and diabetes, but also the hos-
pital admission rates have declined due to better screening and prevention services.
Svitone et al. (2000) reports on a low-cost preventive care program in Ceara, Brazil,
that involves monthly home visits by auxiliary health workers, supervised by trained
nurses (one nurse to 30 health workers), that has been successful in improving child
health status, vaccinations, prenatal care, and cancer screening in women.

1 http://www.americanheart.org.
2 http://www.who.int.
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Preventive healthcare is inherently different from healthcare for acute problems.
One major difference is that, in contrast with sick people who need urgent medical
attention, the clientele of preventive healthcare have a choice in whether to participate
in the programs offered in their region and how to choose the facilities they introduce.
Empirical evidence suggests that accessibility of preventive healthcare facilities plays
a key role in determining the level of participation. Zimmerman (1997) found out that
the convenience of access to the facility was a very important factor in the clients’
decision to have prostate cancer screening. According to McNoe et al. (1996), the
main factors for mammography screening non-attendance were practical difficulties
and negative attitudes towards the process. The survey by Facione (1999) revealed
that the decrease of mammography participation was related to the lack of access. In
this paper, we use the proximity to facilities (travel time) as a proxy for accessibility
of healthcare facilities.

Assuming that a client always chooses the alternative with the highest attractiveness,
many authors used optimal-choice in describing the choice behavior. This requires a
fully informed and rational set of clients, who patronize their optimal facility at all
times. In location theory, for example, it is common to assume that each customer
will seek services from the closest open facility. In contrast, under another commonly
used assumption, known as probabilistic-choice, a client may visit each facility with a
certain probability, which increases with the attractiveness of the facility. Probabilistic-
choice is a common representation for choice behavior in marketing and econometrics,
and it is represented by a variety of spatial interaction models in the literature.

Note that either one of these two assumptions could be realistic depending on a spe-
cific circumstance. There are preventive services for which the optimal-choice model
is more realistic. For example, when clients are referred to screening facilities by their
family physician, it may be safe to assume that they are fully informed about their
options and make rational decisions. Some preventive services, however, work on a
walk-in basis, e.g., blood tests and vaccinations. The probabilistic-choice model would
be more realistic in representing such preventive services.

The objective of this paper was to study the impact of client choice behavior in
the preventive healthcare sector. Given that the main focus in allocation of resources
is usually on acute care, there are often insufficient resources allocated to preventive
care. Consequently, the efficiency of preventive care services is essential. This effi-
ciency can be measured by the participation in the program. In this paper, we focus on
the design of a facility network to improve the accessability and thus the participation.
This requires a solid understanding of the client choice behavior in reality. To this end,
we discuss two models; each one of them assumes a specific client choice behavior and
address the question “What is the significance of using the correct client choice model
in designing a preventive healthcare facility network?” In other words, what are the
negative outcomes if we use the wrong client choice model? We present an analytical
framework to determine the number and locations of preventive care facilities as well
as the number of servers at each facility so as to maximize the total participation in the
program offered by the facility network. We compare the two choice behavior models
discussed above. To ensure the quality of care, we impose a bound on the mean waiting
time as well as a minimum workload requirement at each open facility.
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This is the first paper that presents a probabilistic-choice model for preventive
healthcare services. The literature on designing preventive healthcare facility network
is sparse. To the best of our knowledge, Verter and Lapierre (2002) and Zhang et al.
(2009, 2010) are the only papers that are directly relevant to our work, and both use
an optimal-choice model to represent client choice. In their seminal paper, Verter and
Lapierre (2002) used distance as a proxy for the accessibility of a facility, whereas
Zhang et al. (2009, 2010) stipulated that, in making their facility choice, potential cli-
ents focus on the time required to receive preventive care (i.e., traveling plus waiting
at the facility). In incorporating probabilistic-choice in the context of preventive care,
we apply the multinomial logit model (McFadden 1974) taking into consideration the
clients who do not participate in the preventive program.

The remainder of the paper is organized as follows: The next section reviews the
related literature on spatial interaction models and their use in service facility network
design. Section 3 introduces the probabilistic-choice model and the associated opti-
mal-choice model. A solution procedure based on the location-allocation framework
that can be used for both models as well as its computational performance is outlined
in Sect. 4. An illustrative example, the network of mammography centers in Montreal,
is examined in Sect. 5. The final section presents our concluding remarks. In order
to keep the focus of this paper on the modeling aspects and managerial insights, the
technical details of the proposed algorithms and our computational experiments are
presented in the Appendix.

2 Related literature

The first spatial interaction model that represents the probabilistic-choice behavior is
by Huff (1962). His model was developed for analyzing the market share of retail
stores, which is formulated as follows:

mi j = Ui j
∑

k∈S Uik
, (1)

where mi j is the market share of facility j at population zone i, Ui j represents the utility
of clients at population zone i patronizing facility j, and S is the set of facilities.

Following Huff’s model in which client utility is expressed by a simple gravity
formula, a variety of studies in econometrics and marketing focused on developing
better representations of the utility function, such as the multiplicative competitive
interaction (MCI) model (Nakanishi and Cooper 1974). Both Huff’s model and the
MCI model were developed based on aggregate flows between population zones and
facilities. Another well-known model, the multinomial logit (MNL) model (also called
the conditional logit model, McFadden 1974), was originally proposed at the disag-
gregate (individual) level. Recently, this model was also applied at the aggregate level
(Gupta et al. 1996). Denoting by yi jl the lth attractiveness determinant of facility j at
population zone i, Ui j in the MNL model can be defined as
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Ui j = exp

(
∑

l∈L

βl yi jl

)

, (2)

where L is the set of attractiveness determinants, and βl is a parameter that denotes
the sensitivity to the corresponding attractiveness determinant and can be estimated
empirically. Also note that we assume that β is the same for all j which is reasonable
when the problem is studied in the aggregate level (e.g. in the case study presented
later, as the clients are older females in the urban area, it is reasonable to assume that
they have the same time sensitivity).

In our model we assume that the proximity to the facility is the primary attractive-
ness determinant. In general, there are other important attractiveness features, such as
reputation of the facility, that should be considered. In principle, our models can be
generalized to consider such features if data is available.

A number of researchers incorporated the spatial interaction models in designing
networks of service facilities. Achabal et al. (1982) might be the first paper to pres-
ent an MCI-integrated p-median model for selecting multiple locations for a retail
chain. Drezner (1994, 1998) considered two MCI-type models for locating new retail
facilities to maximize total market share. Berman and Krass (1998) and Okunuki and
Okabe (2002) proposed models that integrate Huff’s formulation for locating a single
or multiple new competitive facilities. Marianov et al. (2008) proposed a facility loca-
tion problem with congestion by using the MNL model for client allocation, in which
travel time and waiting time are considered as the attractiveness determinants.

A significant majority of this literature assumes that all clients would require ser-
vice and the total market size is fixed. The notable exceptions are Berman and Krass
(2002), Aboolian et al. (2007a,b), and Drezner and Drezner (2010). The first three
papers incorporate a variable expenditure function in the classical MCI model. They
assumed that at each population zone there is a fixed number of clients, who patronize
the facilities with frequencies based on the MCI model. The expenditure of clients at
a facility is a non-decreasing function of the utility, and the total market for the ser-
vice expands as new facilities are added. Drezner and Drezner (2010) proposed a new
approach to present lost demand in the MCI models by adding a “dummy” facility.

All of the aforementioned studies that address lost demand are based on the MCI
model. In contrast, we introduce an MNL model to present it. This approach has not
been used in the location models, though it is common in econometrics and market-
ing. Structurally, it is similar to the one proposed by Drezner and Drezner (2010),
i.e., adding an additional term in the denominator of expression (1) that represents the
utility of not patronizing any facility. However, the approach based on the MNL model
has a more rigorous foundation and also results in fewer parameters to be considered
(see Sect. 3.1).

3 The modeling framework

In this section, we first provide the notation and the assumptions that underline our
analytical framework. Then, we present the probabilistic-choice model for preventive
healthcare facility network design and the analogous optimal-choice model.
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Let G = (N , E) be a network with a set of nodes N (|N | = n) and a set of links
E . The nodes represent the neighborhoods of population zones, and the links are the
main transportation arteries. The fraction of clients residing at zone i is denoted by
hi , i ∈ N . We assume that the number of clients who require service over the entire
network is Poisson distributed with a rate of λ per unit of time, and thus from each
zone i is also Poisson at a rate λhi , i ∈ N . We also assume that there is a finite set of
potential locations X ⊂ N for the facilities. Let S ⊂ X be a set of facilities located.

The travel time from zone i to node j through the shortest path is denoted by ti j .
As mentioned earlier, proximity to the facilities (i.e., travel time ti j ) is assumed to be
the primary attractiveness determinant. We assume that there are Qmax homogeneous
servers available, each can provide an exponentially distributed service at a rate of μ

services per unit of time, and at least one server must be allocated to each open facility.
Thus, each facility can be modeled as an M/M/c queuing system, where c denotes

the number of servers at the facility. The mean waiting time in the system is denoted
by W , and the general formula for this is (Kleinrock 1975)

W = C(c, u)

c

1

μ(1 − ρ)
+ 1

μ
, (3)

where

u = λ

μ
, ρ = λ

cμ
, C(c, u) = 1 − K (u)

1 − ρK (u)
, K (u) =

∑c−1
l=0

ul

l!
∑c

l=0
ul

l!
.

The functions C(c, u) and k(u) are just mathematical expressions to simplify (3).
To guarantee a timely service, we assume that the mean waiting time at any facility

j denoted by W j cannot exceed a maximum acceptable level denoted by W max. We
note that other types of service level constraints can be applied in our model as well. In
the literature, similar service level constraints have been used in Marianov and Serra
(1998, 2002), Wang et al. (2002), and Berman and Drezner (2006). Such service level
guarantees are also widely used in practice. For example, the Prime Minister of Can-
ada Stephen Harper has recently announced a new government policy of developing a
healthcare guarantee that ensures patients receiving essential medical treatment within
clinically acceptable waiting times (Prime Minister of Canada 2007).

Given the number of servers, using (3), it is easy to calculate the maximum number
of clients at a facility that satisfies W ≤ W max. Therefore, we perform the follow-
ing parameter settings to facilitate our model formulations. Suppose that at most K
servers can be allocated to each facility. Define λ̄k, k = 1, 2, . . . , K , as the maximum
participation rate (such that the queuing system does not explode) at a facility with k
servers. Letting λ̄0 = 0, we also define ∇λ̄k = λ̄k − λ̄k−1, k = 1, 2, . . . , K , as the
incremental value of the maximum participation rate.

To ensure service quality, we assume that facilities cannot be operated unless their
participation exceeds a minimum workload requirement denoted by Rmin. For exam-
ple, in the Montreal example studied in Sect. 5, the Quebec Ministry of Health made a
policy decision to require a minimum of 4,000 mammographies per year for facilities
to be accredited.
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3.1 The probabilistic-choice model

In this section, we present our MNL model that incorporates the clients’ choice of not
seeking the preventive care services. Let us start by redefining the quantity mi j as

mi j = Ui j

1 + ∑
k∈S Uik

= e
∑

l∈L βl yi jl

1 + ∑
k∈S e

∑
l∈L βl yikl

, (4)

and define mi0, the probability (or fraction) of clients at zone i who would not visit
any facility as

mi0 = 1

1 + ∑
k∈S Uik

= 1

1 + ∑
k∈S e

∑
l∈L βl yikl

. (5)

Note that the “1” in the denominator of expressions (4) and (5) denotes a normalized
term to represent the utility of not visiting any facility (Meyer and Eagle 1982; Earle
and Sabirianova 2002). This is consistent with the binary logit model, in which there
are only two choices (“yes” or “no”).

As mentioned earlier, we assume that travel time ti j is the primary attractiveness
determinant, i.e., |L| = 1. The problem is to find the optimal set of locations and the
number of servers at each open facility, so as to maximize the number of total partici-
pants, subject to the constraints on the service level W max, the workload requirement
Rmin, and the given number of total available servers Qmax.

To formulate the problem as a mathematical program, we define two sets of decision
variables:

s jk =
{

1 if node j has k or more servers
0 otherwise,

ai j : a continuous auxiliary decision variable denoting the probability (or fraction) of
clients at zone i who request the service from facility j .

Note that s j1 actually denotes the location decision at node j . Based on the MNL
model, ai j can be expressed as

ai j = e−βti j s j1

1 + ∑
p∈X e−βti p sp1

i ∈ N j ∈ X. (6)

This formulation ensures that clients must require service only from open facilities.
Expression (6) can be rewritten as

ai j +
∑

p∈X

e−βti p ai j sp1 = e−βti j s j1 i ∈ N j ∈ X. (7)
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Since sp1 is a binary variable and ai j is a continuous variable, expression (7) can
be linearized as follows by defining zi jp as an artificial continuous variable:

ai j +
∑

p∈X

e−βti p zi j p = e−βti j s j1 i ∈ N j ∈ X (8)

zi jp ≤ ai j i ∈ N j, p ∈ X (9)

zi jp ≤ M1sp1 i ∈ N j, p ∈ X (10)

zi jp ≥ ai j − M2(1 − sp1) i ∈ N j, p ∈ X (11)

zi jp ≥ 0 i ∈ N j, p ∈ X, (12)

where M1 and M2 denote two big numbers. For this problem, we set them equal to 1,
the upper limit of ai j .

Then, the problem can be formulated as a mixed integer program (MIP):

max λ

n∑

i=1

hi

∑

j∈X

ai j (13)

s.t. (8) to (12) and

∑

j∈X

K∑

k=1

s jk ≤ Qmax (14)

s jk+1 ≤ s jk j ∈ X k = 1, 2, . . . , K − 1 (15)

λ

n∑

i=1

hi ai j ≥ Rmins j1 j ∈ X (16)

λ

n∑

i=1

hi ai j ≤
K∑

k=1

∇λ̄ks jk j ∈ X (17)

s jk = 0, 1 j ∈ X k = 1, 2, . . . , K (18)

Constraint (14) limits the total number of available servers. Constraints (15) ensure
that k servers are already allocated before allocating the (k + 1)th server to a facility.
Constraints (16) stipulate that the number of clients at an open facility must satisfy the
minimum workload requirement. Constraints (17) ensure that the number of clients at
an open facility with k servers cannot exceed the corresponding maximum level λ̄k ,
so as to limit the expected waiting time to at most W max.

3.2 The optimal-choice model

In this section, we present the optimal-choice model. We assume that clients wish to
obtain services from the facility with the shortest travel time. Following Zhang et al.
(2009), we assume that the fraction of clients at zone i who request service from
facility j , denoted by a′

i j , is a linear decreasing function of travel time ti j :
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a′
i j = max{Ai j − γ ti j , 0} i ∈ N j ∈ X, (19)

where Ai j is the fraction of clients at zone i who would visit facility j when ti j = 0,

i.e., Ai j is the intercept of the participation function, and γ is the slope of the partici-
pation function. Note that a′

i j , unlike ai j , does not depend on the solution S and thus
can be calculated in advance. Also Ai j can be determined from survey data. For the
Montreal case discussed later, Ai j = 0.95 which was originally used in Verter and
Lapierre (2002) and estimated by the Quebec Ministry of Health.

In addition to s jk defined earlier, we define another set of decision variables for the
optimal-choice model:

xi j =
{

1 if clients from zone i require service from node j
0 otherwise.

Thus, the problem can be formulated as another MIP:

max λ

n∑

i=1

hi

∑

j∈X

a′
i j xi j (20)

s.t. (14), (15), and

∑

j∈X

xi j = 1 i ∈ N (21)

xi j ≤ s j1 i ∈ N j ∈ X (22)

ti j xi j ≤ tip + M3(1 − sp1) i ∈ N j, p ∈ X (23)

λ

n∑

i=1

hi a
′
i j xi j ≥ Rmins j1 j ∈ X (24)

λ

n∑

i=1

hi a
′
i j xi j ≤

K∑

k=1

∇λ̄ks jk j ∈ X (25)

xi j , s jk = 0, 1 i ∈ N j ∈ X k = 1, 2, . . . , K (26)

Constraints (21) ensure that each client zone is served by one facility. Constraints
(22) stipulate that clients must require service only from open facilities. Constraints
(23), where M3 denotes a big number, stipulate that clients choose the closest open
facility. The constant M3 can be set equal to the biggest ti j value in the network. Sim-
ilarly, Constraints (24) and (25) guarantee that each open facility must satisfy both
Rmin and W max.

Both problems are formulated as an MIP, which can be solved directly by stan-
dard MIP solvers, such as CPLEX. However, our computational experiments (see
Sect. 4) show that, although small- and medium-sized instances (with no more than
40 potential facilities and 100 population zones) may be solved by CPLEX in a few
hours, large-sized instances (with more than 40 potential facilities and 200 population
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zones), such as the Montreal case studied in Sect. 5, cannot be solved to optimality
even in days. Therefore, we focus on developing accurate and efficient heuristics.

3.3 A small example

In this section, we use a small-sized example to compare the allocation results of the
optimal-choice and probabilistic-choice models.

Suppose there are five open facilities and ten population zones. The travel time
matrix in hours and the fractions (hi ) are given in Table 1, and λ = 10 clients/h.
Note that the construction of this example is consistent with that for the computational
experiments described in Appendix 2. The parameters used in the optimal-choice
model include Ai j = 1.0 and γ = 1.4, and the parameter for the probabilistic-choice
model is β = 2.0. Note that we are only interested in the allocation results now, which
are independent of μ, Qmax, W max, and Rmin.

Tables 2 and 3 show the allocation results of the optimal-choice model and the
probabilistic-choice model, respectively. Although the values of the total participation
are almost identical, it is clear that the allocations of clients to the facilities are very
different.

Note that, in this example, client choice behavior (either optimal-choice or proba-
bilistic-choice) does not have much impact on the number of clients from each zone,
whereas its impact on the number of clients patronizing each facility is significant.
For instance, in the optimal-choice model, facilities 2 and 3 serve the smallest and
largest number of clients, respectively; in contrast, the two facilities interchange their
roles in the probabilistic-choice model.

Another difference between the two tables is that the variation in the numbers of cli-
ents to the facilities is less in the probabilistic-choice model ([1.074, 1.461] clients/h)
than in the optimal-choice model ([0.786, 1.900] clients/h). This is since clients from
each zone visit all the facilities in the probabilistic-choice model. Furthermore, this
also suggests that the number of facilities that satisfy the minimum workload require-
ment may be greater in the probabilistic-choice model, and thus total participation

Table 1 The travel time matrix
and the fractions

Zone Facility

1 2 3 4 5 Fraction (h)

1 0.405 0.683 0.285 1.008 0.875 0.061

2 0.840 0.425 0.775 0.175 0.408 0.152

3 1.038 0.380 0.630 0.600 0.520 0.071

4 0.843 0.530 0.415 0.435 1.070 0.066

5 1.068 0.433 0.700 0.595 1.038 0.095

6 0.310 0.615 0.940 0.533 0.643 0.022

7 0.688 0.468 0.653 0.475 0.818 0.023

8 0.193 0.278 1.053 0.253 0.625 0.177

9 0.198 0.613 0.153 0.780 0.270 0.160

10 0.945 0.438 0.993 0.698 0.223 0.170
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Table 2 The allocation result of
the optimal-choice model

Zone Facility Total

1 2 3 4 5

1 0 0 0.367 0 0 0.367

2 0 0 0 1.148 0 1.148

3 0 0.332 0 0 0 0.332

4 0 0 0.277 0 0 0.277

5 0 0.374 0 0 0 0.374

6 0.124 0 0 0 0 0.124

7 0 0.079 0 0 0 0.079

8 1.292 0 0 0 0 1.292

9 0 0 1.257 0 0 1.257

10 0 0 0 0 1.170 1.170

Total 1.416 0.786 1.900 1.148 1.169 6.419

Table 3 The allocation result of
the probabilistic-choice model

Zone Facility Total

1 2 3 4 5

1 0.105 0.060 0.134 0.032 0.041 0.373

2 0.095 0.219 0.109 0.360 0.226 1.009

3 0.035 0.131 0.080 0.084 0.099 0.430

4 0.049 0.091 0.115 0.110 0.031 0.396

5 0.051 0.180 0.106 0.130 0.054 0.521

6 0.045 0.025 0.013 0.029 0.023 0.136

7 0.023 0.036 0.025 0.036 0.018 0.138

8 0.369 0.311 0.066 0.327 0.155 1.228

9 0.308 0.134 0.337 0.096 0.267 1.142

10 0.099 0.273 0.090 0.162 0.420 1.044

Total 1.180 1.461 1.074 1.367 1.334 6.416

may be greater as well. For the same example, suppose now that μ = 3 clients/h,
Qmax = 3 servers, W max = 1 h, and Rmin = 1.5 clients/h; when the locations are also
decision variables, based on the solution methodology introduced in the next section,
one 2-server facility (facility 2) and one single-server facility (facility 3) can be opened
in the optimal-choice model, while 3 single-server facilities (facilities 1, 2, and 4) can
be opened in the probabilistic-choice model.

4 Solution methods and computational experiments

The two problems we discuss are MIP and can be solved by a commercial software
such as CPLEX. As will be discussed later, the problems can take days to be solved
for large instances. Therefore, if the decision maker cannot wait that long to obtain
the results we present several heuristics.
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The solution methods developed here are based on a location-allocation framework
and can be applied to solve the problems based on both the optimal-choice and the
probabilistic-choice assumptions.

Allocation (Alloc P): Given a set of facility locations, allocate clients to the facilities
according to the client choice behavior assumptions (optimal-choice or probabilis-
tic-choice), determine the required capacity at each facility, and check whether the
solution is feasible. Since we assume that travel time represents the attractiveness of
facilities, expanding capacity at a facility to reduce waiting time will not improve
its participation. Therefore, given the set of open facilities S, the optimal capacity
that should be allocated to each open facility can be directly obtained by allocating
sufficient number of servers to satisfy the service level criterion. The feasibility of
a solution depends on whether each open facility satisfies the minimum workload
requirement as well as whether the total capacity required is within the limit.

Location (Loc P): Determine the best feasible set of locations. A location heuristic,
RPRAE (Repeated-Probabilistic-Remove-Add-Exchange), developed in Zhang et al.
(2009) based on a probabilistic search, can be used to solve the location problem. We
also developed a Genetic Algorithm (GA, Holland 1975) to solve the location problem.

In this approach, Alloc P serves as a sub-routine for Loc P. For any set of locations,
with Alloc P the number of clients at each facility and the objective function value
can be determined. See the detailed descriptions of the allocation procedure and the
two location heuristic algorithms in Appendix 1.

To examine the computational performance of the solution methods, two experi-
ments have been designed for the two models, respectively. In each experiment, we
attempt to compare the performances of our heuristic algorithms and IBM ILOG
CPLEX 12.2.0. Our heuristic algorithms are coded in C, and all runs are performed
on a workstation with 3.0 GHz Intel Core(TM)2 Quad CPU and 16 GB of RAM. The
detailed settings and results of both experiments are presented in Appendix 2.

In brief, the first experiment demonstrates that both heuristic algorithms provide
accurate solutions compared with the optimums, as the average deviation is less than
1.5%; moreover, they are much more efficient than the CPLEX solver. This suggests
that our heuristic algorithms can solve the instances to near-optimality in a short time.

For the second experiment, CPLEX can only solve the instances of the small-
est-sized problem set to optimality within 2 h. We have also tested one relatively
large-sized instance with 40 facilities and 100 population zones, and CPLEX cannot
solve it to optimality by five days. For a even larger instance, such as 40 facilities and
400 population zones, it is reasonable to expect that it cannot be solved to optimality
by CPLEX in a month, as the problem size is increasing exponentially. This demon-
strates the need for accurate and efficient heuristics. For each instance of the rest eight
problem sets in this experiment, using the best solution obtained from either of the two
heuristics as a benchmark, we mainly attempt to compare the performances between
the two heuristics. We can observe that the CPU run time proliferates with the number
of potential facilities for both heuristics, whereas, it only linearly increases with the
number of population zones; for the same problem set, both heuristics typically run
for a longer time for the probabilistic-choice model than for the optimal-choice model.
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When comparing the two heuristics, both experiments show that, in general, RPRAE
exhibits slightly better accuracy than the GA procedure; it also runs for a much longer
time than the GA procedure. However, for a few instances, RPRAE provides a very
poor solution, implying that the GA procedure is more reliable than RPRAE. Since
each heuristic has its own advantage, both are used to investigate the Montreal example
in the next section, and the better solution is chosen.

Using the same problem sets, another experiment is conducted to validate the obser-
vation described in Sect. 3.3 that the variation in the numbers of clients to the facilities
is less prevalent in the probabilistic-choice model than in the optimal-choice model.
In this experiment, for each instance of the nine problem sets, setting all the potential
facilities open, we calculate the coefficient of variation (CV) of the numbers of clients
to the facilities, based on both the optimal-choice and the probabilistic-choice models.
We can observe that the average CV for the probabilistic-choice model is consistently
smaller. This result validates the difference between the two models in allocation. More
importantly, as indicated in Sect. 3.3, the difference in allocation may also lead to dif-
ferent location and capacity decisions, since the latter depend on the allocation result.

5 An illustrative case

We now use the two models to investigate the impact of client choice behavior in an
illustrative case, the design of a network of mammography centers in Montreal. This
case was previously studied in Verter and Lapierre (2002) and Zhang et al. (2009,
2010). We use the case as the basis for a comparative analysis of the optimal-choice
and probabilistic-choice models.

The background was the decision of the Quebec Ministry of Health to subsidize
mammogram examinations for women between the ages of 50 and 69. There were
194,475 women in Montreal in this age group and 36 facilities with mammographic
equipment. The Ministry made a policy decision to require a minimum of 4,000 mam-
mographies per year for facilities to be accredited. The problem was to determine the
facility network so as to maximize total participation.

There are 497 population zones representing the spatial distribution of the potential
clients. Based on the assumption of 250 working days per year and 8 working hours per
day, the number of potential clients in Montreal per hourλ = 194,475/250/8 = 97.24,
and the minimum workload requirement Rmin = 4,000/250/8 = 2 clients/h. It is
assumed that the service rate is μ = 5 clients/h the maximum allowed waiting time
W max = 0.5 h. We set Ai j = 0.95, γ = 0.37, and β = 2.25, so that when all the 36
facilities with a single server are accredited the total participation rate is 63.5% for
both models. This is consistent with the previous studies.

To study the network configuration (the facility-server distribution) for both mod-
els, we conducted a parametric analysis on the number of total available servers Qmax.
The results for the two models are shown in Tables 4 and 5, respectively. From the
tables, we can find a number of interesting results.

There are a few similarities between the two tables. A major similarity concerns
the strategy of capacity pooling versus increasing spatial coverage. Both models show
that, when the maximum number of servers Qmax is small, capacity is centralized
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Table 4 Parametric analysis on Qmax for the optimal-choice model

# of
servers

# of open
facilities

# of facilities with
different number of
servers

# of unused
servers

Total
participation
(%)

Ave. participation
per server (clients/h)

1 2 3 4 5

10 2 0 0 0 0 2 0 46.1 4.479

15 6 0 4 1 1 0 0 60.0 3.887

20 14 9 4 1 0 0 0 62.1 3.017

25 20 15 5 0 0 0 0 63.0 2.451

30 20 14 6 0 0 0 4 63.2 2.362

Table 5 Parametric analysis on Qmax for the probabilistic-choice model

# of
servers

# of open
facilities

# of facilities with
different number of
servers

# of unused
servers

Total
participation
(%)

Ave. participation
per server (clients/h)

1 2 3 4 5

10 5 0 5 0 0 0 0 30.6 2.980

15 7 0 7 0 0 0 1 39.0 2.712

20 17 14 3 0 0 0 0 54.2 2.658

25 25 25 0 0 0 0 0 58.2 2.264

30 26 26 0 0 0 0 4 58.9 2.202

at just a few facilities; when there are a relatively large number of servers available,
more facilities are accredited, increasing spatial coverage. For instance, when Qmax
= 10 or 15, both tables show that all the open facilities have two or more servers.
However, when Qmax = 20 or more, there is only one server required at most of the
open facilities. This result is due mainly because, when Qmax increases, the average
participation rate per server decreases. Thus, the effect of the waiting time guarantee
W max declines, and more facilities can be accredited to satisfy W max.

Another interesting finding is that the largest number of servers required in both
models is 26. The primary reason for this is that people are not sensitive to waiting
time. Consequently, although more servers at the existing facilities would result in
even less waiting times, participation would remain the same due to the unchanged
travel times; on the other hand, if additional servers are allocated to the closed facili-
ties (i.e., open more facilities), not all the open facilities would reach Rmin. The same
principle also applies to the probabilistic-choice model with Qmax = 15, where all the
seven open facilities have two servers and thus the additional one server is redundant.

There are also several differences between the two tables. Most importantly, the
network configurations obtained from the two models are quite different. For example,
when Qmax = 10, the optimal-choice model generates a very special network, which
consists of only two giant facilities with 5 servers each, while the probabilistic-choice
model results in 5 smaller facilities. Even though both models require at most 26 serv-
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Fig. 1 The solution of the optimal-choice model with 26 servers

ers, the location and capacity decisions are different. Figures 1 and 2 display the two
solutions in the population density map of Montreal, respectively. In particular, there
are 6 two-server facilities in Fig. 1, while there is only a single server at all the open
facilities in Fig. 2.

Based on these comparisons, we can see that centralizing capacity is more nec-
essary for the optimal-choice model in order to satisfy Rmin and W max in this case.
We conjecture that the main reason for this result is because the probabilistic-choice
model typically leads to a lower variation in the numbers of clients to the facilities
than the optimal-choice model. For the case of Qmax = 26, note that the range of the
participation rates at all the open facilities is [2.05, 2.48] clients/h, satisfying both Rmin
and W max. In contrast, if 26 single-server facilities are opened for the optimal-choice
model, several facilities cannot reach Rmin or exceeds W max, and thus capacity has to
be centralized at some facilities in high density areas.

In tackling a real-life problem, either the optimal-choice or the probabilistic-choice
model will be more appropriate based on the client choice behavior pertaining to the
preventive service being offered. It is plausible that data may not be readily available in
some cases, and hence the following is a critical question, “What is the significance of
using the correct client choice model in designing a preventive care facility network?”
In closing this section, we answer this question in the context of the Montreal case.

Suppose probabilistic-choice is indeed the real representation of clients’ facility
choices and there are 26 servers available. Using the probabilistic-choice model (the
correct model), the highest participation that can be attained is 58.9% (see the last row
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Fig. 2 The solution of the probabilistic-choice model with 26 servers

of Table 5). However, if the optimal-choice model (the wrong model) is used, it would
lead to a different facility network (i.e., the one shown in the last row of Table 4).
Establishing this network in reality, the total participation would be 54.7%. That is,
the total participation would decrease by 7.1%, as an ineffective network obtained
from the wrong model is established. Similar errors may occur when optimal-choice
is indeed the real representation but the the probabilistic-choice model (the wrong
model) is used. Table 4 depicts that, in this case, using the correct model, it is possible
to achieve 63.2% participation (see the last row). However, establishing the network
obtained from the wrong model (i.e., the one shown in the last row of Table 5), although
the total participation would remain the same, 16 facilities would violate either Rmin
or W max, when client allocations are actually made according to optimal-choice. This
suggests that client choice behavior has a significant impact on the facility network
design. A thorough empirical investigation of the clients to understand their choice
behavior is necessary; otherwise, either an ineffective or an infeasible network could
be established.

6 Concluding remarks

This paper presents two general and flexible models for designing a service facility
network, using the optimal-choice and probabilistic-choice assumptions. Proximity
to the facilities is the primary attractiveness determinant. Aiming at maximizing total
participation, both models attempt to determine the number of open facilities as well
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as the location and the capacity of each open facility, subject to a total capacity limit
and service level constraints on waiting time and workload.

Both models are formulated as an MIP. To solve the problems efficiently, we pro-
posed two heuristics: one based on probabilistic search and the other is a genetic
algorithm. The computational experiments demonstrate that both heuristics can solve
the tested random instances to near-optimality in a relatively short time. Using the
models, we investigated two illustrative examples, including the network of mam-
mography centers in Montreal, and a few interesting findings are discussed. In par-
ticular, the comparison between the two models indicates that client choice behavior
may have a significant impact on the location and capacity decisions, and a thorough
investigation of this behavior prior to choosing a model is necessary.

Our models can be generalized in several ways. First, although we only use travel
time as the primary attractiveness determinant, other attributes, such as facility type,
facility reputation, etc., may also be incorporated to the models. Moreover, as indi-
cated earlier, the models and the heuristic algorithms can be revised easily for other
types of objective functions, spatial interaction models, service level constraints, or
capacity or budget issues.

A direct extension to our probabilistic-choice model that is worth further investiga-
tion is to consider waiting time as one of the attractiveness determinants. In this study,
we use a service level constraint to capture congestion, and this implies that clients
are not sensitive to waiting times as long as it is within a threshold. However, in some
cases, waiting time is an important issue for clients to make their choices. Therefore,
it would be very interesting to consider the dynamic relationship between client flows
to facilities and waiting times at facilities in this probabilistic-choice environment in
the future. We note that even though in this paper we use the average waiting time
as the measure for waiting time, other measures such as the percentage of customers
waiting longer than a given threshold are important and could be used in our models.
Nevertheless, some empirical studies in healthcare have shown that the average wait-
ing time is still a significant factor for customer making their choices, for example
McGurik and Forell (1984).
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Appendix 1: Solution methodology

Allocation (Alloc P)

Denoting the feasibility of the solution by Vfea, we now provide an allocation proce-
dure for the probabilistic-choice model.

Step 1 For each node i ∈ N and each facility j ∈ S, calculate ai j according to
expressions (6).
Step 2 Calculate the number of clients at each facility j ∈ S, λ j = λ

∑
i∈N hi ai j ,

and calculate the objective function value, which is
∑

j∈S λ j .
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Step 3 If λ j ≥ Rmin ∀ j ∈ S, then for each facility j ∈ S, find the smallest
number of servers s j that satisfies W j ≤ W max. Otherwise, set Vfea = 0 (i.e., it is
infeasible) and terminate.
Step 4 If

∑
j∈S s j ≤ Qmax, set Vfea = 1 (i.e., it is feasible). Otherwise, set Vfea = 0.

Note that for the optimal-choice model, we replace ai j by a′
i j and expressions (6)

by expressions (19) in Step 1.

Location (Loc P)

Probabilistic search heuristic

This heuristic is composed of the following three basic neighborhood move proce-
dures:

Remove Procedure Starting with all potential facilities open, this procedure
removes one facility at a time until feasibility is obtained.
Add Procedure Starting with a feasible facility set, this procedure adds a new
facility to the set at each iteration until no addition of facilities can be made while
maintaining feasibility.
Exchange Procedure This procedure attempts to improve a given feasible solution
by swapping a facility in the current solution with a potential facility that is not
currently open and then executing the Add Procedure.

RPRAE runs the Remove, Add, and Exchange Procedures repeatedly for N ′
rep (a

user-defined integer value) times. In each procedure, the heuristic is based on the ran-
domized choice of available alternatives (“alternatives” here can represent facilities
to be removed, added, or facility pairs to be swapped). The probability of selecting
an alternative is proportional to the change in total demand once this alternative is
selected. Refer to Zhang et al. (2009) for a more detailed description. We chose in
our experiment N ′

rep = 100 (this number was used in Zhang et al. (2009) to balance
computational time and accuracy).

Genetic algorithm

GA is one of the most successful meta-heuristic for solving combinatorial optimiza-
tion problems. In GAs, each chromosome represents a solution for the problem, and
the quality of a solution is represented by a fitness value. A genetic operator, “cross-
over”, is used to produce new chromosomes from a pair of selected chromosomes, and
another operator, “mutation”, is used to promote genetic diversity. We refer readers to
Reeves (1995) for more details about GAs.

In this paper, a binary coding is used to represent a chromosome. Each chromo-
some is composed of several binary numbers as genes. Each gene corresponds to the
index of a potential facility site, 1 representing an open facility and 0 otherwise. We
implement the GA procedure as follows:

Step 0 (Initialization) Randomly generate Npop feasible solutions as a population
of chromosomes.
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Step 1 (Calculation of the fitness function) For each chromosome in the popu-
lation, the value of fitness is set to the descending order of its objective function
value among the entire population.
Step 2 (Generation of new chromosomes)

Step 2.1 (Parent selection) According to the values of fitness evaluated in Step
1, use the roulette wheel selection method to randomly choose two parent chro-
mosomes from the population.
Step 2.2 (Mutation) For the first parent, randomly choose two genes and inter-
change their values.
Step 2.3 (Crossover) The chromosomes of the two parents are split into two
parts with equal number of genes, and then they are combined across to generate
two offspring as new chromosomes.

Step 3 (Replacement) Perform the allocation procedure introduced earlier to cal-
culate the objective function values of the two offspring and to examine their feasi-
bility. For each of the two offspring, if not identical to an existing chromosome, if
feasible, and if better than the worst chromosome in the current population in terms
of the objective function, this offspring replaces the worst chromosome to keep the
population size constant.
Step 4 (Stopping criterion) If the best solution does not change in Nrep itera-
tions after the last improvement, then stop and output the best solution from the
population. Otherwise, go to Step 1.

Appendix 2: Computational experiments

In the three experiments mentioned in Sect. 4, the number of potential facilities (m)
is set to 10, 20, and 40, while the number of population zones (n) is set to 100, 200,
and 400. In total, there are nine problem sets, and the number of total available servers
Qmax is set to be equal to (m/2). In each problem set, ten instances are generated. For
each instance, the demand at each zone (λhi ) is randomly generated in the interval
[0, 2.4(m/n)] per hour. The travel times are randomly generated in the interval [0,
1.25] h. The following parameter values were used in the experiments: μ = 2.5 cli-
ents/h, Ai j = 1, γ = 1.4, and β = 2, Rmin = 1.2 clients/h, W max = 2 h, and K = 4.
As indicated earlier, we set M1 and M2 equal to 1 for the probabilistic-choice model
and set M3 equal to the biggest ti j value for each instance for the optimal-choice model.
Based on preliminary experiments, we set N ′

rep = 100, Npop = 10, and Nrep = 500
for the heuristics.

In the first experiment for the optimal-choice model, we used the optimal solution
obtained from CPLEX as a benchmark for each instance. Since it normally takes a
very long time for CPLEX to reach optimality for large-sized instances, we only chose
the three problem sets with 100 population zones. Moreover, we limited the running
time of CPLEX for each instance to 2 h. Table 6 reports the average “Deviation” in
total participation and “CPU Time” of the ten instances for each problem set in the
first experiment. Note that the results of the last problem sets are based on eight out
of the ten instances, for which CPLEX found the optimum solutions within 2 h.
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Table 6 The computational performance of the optimal-choice model

# of facilities # of zones Deviation (%) CPU time (s)

RPRAE GA RPRAE GA CPLEX

10 100 0.013 0.178 0.130 0.032 5.768

20 100 1.048 1.446 1.604 0.343 632.371

40 100 0.654 0.964 12.723 2.233 4,517.021

Table 7 The computational performance of the probabilistic-choice model

# of facilities # of zones Deviation (%) CPU time (s)

RPRAE GA RPRAE GA CPLEX

10 100 0.000 0.015 6.290 0.089 271.134

200 0.000 0.026 6.512 0.141 –

400 0.000 0.033 7.023 0.240 –

20 100 0.094 0.281 26.742 1.043 –

200 0.658 0.143 52.399 2.183 –

400 1.326 0.160 105.433 4.412 –

40 100 0.050 0.181 325.132 16.256 –

200 0.684 0.219 661.672 33.921 –

400 0.033 0.178 1,365.761 69.238 –

Table 8 The average CV of the
numbers of clients to the
facilities based on both models

# of facilities # of zones CV

Optimal-choice Probabilistic-choice

10 100 0.364 0.101

200 0.219 0.060

400 0.183 0.045

20 100 0.469 0.092

200 0.352 0.068

400 0.271 0.050

40 100 0.727 0.099

200 0.509 0.073

400 0.381 0.050

In the second experiment for the probabilistic-choice model, we also attempted to
use the optimal solution obtained from CPLEX as a benchmark for each instance.
However, CPLEX can only find the optimal solution for each instance of the first
problem set within 2 h. Hence, for each instance of the rest eight problem sets, we
used the best solution obtained from either of the two heuristics as a benchmark, to
compare the performance between the two heuristics. Similarly, Table 7 reports the
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average “Deviation” and “CPU Time” of the ten instances for each problem set in this
experiment.

In the third experiment, for each instance of the nine problem sets, setting all the
potential facilities open, we calculate the coefficient of variation (CV) of the numbers
of clients to the facilities based on both the optimal-choice and the probabilistic-choice
models. Table 8 reports the average CV of the ten instances for each problem set based
on both models.
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