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Abstract In this paper, we deal with the single-row equidistant facility layout prob-
lem (SREFLP), which asks to find a one-to-one assignment of n facilities to n locations
equally spaced along a straight line so as to minimize the sum of the products of the
flows and distances between facilities. We develop a branch-and-bound algorithm for
solving this problem. The lower bound is computed first by performing transforma-
tion of the flow matrix and then applying the well-known Gilmore–Lawler bounding
technique. The algorithm also incorporates a dominance test which allows to drasti-
cally reduce redundancy in the search process. The test is based on the use of a tabu
search procedure designed to solve the SREFLP. We provide computational results for
problem instances of size up to 35 facilities. For a number of instances, the optimal
value of the objective function appeared to be smaller than the best value reported in
the literature.

Keywords Facility layout · Quadratic assignment problem · Branch-and-bound
algorithm · Tabu search

1 Introduction

Facility layout problems are a family of design problems involving the physical
arrangement of a given set of facilities within a given configuration. One of the mem-
bers of this family is the single-row equidistant facility layout problem (SREFLP for
short), which can be formulated as follows. Given n facilities and an n × n matrix
C = (ci j ) where ci j is the (nonnegative) flow between facilities i and j , the aim is to
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2 G. Palubeckis

find a one-to-one assignment of facilities to n locations equally spaced along a straight
line so as to minimize the total assignment cost, which is the sum of the products of
the flows and distances between facilities:

min
p∈�

F(p) =
n∑

i=1

n∑

j=1

ci j dp(i)p( j), (1)

where � is the set of all permutations of {1, . . . , n}, and dp(i)p( j) is the distance
between locations p(i) and p( j). In the SREFLP, it can be assumed that the locations
are points on the x-axis with coordinates 1, 2, . . . , n. Then

dp(i)p( j) = |p(i) − p( j)|. (2)

The problem defined by (1) is the quadratic assignment problem (QAP) formulated
by Koopmans and Beckmann (1957). Thus, the SREFLP defined by (1) and (2) is a
special case of the QAP.

The model (1) and (2) arises in a variety of settings. Yu and Sarker (2003) applied
this model to design a flowline in a manufacturing system. The problem consists of
assigning machine-cells to equally spaced locations along a linear material handling
track. The goal is to find an assignment that minimizes the total inter-cell flow costs.
Picard and Queyranne (1981) considered the problem of locating rooms along a cor-
ridor within, for example, a hospital department. Given the number of trips per unit of
time between each pair of rooms, the objective is to minimize the total traveled dis-
tance. When all room lengths are equal, this problem reduces to the SREFLP. Bhasker
and Sahni (1987) used (1) and (2) to model the problem of arranging circuit compo-
nents on a straight line so as to minimize the total wire length needed to realize the
inter component nets. A set of nets typically is represented by a hypergraph. However,
frequently the hypergraph is replaced by an edge-weighted graph and an instance of
(1) and (2) is obtained.

Since the SREFLP is a special case of the QAP, any algorithm for the latter can also
be used for the former. However, studying special cases of a more general problem
may lead to the discovery of more efficient algorithms tailored to solve these spe-
cial cases. In the area of quadratic assignment, a good example is the algorithm of
Christofides and Benavent (1989) for the Tree QAP. This problem is a special case
of the QAP where the nonzero flows between facilities form a tree. Another example
is the grey pattern problem formulated in the context of the QAP by Taillard (1995).
A branch-and-bound algorithm for this problem was developed by Drezner (2006).
A classical approach for solving the SREFLP is to use the dynamic programming
technique. Such an algorithm was proposed by Karp and Held (1967) and extended to
the case of facilities with varying lengths by Picard and Queyranne (1981). The time
complexity of the dynamic programming algorithm for the single-row facility layout
problems is O(n2n) (Karp and Held 1967; Picard and Queyranne 1981). However,
this algorithm requires very large memory for storing the partial solutions and, there-
fore, is impractical for larger n. There are several papers which present computational
experiments with the dynamic programming algorithm for the layout problems that are
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A branch-and-bound algorithm for facility layout 3

similar to the SREFLP. In particular, Kouvelis et al. (1995) used this algorithm to solve
instances of the row layout problem of size up to 20. Öncan and Altınel (2008) applied
the dynamic programming method for the balanced unidirectional cyclic layout prob-
lem. They were able to solve problem instances of size up to 20 workstations on the
platform with 1 GB RAM. The computational results suggest that their implementa-
tion of dynamic programming runs out of memory long before running out of time.
Therefore, it is important to focus on developing alternative approaches to the exact
solution of the single-row facility layout problems, for example, branch-and-bound
and branch-and-cut algorithms.

When the number of facilities in a SREFLP instance is large, the only reasonable
option is to apply heuristic algorithms. Sarker et al. (1998) described an algorithm,
called the depth-first insertion heuristic, which is suitable for solving large instances
of the SREFLP. This algorithm starts with a feasible solution and iteratively tries
to improve it. At each iteration, the algorithm evaluates all assignments obtained by
placing the selected facility in each of the other n − 1 locations. To make the target
location available for this facility, some of the other facilities are moved to the neigh-
bouring locations. Later, Yu and Sarker (2003) proposed another algorithm, called
DDH (Directional Decomposition Heuristic), which is based on a similar reasoning as
the algorithm of Sarker et al. (1998) but is computationally more efficient. As already
alluded to, the SREFLP can also be solved using algorithms developed for the QAP.
To find near-optimal solutions to the QAP, many heuristic algorithms were proposed.
For an overview of such algorithms, we refer the reader to a recent survey by Loiola
et al. (2007).

Besides the QAP, there are other combinatorial optimization problems somehow
related to the SREFLP. One of them is the single-row facility layout problem where
the facilities (for example, machines) are geometrically represented by rectangles of
fixed height and varying widths. A feasible solution is an arrangement of the facilities
next to each other along a horizontal line. The objective function is to minimize the
sum of the products of the flows and distances between facilities. Unlike the SREFLP,
this problem is not a special case of the QAP. An exact solution method for the sin-
gle-row facility layout problem was recently presented by Amaral (2006). Yet another
related problem, called the minimum linear arrangement (MinLA) problem, is to find
a one-to-one mapping of the vertices of a given undirected n-vertex graph onto n
equally spaced points on a line. The objective is to minimize the sum of edge lengths.
Typically, this problem arises in application domains, for example, in graph drawing,
where the number of vertices is very large. Specific exact algorithms were developed
to solve the MinLA problem on restricted classes of graphs. For example, such an
algorithm for trees was proposed by Chung (1988). A summary of the most signifi-
cant theoretical and algorithmic developments in the area of MinLA can be found in
a survey by Díaz et al. (2002).

In this paper, we present a branch-and-bound algorithm for solving the SREFLP.
One of our motivations was to solve optimally the SREFLP instances from the lit-
erature (Obata 1979; Wang and Sarker 2002; Yu and Sarker 2003), which, so far,
were treated only heuristically. We were able to find optimal solutions for instances
of size up to 35 facilities. The algorithm employs a dominance test which allows to
discard a large portion of the partial solutions. This test provides an assessment of
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4 G. Palubeckis

a partial solution by performing a short run of a tabu search procedure developed
for the SREFLP. The lower bounds on the objective function are computed using an
algorithm based on a method described by Palubeckis (1988). This algorithm first per-
forms transformation of the flow matrix and then applies the Gilmore–Lawler bound
(Gilmore 1962; Lawler 1963) to the modified problem instance. The Gilmore–Lawler
bound computation procedure is known to be very fast. Therefore, despite the fact
that a number of stronger lower bounds exist, the Gilmore–Lawler bound still retains
its practical importance. For example, using this bound, the well-known Steinberg
wiring problem was solved (see Anstreicher 2003 for details). In order to have a good
solution at the root node of the search tree, our approach incorporates an iterated tabu
search (ITS) technique for the SREFLP. We have chosen this technique because it has
shown good performance for other optimization problems with the quadratic objec-
tive function—the unconstrained binary quadratic optimization problem (Palubeckis
2006) and the maximum diversity problem (Palubeckis 2007). The branch-and-bound
algorithm applies the ITS procedure once before starting the enumeration process. For
all problems solved by the branch-and-bound algorithm, the solution found by this
procedure was proved to be optimal.

The remainder of this paper is structured as follows. In Sect. 2, we develop an
algorithm for lower bound computation. In Sect. 3, we present a branch-and-bound
algorithm for solving the SREFLP. A brief description of our implementation of the
tabu search method for this problem is given in Sect. 4. Our computational experience
with the proposed algorithms is reported in Sect. 5. Finally, Sect. 6 concludes the
paper.

2 A lower bound

The purpose of this section is to present a lower bound computation algorithm which is
used within a branch-and-bound framework for solving the SREFLP. Before describ-
ing the algorithm, we introduce some assumptions, definitions and notations. We can
assume w.l.o.g. that C is a matrix with all entries below the main diagonal equal to
zero (upper triangular). Indeed, if this is not the case, we can replace ci j by ci j + c ji

for each positive c ji , i < j , and set c ji to zero. To simplify notations, for an upper
triangular flow matrix C , we assume that the order of the subscripts of ci j , i �= j ,
is not significant, i.e., ci j and c ji represent the same entry—that which is located
above the main diagonal of C . We also assume that cii = 0, i = 1, . . . , n. Given
a flow matrix C , we can associate with it an edge-weighted complete graph G(C)

with vertex set V = {1, . . . , n} and edge weights ci j , i, j ∈ V , i < j . In the other
direction, if we have an edge-weighted complete graph G with vertex set U ⊆ V and
edge weights wi j , i, j ∈ U , i < j , then we can construct an n × n upper triangular
matrix W (G) = (wi j ), where wi j is equal to the weight of the edge (i, j) of G if
i, j ∈ U , i < j , and is equal to zero, otherwise. An edge-weighted graph with all
nonzero weights equal to either 1 or −1 is called signed. For a flow matrix C , we
denote by F∗(C) the optimal value of the SREFLP instance (1), (2) defined by C .

The bound computation algorithm consists of two phases. In the first phase, by
performing some transformations, the original flow matrix C is replaced by a flow
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A branch-and-bound algorithm for facility layout 5

matrix C ′ for which F∗(C ′) � F∗(C). In the second phase, the Gilmore–Lawler
bound is applied to the pair of matrices C ′ and D = (di j ). The idea to use transfor-
mations of the flow matrix is not new. It was suggested by Palubeckis (1988) in the
context of the QAP. Other successful applications of the flow matrix transformation
method for obtaining lower bounds for the QAP were reported by Chakrapani and
Skorin-Kapov (1994) and by Karisch and Rendl (1995). In this section, we describe a
specific algorithm for performing transformation of the flow matrix in the case of the
single-row equidistant facility layout problem. The rationale behind the algorithm is
to iteratively apply a matrix decomposition operation as defined in the formulation of
the following obvious fact.

Proposition 1 If C = C1 + C2, then

F∗(C) � F∗(C1) + F∗(C2). (3)

A simple way to perform such a decomposition is to take one of the matrices, say
C2, having only a few nonzero entries. In such a case, the problem instance defined
by the matrix C2 is of very small size. Indeed, we can eliminate each of the facili-
ties for which all entries both in the corresponding row and column are zero. Since
only a few facilities are left, the optimal value F∗(C2) of the objective function of
the resulting problem instance can be found quite easily. If F∗(C2) is known, then,
in accordance with (3), the computation of the lower bound on F∗(C) is reduced to
the computation of the lower bound on F∗(C1), where C1 = C − C2. With a matrix
C2 as discussed above, we can associate an edge-weighted graph G ′ = (V ′, E ′)
with vertices corresponding to facilities that were not eliminated. The weights of
the edges of G ′ are taken from the matrix C2. It is clear that the reasoning can be
reversed. We may assume that we are given a small edge-weighted complete graph
G ′ = (V ′, E ′) with vertex set V ′ ⊂ V = {1, . . . , n}. Then we can apply Propo-
sition 1 with respect to the matrix C2 = αW (G ′), where α is a positive constant.
The reason for introducing the factor α is that we use signed graphs in the trans-
formation process, which implies that all the entries of the matrix W (G ′) are 1, 0,
or −1. By multiplying them by α we get a matrix C2 that can be subtracted from
C . A necessary requirement for α selection is that all the entries of the resulting
matrix C1 = C − C2 should be nonnegative. A formula for the α calculation we
have used is given below (see (6)). Now suppose that G ′ has a simple structure and
F∗(C2) = αF∗(W (G ′)) is known. Then, as already remarked, we arrive at the prob-
lem of finding a lower bound on F∗(C1). Clearly, the right-hand side of (3) is equal to
minp∈�(

∑n
i=1

∑n
j=1 ci j dp(i)p( j) − α

∑
(i, j)∈E ′ wi j dp(i)p( j)) + F∗(C2), where wi j ,

(i, j) ∈ E ′, denote the weights of the edges of G ′. We can rewrite the above expression
as minp∈�(

∑n
i=1

∑n
j=1 ci j dp(i)p( j)+α(F∗(W (G ′))−∑

(i, j)∈E ′ wi j dp(i)p( j))). Thus
we see that the lower bound on F∗(C) is obtained by adding �(G ′) = F∗(W (G ′)) −∑

(i, j)∈E ′ wi j dp(i)p( j) multiplied by α to the right-hand side of (1). Since this differ-
ence is nonpositive for each p ∈ �, we get the following inequality

∑

(i, j)∈E ′
wi j dp(i)p( j) � F∗(W (G ′)), (4)
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6 G. Palubeckis

which is valid for all p ∈ �. The lower bound computation algorithm we present
in this section is centered around the use of inequalities of type (4). The algorithm
iteratively modifies the objective function of the problem by adding α�(G ′) to it.

One of the simplest inequalities of type (4) is induced by a signed triangle, that is,
a graph T with vertices i, j, k, positive edges (i, j), ( j, k) and negative edge (i, k).
Obviously, p = (p(i) = 1, p( j) = 2, p(k) = 3) is an optimal permutation for T , and
F∗(W (T )) = 0. Hence, for G ′ = T , (4) becomes the well-known triangle inequality
on the distance metric

dp(i)p( j) + dp( j)p(k) � dp(i)p(k). (5)

This inequality can be generalized by taking signed graphs Hst = (Vs ∪ Vt , Est ) with
the set of positive edges E+

st = {(i, j) | i ∈ Vs, j ∈ Vt } and the set of negative edges
E−

st = {(i, j) | i, j ∈ Vs, i < j} ∪ {(i, j) | i, j ∈ Vt , i < j}. In Palubeckis (1997),
such graphs of small order were used in a lower bound computation algorithm for a
special case of the QAP where one of the matrices is composed of rectilinear distances
between points in Euclidean space. Evidently, the above defined triangle T is precisely
H2,1 with V2 = {i, k} and V1 = { j}. The algorithm to be described in this section also
manipulates two other such graphs with small value of s + t , namely, H2,2 and H3,2.
The right-hand side in (4) for these graphs is given by the following statement.

Proposition 2 For H2,2 (respectively, H3,2), F∗(W (H2,2))= 2 (respectively,
F∗(W (H3,2)) = 0).

Proof An optimal layout of H2,2 = ({i, j}∪{k, l}, E2,2) is defined by the permutation
p = (p(i) = 1, p( j) = 3, p(k) = 2, p(l) = 4). The corresponding optimal value
equals 2. Analogously, for H3,2 = ({i, j, q} ∪ {k, l}, E3,2), an optimal permutation
(of value 0) is p = (p(i) = 1, p( j) = 3, p(q) = 5, p(k) = 2, p(l) = 4).

In a specific implementation of the algorithm, we used only the above-listed three
graphs—signed triangles, H2,2 and H3,2. For this reason, we do not consider in this
paper other graphs for which the inequalities of type (4) could be exploited. For
example, complete graphs can be mentioned as possible candidates to derive such
inequalities. However, our computational experiments did not prove the usefulness of
complete graphs in obtaining lower bounds for the SREFLP. Therefore, we decided to
abandon the intention of processing such graphs, even the smallest ones like triangles.

The developed lower bounding algorithm applies the decomposition principle iter-
atively by progressively selecting subgraphs of G(C), each of which is matched to a
signed graph in the set H = {H3,2, H2,2, H2,1}. Some edges of G(C) are assigned one
of two colors: red or green. Where ρ is a positive constant, this coloring is defined as
follows. An edge (i, j) is red if ci j < ρ. Similarly, an edge (k, l) is green if ckl > ρ.
The edges of weight ρ remain uncolored. At each iteration, the algorithm tries to find
a fully colored complete subgraph of G(C) which is isomorphic to a graph Hst ∈ H
in the following sense: under an appropriate bijection θ between vertex sets, its green
edges are mapped to positive edges of Hst and its red edges are mapped to negative
edges of Hst . The selected subgraph is then used to decompose the flow matrix C
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A branch-and-bound algorithm for facility layout 7

into C1 and C2 as stated in Proposition 1 and the discussion below it. The factor α is
calculated as follows:

α = min

(
min

(i, j)∈E+
st

cϕ(i)ϕ( j) − ρ, ρ − min
(i, j)∈E−

st

cϕ(i)ϕ( j)

)
, (6)

where ϕ is the inverse of the bijection θ . Such a choice of α guarantees that each edge
of the selected subgraph either retains in G(C1) the same color as it was in G(C) or
becomes uncolored. For an edge (i, j), the latter case occurs only when α = |ci j −ρ|.

Next, we describe an efficient algorithm for computing lower bounds on F(p). We
consider a general situation where m � 0 facilities are already assigned to the first
m locations (for each such facility, the corresponding component of p is positive).
Let Vassign(p) = {i ∈ V |p(i) > 0}, Vrem(p) = V \Vassign(p). We may assume that
m = |Vassign(p)| < n − 1 since if m = n − 1, the location for the last facility is
uniquely determined and no bound is needed. The input to the algorithm includes the
following three lists: the lists L3,2 and L2,2 of subgraphs of G(C) isomorphic to H3,2
and, respectively, H2,2 in the above-defined sense and the list R consisting of those
red edges (i, k) of G(C) for which there exists at least one vertex j ∈ V such that
the edges (i, j) and ( j, k) are colored green. The algorithm also requires the value of
ρ to be supplied. We will postpone the question of the choice of ρ until later in this
section. When searching for suitable triangles, we construct for each edge (i, k) ∈ R,
{i, k} ∩ Vrem(p) �= ∅, a set Zik of vertices j such that (i, j) and ( j, k) are colored
green and one of the following conditions is satisfied: (1) p( j) = 0; (2) p( j) �= 0
and either 0 < p(i) < p( j) or 0 < p(k) < p( j). The algorithm, named LB (Lower
Bound), can be described as follows.

1. Set S := 0, Q := 0. Introduce a matrix C ′ = (c′
i j ) with entries c′

i j := ci j ,
i, j = 1, . . . , n.

2. For each subgraph G3,2 = (V3 ∪ V2, E3,2) in the list L3,2, perform the following
operations.
2.1. Check whether V3 ∪ V2 ⊆ Vrem(p) and each edge in E3,2, considered as an

edge of G(C ′), has a color assigned. If so, then proceed to 2.2. Otherwise,
examine the next subgraph in the list L3,2 or, if the end of the list is reached,
go to 3.

2.2. Calculate α according to (6).
2.3. For each (i, j) ∈ E3,2, set c′

i j := c′
i j − α if the edge (i, j) is colored green,

and c′
i j := c′

i j + α if (i, j) is colored red. Remove color from (i, j) if
c′

i j = ρ.
3. For each subgraph in the list L2,2, perform the same operations as in 2. Addition-

ally, if the subgraph satisfies an analogue of the condition stated in 2.1, then set
Q := Q + 2α.

4. Build the set Zik (considering colors with respect to C ′) for each red edge (i, k) ∈
R for which {i, k} ∩ Vrem(p) is nonempty. Form a subset R′ of R by taking only
edges with positive |Zik |. If R′ is empty, then go to 8.

5. Select an edge (i, k) ∈ R′ for which |Zik | is smallest. Then select a vertex j ∈ Zik

such that min(c′
i j , c′

jk) � min(c′
il , c′

lk) for each l ∈ Zik .
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8 G. Palubeckis

6. Calculate α according to (6) for the triangle (i, j, k).
7. Set c′

i j := c′
i j − α, c′

jk := c′
jk − α, c′

ik := c′
ik + α. If j ∈ Vassign(p), then add

α(p( j)−u) to S, where u = p(i) if i ∈ Vassign(p), and u = p(k) if k ∈ Vassign(p)

(according to the definition of Zik and the fact that {i, k} ∩ Vrem(p) �= ∅, exactly
one of i and k belongs to Vassign(p)). Update the coloring of the triangle (i, j, k).
Also, update the set Zqr for each (q, r) ∈ R′. Shrink the set R′ by removing
all edges (q, r) for which Zqr is empty. If |R′| > 0, then return to 5. Otherwise
proceed to 8.

8. Compute F+(p) = ∑
i∈Vassign(p)(m + 1 − p(i))

∑
j∈Vrem(p) c′

i j .

9. Compute the Gilmore–Lawler bound BGL(p) for C ′ and n−m vertices in Vrem(p).
10. Return with the lower bound B(p) = Fpartial(p) + F+(p) + BGL(p) + Q − S,

where Fpartial(p) is the value of (1) calculated for the partial layout p (by putting
zero into (1) for each dp(i)p( j) such that either p(i) = 0 or p( j) = 0).

Clearly, for the whole problem (when p(i) = 0 for each i ∈ V ), B(p) = BGL(p)+
Q. The term Q in the formula for B(p) is due to the fact that F∗(W (H2,2)) = 2 (as
stated in Proposition 2). The term S is included to correct the value of Fpartial(p) which
is calculated with respect to the matrix C , and not with respect to C ′, as it should be the
case. The sum F+(p) is a lower bound on the increase of the objective function value
due to flows between the already assigned facilities and the rest of the facilities. This
bound is calculated by placing each unassigned facility at the leftmost free location (its
coordinate is m+1). The increase of c′

i j dp(i)p( j), i ∈ Vassign(p), j ∈ Vrem(p), for loca-
tions with coordinates greater than m + 1 is taken into account when constructing an
(n−m)×(n−m) assignment matrix. Basically, the term 2(k −m −1)

∑
i∈Vassign(p) c′

i j
is added to the entry in this matrix in the intersection of the row corresponding to facil-
ity j and the column corresponding to location k, k = m + 2, . . . , n. The factor of 2
appears in the above expression because BGL(p) is obtained by taking half the optimal
value of the linear assignment problem (if i, j ∈ Vrem(p), then c′

i j is used to form the
matrix rows for facilities i and j ; if i ∈ Vassign(p), j ∈ Vrem(p), then c′

i j is used just
once—to form the row for facility j only). More details on the Gilmore–Lawler bound
can be found in a number of publications. For example, application of this bound to
the QAP is nicely described by Pardalos and Crouse (1989).

In the presented algorithm, we require each vertex of each selected subgraph Gst ,
s ∈ {3, 2}, t = 2, to belong to the subgraph of G(C ′) corresponding to the set of
unassigned facilities. This requirement is relaxed for triangles—one or even two ver-
tices of a triangle isomorphic to H2,1 may belong to Vassign(p). The use of triangles
is restricted by the definition of Zik , (i, k) ∈ R′. Such a strategy was revealed as
being quite good by performing some preliminary experiments. We also notice that
the convergence of the algorithm is guaranteed by the choice of α. Indeed, in Step 7,
color is removed from at least one edge of the selected triangle, making it infeasible
to be chosen in Step 5 once again.

The bound can be improved slightly by using a solution of high quality, possibly
optimal, to guide the selection of the third vertex of the triangle, that is, j ∈ Zik in
Step 5 of LB. Actually, given such a solution p∗, Step 4 and the loop consisting of
Steps 5 to 7 can be executed twice. In the first stage, the set Zik is replaced by a subset
Z ′

ik ⊆ Zik containing only those vertices j ∈ Zik for which min(p∗(i), p∗(k)) <

123



A branch-and-bound algorithm for facility layout 9

p∗( j) < max(p∗(i), p∗(k)). With such a strategy, we have the equality in (5) for
p∗, and therefore there are good chances for p∗ to remain close-to-optimal solution
also for the transformed problem instance defined by the matrix C1 (see (3) where, in
the case of triangles, F∗(C2) = 0). In the second stage, Steps 4 to 7, as described in
LB, are executed. Typically, most of the triangles are selected in the first stage and a
much smaller number in the second one. We will refer to this modification of LB as
LB∗. It may be noted, however, that the usefulness of LB∗ as a bounding technique in
branch-and-bound algorithms is somewhat questionable. To apply LB∗, we first have
to find a good assignment of all unassigned facilities to locations m + 1, . . . , n, where
m = |Vassign(p)| as before. This means that each invocation of LB∗ is preceded by
a call to some heuristic algorithm for the SREFLP. Our experiments showed that the
cumulative time of all such calls is not compensated for by a decrease in branching
and bounding time. Certainly, using LB∗, a smaller search tree is grown than in the
case of using less tight bounds delivered by LB.

In a particular case where no facility is placed, the algorithm LB as well as LB∗
can be simplified slightly. Specifically, the variable S can be eliminated since its value
stays at zero. Also, the query in Step 2.1 and the definition of Zik become simpler.
Furthermore, Step 8 can be dropped. As a result, the lower bound is just the sum of
BGL(p) and Q.

Now we return to the question of how to find a suitable value of ρ. Our approach is
based on performing several trial runs of a variant of LB∗ with different ρ. The pro-
cedure accepts two parameters: initial value c̄ for ρ and step δ by which ρ is lowered
at each iteration. It consists of the following three steps.

1. Set B∗ := −1, r := c̄.
2. Apply a lower bound computation algorithm to the initial problem (1). Let Br be

the value returned by this algorithm.
3. Check whether Br > B∗. If so, then set B∗ := Br , ρ := r , r := r − δ, and go

to 2. If not, then return with the current value of ρ.

The described procedure is used only once, namely, at the initialization phase
of the branch-and-bound algorithm. We run it with c̄ = max(1, �caver�), δ =
max(1, �caver/μ�), where caver = (

∑n−1
i=1

∑n
j=i+1 ci j )/(n(n − 1)/2), μ is an upper

bound on the number of repetitions of Steps 2 and 3. In Step 2 of the above procedure,
we used LB∗ with Steps 2 and 3 removed (i.e., without considering L3,2 and L2,2).

Example. Consider the flow matrix of SREFLP instance O-8 taken from the Obata’s
data set (see Appendix A of Yu and Sarker 2003):

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1 5 5 7 8 3 4
1 − 1 5 7 8 1 6
5 1 − 4 10 1 3 8
5 5 4 − 7 7 6 10
7 7 10 7 − 2 10 10
8 8 1 7 2 − 7 8
3 1 3 6 10 7 − 2
4 6 8 10 10 8 2 −

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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10 G. Palubeckis

Since this matrix is symmetric, we first compute the lower bound for its upper triangle
and then multiply this bound by two. The application of the procedure for determining
the value of ρ yields ρ = 4. Steps 2 and 3 of LB∗(≡ LB) process subgraphs with
vertex sets {1, 2, 7}∪{5, 6} and {1, 2}∪{5, 6}, respectively. In each case, α = 1. Step 3
also gives Q = 2. Step 4 and the loop consisting of Steps 5 to 7 are executed twice.
Initially, the vertex sets Z ′

ik , (i, k) ∈ R, are used. They are formed and maintained
using the layout p∗ = (p∗(1) = 3, p∗(2) = 1, p∗(3) = 7, p∗(4) = 4, p∗(5) =
6, p∗(6) = 2, p∗(7) = 8, p∗(8) = 5). In Step 5, the following triangles are selected
(the first and the last vertices define a red edge): (1, 6, 2)(α = 1), (7, 5, 8)(α = 2),
(2, 8, 3)(α = 2), (2, 5, 3)(α = 1), (2, 6, 7)(α = 1), (2, 4, 7)(α = 1), (3, 8, 6)(α =
2), (3, 1, 6)(α = 1). Afterwards, Steps 4 to 7 are executed using the vertex sets Zik ,
(i, k) ∈ R. Step 5 constructs the triangle (3, 5, 7) with α = 1. One can easily check
that the resulting flow matrix is as given below:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 4 4 5 5 4 4 4
− 4 4 4 4 4 4

− 4 8 4 4 4
− 7 7 5 10

− 4 6 8
− 5 6

− 4
−

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The assignment matrix is as follows:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

115 90 74 66 66 74 90 115
112 88 72 64 64 72 88 112
116 92 76 68 68 76 92 116
142 110 92 84 84 92 110 142
146 112 93 85 85 93 112 146
122 95 79 71 71 79 95 122
119 93 77 69 69 77 93 119
132 102 86 78 78 86 102 132

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

An optimal permutation for the linear assignment problem is p′ = (p′(1) = 2, p′(2) =
8, p′(3) = 1, p′(4) = 6, p′(5) = 3, p′(6) = 4, p′(7) = 7, p′(8) = 5). The optimal
value equals 745. Hence BGL(p) = �745/2� = 373 and B(p) = 2(BGL(p) + Q) =
750 (the factor of two is present here because we have restricted ourselves to consid-
ering only the upper triangle of the matrix C). The classical Gilmore–Lawler bound
is equal to 676. The optimal value for O-8 is 784. Thus, by performing simple and
computationally very cheap operations we were able to get a lower bound which is
much closer to the optimum.
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A branch-and-bound algorithm for facility layout 11

3 A branch-and-bound algorithm

The algorithm we describe in this section starts with an empty layout and generates
a sequence of partial layouts until the currently best solution is proved to be optimal.
This process defines a search tree with nodes representing partial layouts.

To discard portions of the search tree, three tests are used. One of them is bound-
ing test, which invokes LB and compares the returned value against the value of the
best solution found during the search. Another test for pruning nodes is a dominance
test. Suppose p(i) > 0, i ∈ I (p) ⊂ I = {1, . . . , n}, |I (p)| = m, and p(i) = 0,
i ∈ Ī (p) = I\I (p). In other words, I (p) stands for the set of already assigned facil-
ities. It is assumed that p(i) ∈ {1, . . . , m} for each i ∈ I (p). In order to apply the
dominance test we replace the set Ī (p) by a macro facility q. In this way, we obtain
an instance of the SREFLP with the set of facilities I (p) ∪ {q}, the set of locations
{1, . . . , m + 1} and flows ci j , i, j ∈ I (p), ciq = ∑

j∈ Ī (p) ci j , i ∈ I (p). The ini-
tial layout for this instance is given by the vector p0 with components p0(i) = p(i),
i ∈ I (p), p0(q) = m +1. We assume that the facility q is fixed in a sense that it cannot
be moved from the location m + 1 to any location to the left. Under this assumption,
we apply a heuristic algorithm to this instance of the SREFLP. If the heuristic finds a
solution that is better than the initial layout p0, then the partial layout p is classified
as dominated. The same verdict is issued also in the case where the heuristic finds
an equally good solution as p0 and this new solution p′ is lexicographically smaller
than p0, that is, the following condition is satisfied: there exists l < m such that,
for k = 1, . . . , l − 1, i = j whenever p′(i) = p0( j) = k, and i < j whenever
p′(i) = p0( j) = l. Clearly, there is no need to create a node for such p in the search
tree. It may be noted that the heuristic algorithm can exit immediately (with answer
“dominated”) when nonoptimality of the initial layout p0 is proved. As a heuristic,
we use a tabu search algorithm to be briefly described in the next section. Our choice
of tabu search was influenced by the fact that this technique, unlike evolutionary and
some other methods, is capable to find solutions of good quality in a very short amount
of time. When applying the dominance test, we tune the algorithm to execute a very
small number of iterations.

The third test is called a symmetry test. It rests on the fact that, for a solution p to
(1), (2), F(p) = F( p̃), where p̃ is obtained from p by assigning facilities in a reverse
order: p̃(i) = n − p(i) + 1, i = 1, . . . , n. This property can be utilized to constrain
exploration of the solution space. The symmetry test is applied with respect to some
selected facility, say, y ∈ I . The test discards a partial layout p if and only if the
cardinality of the set I (p) is at least �n/2� and p(y) = 0. In the role of y we use a
facility i for which the sum

∑n
j=1 ci j is smallest.

The developed algorithm for the SREFLP is based on the branch-and-bound tech-
nique. To present the algorithm more clearly, we divide its description into two parts:
the main procedure, named B&B (Branch-and-Bound), and an auxiliary procedure
SELECT_FACILITY. The main procedure goes as follows.

B&B

1. Apply a heuristic algorithm to (1). Let p∗ be the solution produced by this algo-
rithm. Set F∗ := F(p∗).
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12 G. Palubeckis

2. Compute ρ.
3. Build lists L3,2, L2,2 and R. Choose facility y.
4. Create the root node of the search tree. Attach an empty set U to it. Set h := 0

(h stands for the search tree level), p(i) := 0, i ∈ I .
5. Set m := h.
6. Apply SELECT_FACILITY(m). It returns h and, possibly, some unassigned facil-

ity; in such a case, let it be denoted by j . If h < 0, then stop with the optimal
solution p∗ of value F∗. Otherwise, check whether h < m. If so, then return to 5.
If not, then proceed to 7.

7. Create a new node with empty U . Assign facility j to location m + 1 by setting
p( j) := m + 1. Increment h by one and go to 5.

As can be seen from the above description, the algorithm starts with four initiali-
zation steps. In Step 1 of the algorithm, we have chosen to use an iterated tabu search
method as a heuristic for getting an initial solution to (1). We defer the description of
this method to the next section. Steps 2 and 3 prepare the required data for LB used
in the bounding test. Step 4 starts exploration of the solution space. To each node of
the search tree a set U is associated. This set is introduced to contain facilities that
are promising candidates for assignment to the leftmost unoccupied location. Upon
creation of a node, the set U is empty. The facilities are included in this set while
executing SELECT_FACILITY procedure. This procedure accepts as input a partial
layout with m facilities and, provided U is empty, evaluates all unassigned facilities
as possible candidates to location m + 1. It can be described as follows.

SELECT_FACILITY(m)

1. Check whether the set U attached to the current node is empty. If so, then proceed
to 2. Otherwise go to 4.

2. If m = 0, then set U := I and go to 4. If m = n − 1, then go to 3. Otherwise, for
each i ∈ Ī (p) = {i ∈ I | p(i) = 0}, perform the following operations. Tempo-
rarily assign i to the location m + 1. Apply the symmetry test, the dominance test
and, if m � m0, also the bounding test to the resulting partial layout. If it passes
all the tests, then include i into U . After processing all facilities in Ī (p), go to 4.

3. Evaluate the layout obtained. If it is better than the best layout found so far, then
update p∗ and F∗.

4. If the set U is nonempty and contains at least one unmarked facility, then mark
one of them arbitrarily and return with it as well as with h = m. Otherwise, check
whether m > 0. If so, then remove the facility from the location m. In both cases,
return with h = m − 1.

Step 1 of SELECT_FACILITY basically checks whether, for the current node, the
procedure is entered for the first time. If the answer is in the affirmative, then the
following three cases are processed separately: (1) the node is the root of the tree; (2)
the node is a leaf; (3) the node corresponds to a partial layout with m ∈ [1, n − 2].
In the first case, each facility is considered as a possible candidate for placement in
the first position. In the second case, the only remaining facility is assigned to the last
location and thus the complete layout is obtained. In the third case, attempts are made
to assign i ∈ Ī (p) to location m + 1. During the run of the algorithm, new nodes will
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A branch-and-bound algorithm for facility layout 13

be created only for those resulting partial layouts which pass the tests defined earlier in
this section. In order to make the algorithm computationally more efficient the bound-
ing test is applied only when the number of already assigned facilities is greater than
or equal to some specified integer m0. Of course, the value of this parameter should
be very small.

When SELECT_FACILITY is called for the same node once again, essentially
only Step 4 is executed. In this case, one or more facilities in U are found marked as
already used to extend the current layout and, hence, will not be selected. As the next
candidate for assignment to the location m + 1, any unmarked facility is chosen. If no
such facility exists, then backtracking occurs. This operation amounts to removal of
the facility from the location m (for j ∈ I such that p( j) = m, setting p( j) := 0) and
lowering the level of the search tree. The backtracking operation is also performed
when the node is processed for the first time, but Step 4 is reached with empty U .

4 Iterated tabu search

In this section, we briefly describe an implementation of the tabu search method for
the SREFLP. We preferred to use this method because of its simplicity as well as its
ability to find good quality solutions in a short amount of time. Successful applications
of the tabu search technique to a more general problem, the QAP, include Battiti and
Tecchiolli (1994), Skorin-Kapov (1990) and Taillard (1991), among others.

As is clear from the previous section, the tabu search metaheuristic is applied in
two contexts: the construction of the initial solution at the root node and search for
a better solution than the current partial layout while performing the dominance test.
It should be obvious that the power of the bounding test, and thus computation time,
significantly depends on the value of the best solution found throughout the search
process. Therefore, it is important to produce a high quality solution early in search,
best of all, at the root node (Step 1 of B&B). For this reason, we decided to develop
an iterated tabu search (ITS) algorithm for the SREFLP and use it in the initializa-
tion step of the branch-and-bound method. The ITS algorithm alternates between two
phases: solution perturbation and tabu search. The presence of the perturbation phase
makes the tabu search algorithm much smarter. In the description of ITS given below,
	(p, i, j) denotes the increase in the value of the objective function F obtained by
exchanging facilities i and j in solution p. The formula for 	(p, i, j) basically is
the same as the one used in the case of the QAP. The formula for that case can be
found in a number of sources, for example, in Burkard and Rendl (1984). Obviously, if
	(p, i, j) < 0, then the exchange of i and j in the permutation p leads to an improved
solution. A formal description of the algorithm is given as follows (b, γ1 and γ2 are
parameters to be discussed below).

ITS

1. Randomly generate an assignment of facilities to locations p = (p(1), . . . , p(n)).
Set p∗ := p. Compute 	(p, i, j) for each pair i, j ∈ {1, . . . , n}, i < j .

2. Apply TS(p, p∗).
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14 G. Palubeckis

3. Check if stopping criterion is met. If so, then stop with the solution p∗ of value
F(p∗). Otherwise proceed to 4.

4. Set q := 0, I := {1, . . . , n}. Randomly draw an even integer γ from the interval
[γ1, γ2] (or just set γ := γ2 if γ2 � γ1).

5. Form a set K of b′ = min(b, |I |(|I | − 1)/2) pairs (i, j), i, j ∈ I , i < j , such that
	(p, i, j) � 	(p, r, s) for each (i, j) ∈ K and each (r, s) �∈ K , r, s ∈ I , r < s
(in other words, pick the b′ smallest values 	(p, i, j) among those with facilities
i, j in I ).

6. Randomly select (k, l) ∈ K . Remove both k and l from I . Exchange facilities k
and l by setting η := p(k), p(k) := p(l), p(l) := η. Update 	(p, i, j) for each
pair i, j ∈ {1, . . . , n}, i < j . Set q := q + 2. If q < γ , then return to 5. Otherwise
go to 2.

In the above description, p and p∗ stand for the current and, respectively, best found
solutions. Initially, both p and p∗ are assigned a random permutation. Step 1 also ini-
tializes 	(p, i, j) for all pairs of facilities. Step 2 invokes the tabu search procedure
TS. It returns updated p and possibly p∗. Step 3 requires a stopping criterion to be
specified. It may be any, for example, an upper bound on the number of calls to TS
or a stopping rule based on the CPU clock. In our experiments, we adopted the latter
alternative. Steps 4 to 6 of ITS generate a new starting permutation for tabu search. In
the loop defined by Steps 5 and 6, γ /2 pairwise exchanges of facilities are performed.
The value of γ belongs to [γ1, γ2] where γ1 is a positive constant, γ2 is the largest
even integer less than or equal to nγ̄ and γ̄ is a tuning factor for controlling the degree
of search diversification. Step 5 builds a set of pairs (i, j), i, j ∈ I , with the largest
value of 	(p, i, j). The cardinality of this set is bounded above by the parameter b
whose value is chosen experimentally.

As it follows from the description of ITS, the current best solution p∗ is updated
in Step 2 by calling the tabu search procedure TS. Our implementation of TS given
below is based on the general guidelines provided by Glover (1989).

TS(p, p∗)

1. Set a := 0, F̃ := F(p), Ti := 0, i = 1, . . . , n.
2. Set β := ∞, r := 0.
3. For i, j = 1, . . . , n, i < j , do

3.1. Increment a by 1.
3.2. If F̃ + 	(p, i, j) < F(p∗), then set β := 	(p, i, j), k := i , l := j , r := 1

and go to 4.
3.3. If Ti = 0, Tj = 0 and 	(p, i, j) < β, then set β := 	(p, i, j), k := i ,

l := j .
4. Exchange facilities k and l. Set F̃ := F̃ + β. Update 	(p, i, j) for each pair

i, j ∈ {1, . . . , n}, i < j . If r = 0, then go to 6. Otherwise proceed to 5.
5. Apply a local search procedure to p. Let p also denote the permutation returned

by it. Set p∗ := p, F̃ := F(p).
6. If a is greater than or equal to a predetermined upper limit ā, then return. Otherwise,

decrement by one each positive Ti , i ∈ {1, . . . , n}. Set Tk := τ , Tl := τ and go
to 2.
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A branch-and-bound algorithm for facility layout 15

The input to TS includes the tabu tenure value τ and the maximum number of
iterations ā. We take ā = λn(n − 1)/2, where λ is a scaling factor used to con-
trol the execution time of TS. In the description provided above, Ti , i = 1, . . . , n,
denote tabu values, which are initialized in Step 1 and updated in Step 6. The local
search procedure used in Step 5 of TS is a straightforward 2-opt local improvement
method.

In another context, namely within the dominance test, we use a simplified version
of TS. This version is applied to special instances of the SREFLP defined at the begin-
ning of Sect. 3. It should be assumed that for such instances, in the description of TS,
n is replaced by m. The purpose of the simplified TS is merely to find a solution p′ that
is better than the solution p = p∗ = p0 submitted to TS. No further improvement of
p′ is needed. Therefore, Step 5 can be dropped. If the condition in Step 3.2 is satisfied,
then TS stops prematurely and the dominance test gives a FAIL verdict (the partial
layout inducing p0 is dominated). Another change is to relax the condition in Step 3.3.
We require at least one, and not necessarily both, of Ti and Tj to be equal to zero.
This modification is introduced to deal with situations where m is very small. In such
situations, the condition Ti = Tj = 0 may prevent most or even all pairs of facilities
from being selected in Step 3.3. By relaxing this condition, we increase the level of
intensification in the search process. TS can also be modified to examine solutions
of value exactly F(p0). If such a solution p′ is found and, moreover, this solution is
lexicographically smaller than p0 (see definition in Sect. 3), then the search is stopped
and the dominance test returns the answer “dominated”. In our implementation of
the dominance test, we apply this rule only at the stage of computing initial values
for 	(p, i, j). Actually, the test immediately terminates if either 	(p0, i, j) < 0 or
	(p0, i, j) = 0 and the solution p′ obtained by exchanging facilities i and j is lexi-
cographically smaller than p0, i.e., i < j and p0(i) > p0( j). We end this section by
noting that, in the case of the dominance test, the values for the tabu search parameters
τ and ā should be smaller than in the case where TS is applied within ITS. These
values may vary depending on the number of assigned facilities.

5 Computational results

The main purpose of experimentation was to evaluate the performance of the developed
branch-and-bound algorithm as well as to show that many of the benchmark instances
of the SREFLP from the literature can be solved exactly, and not only heuristically
approached.

The described algorithm was coded in the C programming language and run on a
Pentium M 1733 MHz notebook. As a testbed for investigating the algorithm, the fol-
lowing four sets of problem instances were considered: instances introduced by Obata
(1979) (they are also listed in Appendix A of Yu and Sarker 2003), instances defined
by Sarker (1989) (the matrix generating all instances in the series can be found in
Wang and Sarker 2002), instances by Yu and Sarker (2003), and instances by Nugent
et al. (1968). The last of these sets consists of instances of the QAP, therefore, we use
only their flow matrices and ignore distance matrices. These instances can be taken
from the Quadratic Assignment Problem Library (QAPLIB).
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Table 1 Performance of B&B
on the Obata instances

Instance Optimum Time LB∗ GL bound

O-5 150 1 146 142

O-6 292 1 274 264

O-7 472 1 450 422

O-8 784 1 750 676

O-9 1,032 1 994 908

O-10 1,402 1 1,340 1,204

O-15 5,134 2 4,854 4,310

O-20 12,924 37 12, 092 10,492

Some preliminary testing has been conducted using several problem instances of
smaller size. The obtained results helped us select the appropriate values of the algo-
rithm’s parameters. For the ρ calculation, SELECT_FACILITY and ITS, the parameter
settings are as follows: μ = 50, m0 = 3, γ1 = 10, γ̄ = 0.5, b = 500. As for TS, we
distinguish between two cases. When TS is used within ITS, we set τ to min(10, n/4)

and λ to 40. Meanwhile, when TS is used within the dominance test, these values
depend on the number m of positive components of the vector p: τ = 3 if m � 10,
τ = 2 if 5 � m < 10, τ = 1 if m < 5, λ = 10 if m � 7, λ = 5 if m < 7. It should
be noted that we apply TS in the context of the dominance test only when m � 4.
Otherwise the test reduces to examining 	(p, i, j), i, j ∈ I (p). A computer program
implementing the algorithm also requires the CPU time limit for a run of ITS to be
specified. We set this limit to 1 s if n � 30 and to 5 s if n > 30.

The main results of our experiments are summarized in Tables 1, 2, 3 and 4. The first
column of Table 1 gives the names identifying the problem instances. The number of
facilities in an instance is included into its name. The second and third columns display,
for each Obata instance, the optimal value and, respectively, the time taken to solve
that instance. The time in all the tables of the paper is reported in the form hours:min-
utes:seconds or minutes:seconds or seconds. The last two columns of Table 1 list the
lower bounds on the objective function—LB∗ described in Sect. 2 and the Gilmore–
Lawler (GL) bound, respectively. The meaning of the first five columns of Tables 2,
3 and 4 is the same as that of the columns of Table 1. In Table 2, the column under
heading FDDH displays, for each instance, the objective function value of a solution
found by the directional decomposition heuristic (DDH) proposed by Yu and Sarker
(2003). The last column gives the best known values for the Sarker instances. The
entries of these columns are extracted from Table 1 of Yu and Sarker (2003). From
that paper, also the last column of Table 3 is reproduced (see Table 3 and Appendix B
of Yu and Sarker 2003). Finally, the last column of Table 4 is taken from Table 2 of
Sarker et al. (1998). It should be noted that, for a number of problem instances we have
tested, optimal solutions were found and their optimality has been proved in earlier
studies. Such instances are O-5, . . ., O-10, N-12, S-12 (see Sarker et al. 1998) and
Y-6, . . ., Y-12 (see Yu and Sarker 2003).

As it can be seen from Tables 1, 2, 3 and 4, each instance of size n � 20 was
solved in less than 1 min. However, the algorithm needs much more time to solve the
problem instances of size 25 and larger. Particularly in the case of Y-35, proving the
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Table 2 Performance of B&B
on the Sarker instances

Optimal values in bold indicate
cases where B&B improved
upon the best solutions reported
in the literature

Instance Optimum Time LB∗ GL bound FDDH Fbest

S-12 4,431 1 4,312 4,122 4,431 4,431

S-13 5,897 1 5,730 5,432 5,933 5,919

S-14 7,316 1 7,108 6,748 7,326 7,316

S-15 8,942 2 8,702 8,267 8,942 8,942

S-16 11,019 3 10,686 10,176 11,019 11,019

S-17 13,172 5 12,759 12,069 13,282 13,173

S-18 15,699 8 15,224 14,378 15,699 15,699

S-19 18,700 22 18,115 17,071 18,704 18,704

S-20 21,825 55 21,102 19,832 21,828 21,825

S-21 24,891 1:41 24,059 22,632 24,891 24,891

S-22 28,607 3:48 27,543 25,994 28,644 28,614

S-23 33,046 8:12 31,823 29,982 33,046 33,046

S-24 37,498 13:41 36,238 34,015 37,498 37,498

S-25 42,349 36:21 40,856 38,355 42,349 42,349

Table 3 Performance of B&B
on the Yu–Sarker instances

Optimal values in bold indicate
cases where B&B improved
upon the best solutions reported
in the literature

Instance Optimum Time LB∗ GL bound FDDH

Y-6 1,372 1 1,368 1,358 1,372

Y-7 1,801 1 1,786 1,752 1,801

Y-8 2,302 1 2,278 2,235 2,302

Y-9 2,808 1 2,781 2,735 2,808

Y-10 3,508 1 3,437 3,280 3,529

Y-11 4,022 1 3,970 3,858 4,032

Y-12 4,793 1 4,684 4,486 4,793

Y-13 5,471 1 5,329 5,089 5,471

Y-14 6,445 1 6,299 5,986 6,455

Y-15 7,359 2 7,201 6,884 7,423

Y-20 12,185 23 11,670 10,963 12,185

Y-25 20,357 22:38 19,488 17,903 20,359

Y-30 27,673 16:17:07 26,372 23,433 27,673

Y-35 38,194 459:08:51 36,007 31,750 38,201

Table 4 Performance of B&B
on the Nugent et al. instances

Optimal values in bold indicate
cases where B&B improved
upon the best solutions reported
in the literature

Instance Optimum Time LB∗ GL bound Fbest

N-12 1,000 1 878 706 1,000

N-15 2,186 2 1,866 1,508 2,186

N-20 5,642 41 4,796 3,674 5,666

N-25 9,236 24:03 7,714 5,454 –

N-30 16,494 12:34:18 13,670 9,266 16,698
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Table 5 Size of the search tree
and the relative performance of
the tests

a Percentage of partial layouts
fathomed due to dominance test
b Percentage of partial layouts
fathomed due to bounding test
c Percentage of partial layouts
fathomed due to symmetry test

Instance #nodes Dom. test LB test Sym. test

O-20 16,977 68.81a 30.37b 0.82c

S-20 32,317 71.94 25.89 2.17

S-25 622,095 76.88 22.41 0.71

Y-20 9,898 66.27 33.04 0.69

Y-25 352,765 75.34 23.93 0.73

Y-30 8,840,011 78.21 21.33 0.46

N-20 23,118 70.61 27.51 1.88

N-25 403,089 76.92 22.68 0.40

N-30 6,728,266 79.47 20.22 0.31

optimality of the solution produced by ITS took more than 19 days. It is interesting
to note that optimal solutions were found by ITS for all instances on which B&B was
executed. Hence, the goal of the branching and bounding process was just to prove
their optimality. The time (1 s) allotted to ITS was longer than the time (at most 0.7 s)
taken by this process for each problem instance of size 15 or less. For 10 instances, the
optimal solutions delivered by B&B are better than the best solutions reported in the
literature. Such instances are indicated in Tables 2, 3 and 4 by displaying the optimal
value in boldface. As we can see from Table 3, the DDH algorithm also failed to solve
optimally both Y-10 and Y-11. However, the optimal solutions for these instances were
obtained by Yu and Sarker (2003) using a complete enumeration approach. Compar-
ing the results in the fourth and fifth columns of the tables, we can conclude that the
lower bound for the SREFLP described in this paper is significantly stronger than the
classical Gilmore–Lawler bound. It can be checked that LB∗ is closer to the optimal
value than to the GL bound for all instances in the tables except the smallest two in
Table 1—O-5 and O-6.

In Table 5, we give the number of nodes in the search tree (second column) and eval-
uate the effectiveness of tests used to fathom partial layouts. The results are reported
for nine SREFLP instances of size ranging from 20 to 30. The last three columns
of the table present 100Ndom/N , 100NLB/N and 100Nsym/N , where Ndom (respec-
tively, NLB and Nsym) is the number of partial layouts that are fathomed due to dom-
inance test (respectively, due to bounding test and due to symmetry) in Step 2 of
SELECT_FACILITY, and N = Ndom + NLB + Nsym. By analyzing the results in
Table 5, we find that Ndom is 2–4 times larger than NLB. However, it should not be
forgotten that the dominance test is applied before the bounding test. In other words,
the lower bound is calculated only for those partial solutions which have passed the
dominance test. Certainly, exchanging the order of these two tests would increase
NLB and correspondingly decrease Ndom (since N is order-independent). However,
the dominance test is faster than the bounding test, therefore, we gave some priority
to the former. Generally, we notice that all the tests are rather fast and, therefore, the
large number of nodes in the search tree, for example for both 30-facility instances,
does not lead to extremely long computation times.

We also tested two variations of the basic branch-and-bound algorithm for the
SREFLP. The first one is B&B with the dominance test removed. The second variation
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Table 6 Alternative solution
strategies

Instance Without dominance test LB replaced by GL bound

#nodes Time #nodes Time

O-20 3,790,282 3:30:47 89,616 1:18

S-20 14,082,729 9:52:42 144,010 1:40

S-25 – – 4,858,593 1:40:06

Y-20 1,293,124 1:04:31 44,998 49

Y-25 – – 3,319,866 1:16:47

Y-30 – – 148,390,064 89:19:36

N-20 5,312,912 4:14:46 86,668 1:10

N-25 – – 2,743,842 1:07:32

N-30 – – 81,447,624 56:06:47

Table 7 Results for the largest
instances in the Yu–Sarker data
set

Instance FITS Time LB∗ GL bound FDDH

Y-40 47,561 1.7 43,891 38,402 47,717

Y-45 62,890 0.2 58,551 49,790 63,132

Y-50 83,127 1.3 76,520 64,529 83,150

Y-60 112,055 7.0 102,828 83,980 112,170

is derived from B&B by replacing LB with the Gilmore–Lawler bound. The compu-
tational results are summarized in Table 6, where for each variation two columns are
given—the first column in each pair lists the number of nodes in the search tree and
the second one reports the solution time. A maximum time limit of 100 h was enforced
for all runs. Table 6 shows that the presence of the dominance test is a decisive factor
for a good performance of the algorithm. Without using this test, the largest problem
instance solved to optimality was S-21. This modification of the algorithm did not
terminate within the allotted time limit for S-22–S-25, Y-25, Y-30, N-25 and N-30.
The solution time for each other instance of size n � 20 exceeded 1 h (see the third
column). Comparing Tables 5 and 6, we see that the algorithm variation based on the
Gilmore–Lawler bound builds much larger search trees than the main version of B&B.
More importantly, this variation is significantly slower than the main version, espe-
cially when the number of facilities increases. In particular, the increase in solution
time is approximately 450 and 350% for the two largest instances in Table 6—Y-30
and N-30, respectively.

The final computational experiment has been conducted on the four largest instances
in the Yu–Sarker data set. In this experiment, we only run the iterated tabu search algo-
rithm once and computed the lower bounds. The imposed time limit was 5 s for Y-40,
Y-45, Y-50 and 10 s for Y-60. The results are shown in Table 7. The column under
heading FITS contains, for each instance, the value of the solution produced by ITS.
The third column gives the time taken by ITS to first find a solution that is best in the
run. The meaning of the remaining columns is the same as in Table 3 where the numer-
ical results for smaller instances in the Yu–Sarker data set are reported. The values in
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the last column were obtained by Yu and Sarker (2003) and are extracted from Table 3
in their paper. We see from Table 7 that ITS was able to find better solutions than
those produced by the DDH algorithm for all four problem instances. However, DDH
was capable of providing good solutions with much less computational effort. The
computation times for DDH reported by Yu and Sarker (2003) are comparable with
those in Table 7, but Yu and Sarker carried out their experiments on a Pentium II Xeon
450 MHz PC, which is slower than the computer we have used.

6 Conclusions

In this paper we have developed a branch-and-bound algorithm for the single-row
equidistant facility layout problem. The algorithm uses a lower bound which is rea-
sonably tight, in particular, significantly tighter than the well-known Gilmore–Lawler
bound. It is very important that the proposed bound is not expensive to compute.
The algorithm also incorporates a dominance test which allows to drastically reduce
redundancy in the search process. The test is performed by applying a tabu search
procedure designed to solve the SREFLP. Using the developed algorithm, we were
able to solve problem instances of size up to 35 facilities. One observation from the
experiments is that the optimal values for a number of SREFLP instances are smaller
than the best known values reported in the literature. The approach presented in this
paper is an example of how metaheuristics can be used in concert with exact methods
to effectively produce optimal solutions to the problem of interest.
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