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Abstract Efficiently coordinating the movement of trains on a railway network is a
central part of the planning process for a railway company. This paper reviews models
and methods that have been proposed in the literature to assist planners in finding train
routes. Since the problem of routing trains on a railway network entails allocating the
track capacity of the network (or part thereof) over time in a conflict-free manner, all
studies that model railway track allocation in some capacity are considered relevant.
We hence survey work on the train timetabling, train dispatching, train platforming,
and train routing problems, group them by railway network type, and discuss track
allocation from a strategic, tactical, and operational level.

Keywords Railway optimization · Train routing · Train timetabling

1 Introduction

The railway industry possesses a variety of rolling stock routing problems that can be
modelled and solved using Operations Research techniques. Such problems exist in
several forms, depend on the underlying railway network, and arise at different levels
in the planning process for a railway company. Allocating the track capacity of a rail-
way network over time in a conflict-free manner can be considered, roughly speaking,
the fundamental objective of any rolling stock routing/scheduling problem. The aim
of this paper is to provide a broad overview of the models and methods proposed
in the literature to solve several variants of rolling stock routing problems. Special
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emphasis is given to the more recent work on the difficult problem of routing trains
through complex junctions/stations. Within this field of research several approaches
exist; however, a survey that collectively summarizes all contributions is noticeably
absent in the literature. While work on single track networks is included, this is by
no means exhaustive. We review several important studies in this area to not only
highlight the variety of solution approaches that exist, but also to show how models
have developed over time to cater for more complex railway networks.

To set the context we begin by providing an overview of the planning process
commonly adopted by most railway companies. Railway companies typically adopt a
hierarchical decision-making approach when planning their operations (see Bussieck
et al. 1997). This decomposition results in tractable problems at each level and circum-
vents the need to deal directly with the entire, highly complicated planning process.
Figure 1 indicates the main subtasks involved as well as the order in which they typi-
cally occur. In general, the optimal solution at a particular level is required as input to
the subsequent level. The ordering of the subtasks is also consistent with the classifi-
cation of the problems as they appear at each of the strategic, tactical, and operational
levels commonly found in large industries (see Assad 1980).

Problems at the strategic level are characterized by lengthy time horizons and
typically involve resource acquisition. Central to the network planning phase of this
planning level are problems which concern the construction, and/or modification of
existing infrastructure. In planning for the future, railway companies must evaluate
possible changes to the network and assess their impact, particularly from a capacity
perspective. A railway network in its simplest form can be viewed as a graph of nodes
and edges. Each node is associated with a point of the railway network where signifi-
cant train interaction occurs and usually represents a station or a junction. The major
difference between stations and junctions is that the former contain so called platforms
where trains can stop to allow passengers to board and alight. An edge between any
two nodes indicates the section of track interlinking them. This typically consists of
parallel stretches of one-way track designated to rail traffic in each direction; however,

Fig. 1 The railway planning process
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it is not uncommon for multiple edges (or even just a single edge) to exist between
a pair of nodes. A line in a railway network refers to a route that starts and ends at a
terminal station, connects several intermediate stations, and is operated by a particular
train type. The frequency of a given line is the number of trains serving it over a cer-
tain time period. The line planning problem for a railway company entails selecting
a set of lines (together with their frequencies). The selection of train lines is driven
by forecast passenger demand between pairs of origin and destination stations, and
typical objectives for this problem include minimizing operational cost or maximizing
passenger satisfaction.

Tactical level problems focus more on allocating resources over an infrastructure
that is assumed to be fixed. The first of four such tasks identified in Fig. 1 is time-
table generation. Given the proposed line plan together with the desired frequencies,
the train timetabling problem entails determining, for each train line, the arrival and
departure time at each of the stations the line visits. The chosen times must satisfy both
track capacity constraints (i.e. two trains cannot be on the same piece of track at the
same time) as well as several railway company specific operational requirements. It is
somewhat customary in the passenger railway industry for railway companies to oper-
ate a cyclic (or periodic) timetable. That is, a timetable that repeats itself at regular time
intervals (e.g. every 30 min or every 60 min). To prevent trains from occupying the same
piece of track at the same time one usually specifies a so called headway. The headway
refers to the shortest time interval permitted between consecutive train movements on
any given piece of track. This is understandably dependent on the speed capabilities
of the trains under consideration. The operational requirements vary depending on the
type of timetable under construction. If one is determining a timetable for passenger
trains, then it is highly likely several requirements from a service perspective must be
considered. For instance, one may wish to enforce certain train connections. In most,
if not all, railway networks it is unlikely that direct connections between every pair
of stations exist, and quite typically passengers are asked to transfer between lines at
particular stations. To provide effective transfer possibilities, ideally the two train lines
providing the connection should arrive at and depart from the same station during an
overlapping time interval. Dwell time constraints are also likely to be enforced, i.e.
how long trains may spend in the station. The time required by passengers to board
and alight dictates the minimum amount of dwell time required. Placing a maximum
tolerance on dwell time is usually an attempt to increase the utilization of the station’s
capacity by restricting the amount of time trains may remain in the station. For two
trains that have a considerable portion of their respective lines in common, one may
also wish to include the requirement that the two trains be coupled into one train at a
given station (or similarly decoupled). Freight train timetables, on the other hand, typ-
ically have many fewer restrictions. The requirement that all train movements with a
section of track in common satisfy a minimum specified headway is, however, shared.
Quite typically the sequencing of trains (i.e. the order of the trains on the track) can
only be altered at stations or junctions. This is definitely true if the track connecting
such nodes of the network consists of two stretches of parallel track, each of which is
dedicated to rail traffic in a particular direction.

There are several objectives one can consider when constructing a timetable.
For timetables in passenger railways, common objectives include minimizing the
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operational cost of the timetable or maximizing passenger satisfaction by providing
many direct connections between stations. For the latter one could, for instance, min-
imize passenger waiting times (see, e.g. Wong et al. 2008). Other possible objectives
include maximizing timetable robustness. Maximizing robustness entails finding a
timetable in which delays to trains are less likely to propagate and impact the sched-
uled times of other trains (see, e.g. Fischetti et al. 2009; Liebchen and Stiller 2009).
In some cases, however, simply finding a feasible timetable might suffice. Note that
the first two objectives mentioned are conflicting in that the timetable with greatest
passenger satisfaction usually incurs the highest operational cost. Other objectives
involve minimizing the deviation from some ideal (i.e. most preferred) timetable, or
minimizing the total time it takes the trains to complete their respective itineraries
(known as the transit time). The latter objective typically defines the objective for the
real-time version of the train timetabling problem in which the arrival and departure
times of trains are adjusted so that the total accumulated delay is minimized.

Depending on the nature of the underlying network, the train timetabling problem
does present itself in several different forms. In countries with extensive railway net-
works, such as those commonly found in Europe, nodes are highly interconnected
networks of track where multiple railway lines meet, intersect and split. In the major-
ity of cases, it is computationally prohibitive to consider the often large number of
possible routings within a node when assigning arrival and departure times to each
of the trains. In such situations one usually considers an aggregated rail topology in
which the detailed layout of track within the node is ignored. A feasible timetable
is then constructed with respect to this network. In a second step, one considers the
detailed layout of the node and checks if the times found for the aggregated network
allow for a feasible routing within the node to be obtained. This is what we term the
train routing problem. If the node is a station, this second step involves the detailed
allocation of trains to platforms. The related, so called train platforming problem is
a special case of the train routing problem in which the selection of the route within
the node completely dictates what platform will be used. An iterative procedure may
be required if the timetable is infeasible with respect to the node. Iterative timetabling
and routing procedures are described in Zwaneveld et al. (1996, 2001) and Burkolter
(2005).

If, on the contrary, the network of track being considered is predominantly a long
single stretch of track connecting multiple stations, where each of the stations has one
(possibly two) sidings to facilitate train overtaking and stopping, the problem of train
routing equates to finding a feasible meet/pass plan for the trains. The term siding
refers to a section of track parallel to the main track and a meet/pass plan identifies
at which siding, and at what time, two trains that require the same section of track
will meet and which of the two will pass the other one. In the literature, this problem
is referred to as the train pathing problem, or the train scheduling problem, and not
without confusion, the train dispatching problem. This problem typically arises in the
freight rail industry. In what follows, we refer to this problem as the train scheduling
problem.

Other problems at the tactical level include the construction of rolling stock and crew
schedules. Each itinerary in the chosen timetable must receive a train of a certain length
as well as the necessary crew to operate it. One such problem entails the assignment of
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a locomotive type to each train (see, e.g. Vaidyanathan et al. 2008). Perhaps the most
important problem that arises when planning the rolling stock schedules, and which
also necessitates railway track allocation, is the related, so called shunting problem.
Shunting refers to the movement of train units to a shunting/parking yard when they
are not needed for operation in the timetable. Such movements must be non-conflicting
and separated by a minimum headway. The position of the train units in the shunt-
ing yard is critical since one does not want to place a train unit in such a position
that it blocks the arrival or departure of another train unit. It is within the shunting
yards where one must plan the composition of trains. When considering the shunting
problem one might also wish to include the following aspects (among others): route
selection to the shunting yard, train unit preferences for certain shunting yard tracks,
and maintenance requirements. This problem is an entire research area in itself and
will be omitted from this survey. We refer the interested reader to Freling et al. (2005)
and Kroon et al. (2008).

Operational problems are defined to be those that occur on a day-to-day basis when
operating policies determined at the tactical level need to be adjusted due to unfore-
seen disturbances. Efficient disruption management tools are essential to the success
of any operation and have been employed in a wide range of industries. In the railway
industry, late train arrival, track maintenance, or even accidents are likely to propa-
gate through a timetable with varying degrees of severity, and quite possibly result in
the planned schedules becoming infeasible. The dynamic environment in which these
problems occur necessitates almost instantaneous resolution. One must quickly and
efficiently adjust the planned schedules in such a way so as to return to a feasible
schedule with minimal total disruption. Hence, the role of the real-time management
level in Fig. 1 is to monitor the planned schedules and correct for any disruptions that
occur on a daily basis. Typical operational problems hence include the rescheduling
of trains (see, e.g Törnquist 2005) and crew (see, e.g. Walker et al. 2005; Rezanova
and Ryan 2009) as well as the rerouting of rolling stock (see, e.g D’Ariano et al. 2008;
Schöbel 2009) in managing the impact of delays.

Although Fig. 1 indicates that the problems are solved in a top-down manner, this
may not necessarily be true. Bussieck et al. (1997) and Lindner (2000) point out that it
may be necessary to cycle back and alter former decisions, or even consider subsequent
levels when at a particular planning level in the process. For instance, it is unlikely that
one would consider modifications to railway infrastructure at the network planning
level without at least taking into consideration the level of rail traffic the proposed
infrastructure would cater for, i.e. the line planning problem and the train timetabling
problem. It may even be possible to consider two problems simultaneously. For exam-
ple, Albrecht (2009) develops a two level approach that considers the line planning
problem and the timetabling problem for suburban railways.

From the discussion above, it is evident that railway track allocation is an integral
component in the tactical level problems of timetable generation and train routing.
However, one can observe variants of these problems that arise at each of the strategic
and operational planning levels. For example, in determining the capacity of some
component of the railway network at the strategic level, one must allocate the associ-
ated railway track over a certain time horizon in such a way that the maximum number
of trains can use it. For a junction this is often the maximum number of trains that can
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be routed on it. Furthermore, on an operational planning level, when a disruption that
makes the planned timetable infeasible occurs, one must reallocate the railway track
in such a way that the negative impact of the disruption is minimized.

For an overview of all the main optimization problems arising at all planning lev-
els in the passenger railway industry we refer the reader to Huisman et al. (2005)
and Caprara et al. (2007b), while a previous survey in Cordeau et al. (1998) mainly
considers the routing of freight trains on single track networks and reviews problems
concerning railcar fleet management and locomotive assignment. In what follows we
consider the train timetabling and train routing problems in more detail. Both problems
share the fundamental objective of finding a set of mutually disjoint train movements
that satisfy a variety of operational constraints. In particular, a minimum required
headway must separate any pair of trains. We begin the review with a discussion
on single track networks in Sect. 2 and move to more general networks in Sect. 3.
Although Sect. 3 reviews work on more general railway networks, this is restricted to
those studies that ignore the routing of trains through stations and junctions. This is
the topic of Sect. 4 where we compare and contrast the work that has been completed
in this area. We conclude the paper with some final remarks in Sect. 5.

2 Single track railway networks

The purpose of this section is to review the models and methods that have been
employed to allocate track capacity in determining an operational timetable for sin-
gle track railways. Hence, this work mainly pertains to the train scheduling problem.
However, as will become apparent, some of the techniques are naturally applicable to
more complicated routing situations.

One of the earliest published works on the application of optimization in the field
of train scheduling is Szpigel (1973). The motivation for the work is a long single
track railroad in eastern Brazil catering for trains which are used to transport iron ore
in both directions. The track is divided into a number of track sections, with each
track section linking two stations. Additional track is assumed to be available at the
stations for trains to stop or overtake one another. The author is perhaps the first to
identify strong similarities between the train scheduling problem and the well known
job shop scheduling problem. With job shop scheduling problems one is given a set of
jobs and a set of machines. Associated with each job is a chain of operations, where
each operation requires a given amount of uninterrupted processing time on one of the
machines. The operations for a particular job must be performed in sequence, and no
machine can host more than one job at a time. The aim is to schedule jobs in such a
way that the completion time (referred to as the makespan) for all jobs is minimized.

In the train scheduling context we have the following. Trains (jobs) require the
use of several track sections (machines) to complete their designated itineraries. An
operation is associated with the traversal of a track section, with the processing time
of a track section being the minimum amount of time the train requires to traverse
the track section. Operations are constrained from both a temporal and a spatial per-
spective. Temporal constraints are required to ensure that a train cannot traverse any
given track section without having traversed the track section immediately preceding
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it, whereas spatial constraints stipulate that no track section can host more than one
train at any given time. Szpigel (1973) thus defines, for each train, decision variables
pertaining to the entrance time to each track section of its route. The constraints of the
model enforce the requirement that the time difference between the entrance times of
consecutive track sections is at least the time required to traverse the first track section
of the two. The departure time of a train at its station of origin is assumed to be known.

To prevent track sections from hosting more than one operation at any given time,
Szpigel (1973) identifies so called ordering constraints. An ordering constraint ensures
that, for trains sharing a common track section, the entrance time of each train to the
track section is separated by the minimum specified headway. The model is solved
using a branch-and-bound algorithm. The initial linear programming (LP) problem
excludes any ordering constraints. Branching is required if the solution contains two
trains in conflict; in other words, two trains are on the same track section at the same
time. Two branches are enforced by imposing each of the respective ordering con-
straints. Imposition of an ordering constraint forces one of the trains to wait until there
is sufficient headway between the trains, and thus incur a delay. The resulting linear
programs are solved until a feasible meet/pass plan has been constructed with the
objective being to minimize a weighted sum of train transit times. With the limited
computing power available at the time, Szpigel (1973) considered instances involving
five track sections and ten trains.

Constructing feasible meet/pass plans is also the topic of Sauder and Westerman
(1983) and Jovanović and Harker (1991). Both approaches consider a similar network
to that of Szpigel (1973) and present enumeration based methods. Given a proposed
timetable for the trains, the method by Sauder and Westerman (1983) first identifies
all potential conflicts as well as all stations (referred to as sidings in the paper) where
such conflicts can be resolved. A complete enumeration of feasible meet/pass plans
is constructed in the form of a tree structure. Each level of the tree represents the
resolution of one conflict, whereas the nodes on any particular level identify the train
that must wait and the siding where the conflict is to be resolved. Trains incur a delay
cost in waiting at sidings, and hence the cost on any node defines the accumulated
cost of the partial resolution strategy. Leaf nodes define feasible meet/pass plans. The
objective minimizes the total delay weighted by train priority.

Jovanović and Harker (1991) propose a similar enumeration strategy to that of
Sauder and Westerman (1983). Unlike Sauder and Westerman (1983), however, the
model has no explicit objective function as it is primarily concerned with showing
feasibility of a proposed schedule and providing the user with a number of feasible
meet/pass plans. A mixed integer programming formulation (MIP), which the authors
state is similar in structure to that of a flow shop scheduling problem commonly found
in manufacturing, is presented. Binary variables dictate the ordering of pairs of trains
on track sections, whereas continuous variables govern the selection of arrival and
departure times for the trains. The constraints of the model enforce a number of tem-
poral restrictions on the trains, restrict the number of trains that can be at any siding
simultaneously to one, and also ensure that a siding can only be used to resolve a
conflict if it is at least as long as the train that must use it. The SCAN I system the
authors developed can consider single or double track sections between sidings and
includes a simulation module to model train movements. Computational experiments
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reported in the paper deal with instances involving 24 train lines and schedules for
100 freight and passenger trains.

Kraay et al. (1991) consider a slightly different version of the problem, which
they term the train pacing problem. The authors argue that in determining a feasible
meet/pass plan the speed of the train should be determined endogenously. That is,
one should determine a speed profile for each train (i.e. pace the train) that minimizes
some criterion (fuel consumption, delay, etc.) when determining a meet/pass plan.
For this reason, the traversal time of a track section is considered variable, and the
objective aims to minimize the fuel costs, which are obviously dependent on the speed
of the train. The authors present a mixed integer nonlinear program for the problem.
A branch-and-bound procedure combined with cutting planes is proposed to construct
a feasible meet/pass plan. The model can, however, take as input any feasible meet/pass
plan. Given a feasible meet/pass plan the objective is to optimize the train velocities.
Hence the problem is typically solved for a set of feasible meet/pass plans. The paper
discusses results for a 102 mile stretch of track interlinking 13 sidings. The corridor
is traversed by 22 trains that have potentially 34 meet/pass conflicts.

A completely different solution approach is presented by Carey and Lockwood
(1995). Carey and Lockwood (1995) consider an almost identical network to that of
Szpigel (1973). However, the track section between any two stations (referred to as
a link in the paper) is designated to rail traffic in the same direction. The authors
present are large 0–1 MIP formulation similar to that of Jovanović and Harker (1991).
Each binary variable governs the order of a pair of trains on a given track section.
Temporal constraints identical to those of Szpigel’s model preserve the time–space
continuum of train motion. Unlike Szpigel (1973), however, the model includes all
ordering constraints. The inclusion of the binary variables as well as a large positive
number in such constraints governs which ones are activated and deactivated. Other
constraints enforce the consistency of the binary variables. The objective minimizes
the deviation from some ideal arrival and departure times for each of the trains. Given
the size of the formulation, the authors adopt a heuristic approach which sequentially
schedules trains. The order in which the trains are considered typically follows the
chronological order of departure times or train priority. To schedule trains sequen-
tially the authors suggest constructing a subproblem from the initial formulation by
holding fixed the sequence of already scheduled trains, but still permitting arrival and
departure times to vary. Each subproblem is then solved using a branch-and-bound
technique. The approach also allows for the possibility of rescheduling trains once a
feasible solution has been obtained in an attempt to improve the solution. Subsequent
work by Carey (1994a,b) shows that this approach not only extends to the case where
there are multiple lines between stations that have multiple platforms, but also the case
in which the single stretch of track is bidirectional.

Other heuristic approaches for the train scheduling problem have also been pro-
posed by Cai and Goh (1994), Higgins et al. (1996, 1997), and Cai et al. (1998).
The focus is slightly different in that the authors consider developing tools for real-
time decision support of the problem. That is, allocating track capacity in a real-time
environment possibly as a disruption recovery measure. However, as Higgins et al.
(1996) point out, the methods are equally applicable in an evaluative capacity when
considering potential timetables for the trains.
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Higgins et al. (1996) consider a single stretch of bidirectional track that is commonly
found in the freight rail industry in Australia. To construct a feasible meet/pass plan,
the authors present a 0–1 MIP formulation that is very similar in structure to that
of Carey and Lockwood (1995). Binary variables define the order of two trains on
a track section, whereas continuous variables model the arrival and departure times
at the sidings on the track. Higgins et al. (1996) include extra flexibility in terms of
train dynamics in that each train has a minimum as well as a maximum achievable
velocity on any given track section. Hence, the model also includes some variability
in the amount of time it takes a train to traverse any track section. The constraints
of the model, as is customary with this problem, stipulate the temporal restrictions
trains must respect. A large proportion of the constraint set consists of the train order-
ing constraints (identical to those of the model proposed by Carey and Lockwood
1995) which prevent train conflicts. The objective is to minimize the total train delay
weighted by train priority.

Higgins et al. (1996) present a branch-and-bound framework that is quite similar
to that of Szpigel (1973). The initial problem considered is a relaxed version of the
problem in which none of the constraints on train interaction are included. Hence only
a subset of constraints is included in the original problem. Conflicts are identified and
resolved by creating two branch-and-bound nodes with the respective train interac-
tion constraints enforced. At each node one calculates not only the immediate cost
incurred as a result of delaying the train that prompted the branch, but also a lower
bound on the expected total delay remaining due to the unresolved conflicts. This sum
defines the cost of a node. The algorithm iteratively proceeds in this manner, adopting
a depth first search of the tree by picking the node of the last resolved conflict with
lower total cost. Instances involving up to 30 trains and 12 sidings are reported in
the paper. In a subsequent paper, Higgins et al. (1997) develop and compare several
heuristic techniques. In particular, a local search heuristic applied to the first solution
found in the branch-and-bound tree method of Higgins et al. (1996) is compared with
a genetic algorithm approach, a Tabu search heuristic, and two hybrid approaches.
Instances of up to 50 trains with between 103 and 113 conflicts are considered in the
paper.

Cai and Goh (1994) propose a simple greedy heuristic for the same problem. The
authors make the assumption that all trains travelling in the same direction have not
only the same speed, but also the same terminating siding. The heuristic considers
trains in chronological order and assumes that the start time and initial siding loca-
tion of each train are known. Given an incumbent train, an iteration first determines
two sets of conflicting trains and then updates the current time and siding location
of each set of trains. To determine the two sets of conflicting trains, the algorithm
does not only consider all conflicts the incumbent train will encounter on travelling
to the next siding, but also any conflicts between opposing trains travelling on the
same track section as the incumbent train within a certain time interval. The algorithm
determines the cost associated with delaying each group of trains (or each of the two
trains if the only conflict is between the incumbent train and one other train) at the
respective sidings and selects the allocation that results in lowest delay cost. Hence,
it iteratively proceeds and resolves conflicts at the local level only and attempts to
minimize total delay. A discussion on how to extend the model to incorporate train
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passing is also provided. The paper presents two examples. Both of which had 12
sidings and considered 12 and 20 trains, respectively.

Cai et al. (1998) extend the work of Cai and Goh (1994). In particular, the authors
relax the requirement that the initial location for a train be at a siding. In a real-time
environment trains can be positioned anywhere on the network. Cai et al. (1998) pres-
ent a two-phase approach with the first phase updating the current time and position
(which the authors refer to as position time pair) so that all trains are positioned at a
siding. The second phase then implements a refined version of the greedy heuristic in
Cai and Goh (1994). A successful implementation of the algorithm is reported for an
Asian railway company, where up to 400 trains run per day with as many as 60 trains
in the system at any given time.

Brännlund et al. (1998) introduce the notion of packing constraints to restrict the
number of trains using any track section (which is termed block section in the paper)
at any given time to at most one. A bidirectional single stretch of track connecting 17
stations in Sweden provides the motivation for the work. The authors propose a large
set packing integer programming formulation. The model discretizes the scheduling
horizon into 1- min intervals, and a constraint is then identified for every track section
in every minute. A unique acyclic time–space network consisting of six different arc
types is used to model each train’s movement, with paths in the time–space network
reflecting different strategies for the associated train to complete its itinerary. The
variables of the model are hence associated with possible train paths, with each vari-
able contributing to the constraints that reflect its movement on the rail network. The
objective attempts to minimize unnecessary waiting along the track. The authors sug-
gest solving the model with Lagrangian relaxation techniques. Brännlund et al. (1998)
relax all constraints of the model, and hence separate the problem into n independent
subproblems, where n is the number of trains. The authors test and compare several
dual variable update schemes and combine this with a train priority based heuristic to
solve the problem. Computational results reported indicate that instances involving up
to 30 trains (both freight and passenger) could be quickly solved within a few percent
of optimality.

Şahin (1999) considers the real-time scheduling of trains on a single track rail-
way. The author presents a heuristic which considers conflicts in the order that they
appear and sequentially resolves them. For both of the trains involved in a conflict, the
algorithm considers the delay necessary in order to resolve the conflict. A look ahead
feature, which determines the expected arrival time of all other trains at their respective
destinations as a consequence of delaying one of the trains, is also included. The train
resulting in least expected delay to the rest of the trains is delayed. Computational
results for between 6 and 20 trains on a 163 km stretch of track in Turkey are given.

Adenso-Diaź et al. (1999) propose a MIP model for the problem of online optimiza-
tion of train rescheduling in a regional railway network. Although no explicit reference
is given to the nature of the network, it would appear that the authors consider a single
track railway. The MIP model presented is considered to be too complicated to solve
in real-time, and the authors adopt a more practical heuristic approach. The disruption
which produces the conflict is assumed to affect services over a certain time horizon.
A train service corresponds to the movement of a train between two stations. Given
the number of train services affected, the aim of the heuristic is to reassign trains to
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services in such a way that total delay is minimized. This is somewhat different to the
other approaches in that the authors reallocate the trains to the itineraries to minimize
the delay. The heuristic method is built on a tree enumeration approach. Each level of
the tree represents a service with the nodes on any level corresponding to the trains that
can operate the service. Based on its priority, number of passengers, and delay, each
node is assigned a cumulative score to reflect its attractiveness. The authors describe
a pruning strategy to prevent complete enumeration of such a tree.

Oliveira and Smith (2000) have proposed a job shop scheduling formulation for
the problem of scheduling trains along a single track railway in a disruption recovery
environment. The formulation is fundamentally the same as that of Szpigel (1973)
excluding any ordering constraints. It is solved using constraint programming tech-
niques. Conflicts are resolved in chronological order, and the objective minimizes the
total delay. The model also incorporates several extra constraints representing practical
restrictions. In particular, it possesses the capability to force two trains to reside at the
same station for a certain amount of dwell time and also allows the same train to
perform multiple itineraries.

A greedy travel advance strategy based on a discrete event model is described in
Dorfman and Medanic (2004) for the scheduling of trains on a single line. The proposed
algorithm includes a nonlocal capacity check to avoid deadlocks and can efficiently
handle time perturbations to the schedule. The authors show that the approach easily
extends to networks with double track sections, can handle heterogeneous rail traffic,
and performs well on three time-performance criteria. A fictitious network containing
seven nodes and 36 trains over a 12-h period is considered.

Törnquist and Persson (2007) consider the rescheduling of trains under disturbances
on so called N -tracked networks. This extends the single track network by allowing
certain sections of track to consist of multiple parallel sections, each of which can
accommodate one train. The authors present a MIP formulation of the problem and
describe four different solution approaches. A real-life application from the Swedish
rail network is used to test the proposed methodology. The network tested contained
169 interlinked stations while the daily timetable considered had 92 freight and 466
passenger trains. Computational experiments assume a single delayed train. Note that
the work reviewed on the operational problem of train rescheduling is not exhaustive,
it has been included to illustrate what can be done and a more extensive survey on this
topic can be found in Törnquist (2005).

3 General railway networks

So far we have considered models and solution techniques for allocating the capacity
of long single track railways where the aim is to construct a feasible meet/pass plan
that typically minimizes the deviation from some ideal schedule. We now turn our
attention to more complicated railway networks, particularly those in the passenger
railway industry.

Caprara et al. (2002) consider the problem of timetabling trains along main cor-
ridors within the Italian railway network. A corridor typically connects two main
stations, interlinks several intermediate stations, and consists of parallel stretches of
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one way track in either direction. Although a corridor is, by nature, a single track
network, it has been included in this section for two main reasons. Firstly, the cor-
ridor timetabling studies reviewed in this section are components of much bigger
railway networks and hence connect larger more complicated stations. As a result,
one must typically include additional constraints on station capacities and perform the
subsequent step of train routing in developing an operational timetable. Secondly, and
more importantly, from a modelling perspective the methodology for this problem is
noticeably similar to the other studies reviewed in this section.

By reduction from the maximum independent set problem, Caprara et al. (2002)
prove the problem they consider is NP-hard. The authors model the problem using an
acyclic directed multigraph G = (V, A), with the node set V consisting of arrival and
departure nodes as well as artificial source and sink nodes. Each arrival and departure
node corresponds to a possible station as well as a time instant at which the respective
action can occur. There may be many nodes representing the same station depending
on the number of possible time instants during which a train may arrive at (or depart
from) the particular station. Each arc a ∈ A is associated with the duration between
two events, i.e. the travel time between stations or the dwell time at stations. Given
both the origin station and terminal station for each of the trains, it is trivial to see that
any path connecting the two defines a feasible schedule for the respective train.

Based on this network, Caprara et al. (2002) present an arc based multicommodity
flow formulation with additional packing constraints. Binary decision variables gov-
ern the inclusion of any arc a in the solution. Flow constraints are required to ensure
that the selected arcs for a train define one of its feasible paths. Two additional sets of
binary variables are used to define constraints that prevent the simultaneous selection
of conflicting arcs. The first set yi (for all i ∈ V ) indicates whether some train path
visits node i , whereas the second set z ji (for all j ∈ T , i ∈ V ) indicates whether or
not train j visits node i . Two arcs are said to be in conflict if they represent the same
physical piece of track, and the headway time between the arrival (or departure) of
the two train movements is not satisfied. For example, two arcs that define the same
physical section of track and indicate that one of the two trains overtakes the other are
in conflict. The objective attempts to minimize the difference from each train’s ideal
timetable.

One could omit the last two sets of binary variables and simply have packing
constraints directly preventing the selection of incompatible arcs, i.e. each packing
constraint is of the form

∑

a∈C

xa ≤ 1,

where C is a maximal subset of pairwise incompatible arcs. If C denotes the set
of all such subsets, this is equivalent to saying each C ∈ C corresponds to a
maximal clique in the undirected conflict graph GC = (A, AC ), where AC ={{a, b} ∈ A2 : a �= b and in conflict

}
.

The authors propose a Lagrangian relaxation solution approach and state that relax-
ing the large number of constraints in C would be impractical due to the overhead
associated with keeping track of all Lagrangian multipliers. Caprara et al. (2002) thus
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adopt the alternative approach of relaxing all constraints (defined using the additional
binary variables) which prevent the simultaneous selection of conflicting arcs. The
approach is tested on a number of real life instances arising in Italy. The problems
considered have as many as 73 stations and 500 trains over 24 h divided into 1- min
intervals. In the majority of cases all problems could be solved to within 2% of optimal-
ity. However, on other instances, particularly highly congested cases characterized by
many trains, the optimality gap was shown to be as high as 20%. In a follow-up paper,
Caprara et al. (2006) extend the formulation to include additional constraints repre-
senting practical restrictions. In particular, station capacities, maintenance operations,
and fixed timetables for certain trains are included. Problem instances concerning up
to 49 stations and 221 trains are considered.

In more recent work, Cacchiani et al. (2008) describe a column generation approach
to train timetabling on a corridor. The underlying integer linear program formulation
is a natural variant of those proposed by Caprara et al. (2002, 2006). An identical
time–space network is used to model the problem. Cacchiani et al. (2008), however,
present a path based formulation as opposed to the arc based multicommodity flow
formulations described in both Caprara et al. (2002, 2006). Binary decision variables
are associated with the inclusion of a path (a feasible sequence of arcs connecting the
source node with the sink node). This is in comparison to the arc based multicom-
modity flow formulations that have binary decision variables governing the inclusion
of a particular arc. The constraints of the model simply prevent the selection of con-
flicting paths. To solve the resulting set packing model the authors describe an exact
branch-and-cut-and-price algorithm as well as two heuristic approaches. Both heu-
ristics initially iteratively construct feasible solutions by fixing paths at the solution
to the LP relaxation. Several local search strategies then improve this solution. The
local search strategies attempt to improve the solution by finding the optimal path
for a train given a fixed set of paths for the other trains. The authors show that the
column generation subproblem entails computing an optimal path in an acyclic graph
and that the addition of violated constraints does not destroy the subproblem’s struc-
ture. Computational experiments considered 11 real life instances arising at the Italian
railway company and contained up to 102 stations and 221 trains. The three methods
are compared with the Lagrangian method of Caprara et al. (2006). Results show that
the LP relaxation of the path based formulation yields a better upper bound than that
of the Lagrangian approach and, more importantly, in a much shorter time. The solu-
tions obtained using the first heuristic (which implements an additional local search
strategy as well as a different path fixing routine in constructing an initial solution to
that of the second) almost always obtains a better solution than that of the Lagrangian
approach. The solution time is, however, significantly longer. The second heuristic
obtains solutions of similar quality to that of the Lagrangian approach in a similar
time frame. However, one observes more variation in the solution times. The exact
approach was able to solve 3 of the 11 instances to proven optimality (for the first
time) in less than 100,000 s.

Borndörfer et al. (2005) present a formulation that is very similar to that of Caprara
et al. (2002). Unlike Caprara et al. (2002), however, the authors do not just con-
sider corridors linking main stations. Borndörfer et al. (2005) propose an auction
based approach to optimally allocate the track capacity of a railway network. The
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authors present a framework which allows train operating companies (TOCs) to bid
for so called slots. Roughly speaking, a slot refers to a sequence of track over time. In
requesting a slot, a TOC must specify the monetary amount they are prepared to pay for
the slot, the type of train they wish to operate, the sequence of stations the train will
visit, and time-value specifications. Time-value specifications express, in monetary
terms, the preference for particular arrival and departure times. As Borndörfer et al.
(2005) explain, an auction approach allows one to consider multiple interdependent
slots simultaneously without having to resort to the somewhat customary approach of
allocating slots based on train priority.

In modelling a railway network Borndörfer et al. (2005) adopt a macroscopic view.
The rail network is hence modelled as a digraph. The nodes of this digraph corre-
spond to junctions, whereas the arcs represent the sequence of track interlinking the
junctions. Each node has an assigned capacity, reflecting the number of trains that can
pass and/or stop at the node at any given time. To model the temporal nature of train
movements, the authors construct a time expanded model by making multiple copies
of the node set. The time horizon is discretized into 1- min intervals, and a copy of
the node set is constructed for every minute. An arc in this time expanded network
connects two nodes if the time duration of the arc is consistent with train driving times.
A slot can be identified as a directed path in the time expanded network. Depending
on its kinematic capabilities, a train is able to use a subset of the arcs in the network.

With this underlying time–space network, the optimal track allocation problem
(referred to as OPTRA in the paper) is formulated as an arc-based multicommodity
flow problem with additional packing constraints. The formulation is equivalent to that
of Caprara et al. (2002) with binary variables dictating the allocation of arcs to bids.
The flow constraints enforce the requirement that the arcs selected for a particular bid
define a slot in the time–space network connecting the departure and arrival station
associated with the bid. The additional packing constraints restrict the selection of arcs
that do not satisfy headway requirements for trains to be less than one and also enforce
node capacities by restricting the number of trains arriving at any node in a particular
time interval to be less than the respective capacity of the node. Such constraints are
of the form as that given in Eq. (3). The objective maximizes the total monetary value
of the bids.

Borndörfer et al. (2005) also present an extension of this initial formulation which
includes several constraints representing practical restrictions. In particular, time win-
dows as well as penalties on deviations from desired arrival and departure times are
included. The model is also extended to include the capability of accepting combina-
torial AND bids and XOR bids. An AND bid states that either a subset of individual
bids must be accepted if one bid from the subset is chosen or none of them. An XOR
bid, on the other hand, states that at most one bid from a subset of bids can be selected.

The authors test the extended model on a subnetwork of the long distance rail
network in Germany, encompassing Hannover, Kassel and Fulda. The base case con-
siders 946 train requests with all trains having a known origin station and known
terminal station. Extra test cases are generated by allowing flexibility (in the form
of time windows) on train departure times. Five extra test cases are constructed by
allowing longer time windows (increments of 1 min up to a maximum of five) on all
departure times for trains. Computation times reported in the paper increased from
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6 s without time windows to 3 days when a 5 min time window was permitted. The
second test considers an iterative combinatorial auction procedure in which a bid gen-
erator attempts to anticipate the bids of future players in the railway auction. Each
round of the auction involves solving an OPTRA problem. At the end of each auction,
train operating companies have the opportunity to increase any non-assigned bids,
with the auction continuing until no bids change. The impact of synchronized bids
through AND bids is also studied. The authors conclude that competition is much
more pertinent for individual bids, with synchronized bids remaining quite stable.

In subsequent work, Borndörfer and Schlechte (2007b) view the optimal track allo-
cation problem from a slightly different perspective. The authors recognize that models
which attempt to rule out train conflicts through an enormous number of packing con-
straints, such as the multicommodity flow formulation proposed by Borndörfer et al.
(2005), typically have weak LP relaxations, and thus make the resulting integer pro-
grams extremely difficult to solve. The model proposed by Borndörfer and Schlechte
(2007b) hence attempts to rule out conflicts through the addition of extra variables
rather than constraints. The formulation is shown to have a constant number of rows
and be amenable to column generation techniques.

In a similar vein to Borndörfer et al. (2005), Borndörfer and Schlechte (2007b)
formulate the optimal track allocation problem in terms of a digraph G = (V, A).
Every node v ∈ V represents the arrival (or the departure) of a train at (from) one of
the stations at a certain time. Once again the arc set A defines the track interlinking
stations. Given the temporal nature of the network, several arcs may correspond to the
same physical section of track; however, the time interval for which it is said to be
blocked can be different. Paths through the digraph correspond to train routes on the
railway network (again only at the macroscopic level), and two routes are said to be in
conflict if there is an arc conflict, i.e. the respective blocking times for the arcs overlap,
and the arcs represent the same physical piece of track. Furthermore, Borndörfer and
Schlechte (2007b) introduce the concept of an arc configuration. An arc configuration
refers to a subset of arcs representing the same physical piece of track that is conflict
free. Given a set of train requests, one attempts to allocate the track capacity of the
network such that each train receives at most one non-conflicting path.

Borndörfer and Schlechte (2007b) define binary variables to govern the selection
of train paths as well as binary variables that dictate which arc configuration each
segment of track is assigned. Packing constraints enforce the requirement that at most
one path can be chosen for any train as well as the requirement that at most one
arc configuration can be selected for any segment of track. Linking constraints then
relate train paths with each track configuration to ensure a conflict free solution. The
authors present a column generation framework in which the pricing problems for both
train paths and configuration variables entails computing longest paths in appropriate
acyclic networks. Computational results for three problems containing 146, 250, and
570 trains on a subnetwork of the German long distance rail network are provided.
Empirical evidence suggests these problems can be solved close to optimality with
this approach.

In a comparative study, Borndörfer and Schlechte (2007a) consider the track con-
figuration based formulation of Borndörfer and Schlechte (2007b) and packing based
formulations in more detail. Packing based formulations are those that do not include

123



858 R. M. Lusby et al.

arc configuration variables and typically prevent train conflicts through the inclusion
of packing constraints.

Given the same digraph model G = (V, A) as that proposed in Borndörfer and
Schlechte (2007b) the authors describe two possible packing formulations. The first
one is an arc based multicommodity flow formulation (APP), similar to those proposed
by Borndörfer et al. (2005) and Caprara et al. (2002), whereas the second is a path
based set packing formulation (PPP) similar to that of Brännlund et al. (1998). The
majority of the packing constraints for each formulation rule out conflicting move-
ments on railway infrastructure. As we have established earlier, such constraints are
clique inequalities and define the set of all maximal cliques in an undirected conflict
graph GC = (A, AC ). These two formulations are compared with an arc based track
configuration formulation (ACP) and a path based track configuration formulation
(PCP). The authors provide a proof showing that the LP relaxation of each of the
formulations yields the same objective value.

Computational experiments reported in the paper focus on a portion of the German
railway network consisting of 37 stations connected via 120 sections of track and com-
pare the performance of the APP, ACP and PCP methods. The APP method used in
the comparison is a somewhat weakened version (which the authors refer to as APP′)
as the packing constraints only prevent arc conflicts between pairs of arcs as opposed
to the much stronger aforementioned clique inequalities. The authors elect not to test
the PPP method as they claim the majority of work in this field is based on the APP
approach. Three test scenarios containing 146, 285, and 570 trains consisting of 6
different train types form the basis of 48 test instances. The additional test instances
are constructed by incorporating an increasing amount of flexibility in the arrival and
departure times for the trains. The primary objective of the problems was to schedule
as many of the trains as possible. The authors conclude that the APP′ approach pro-
duced noticeably weaker LP bounds than both the ACP and PCP methods. The PCP
method is considered the method with the most potential as it is the only method that
is able to solve some of the larger problem instances.

3.1 The periodic event scheduling problem

All of the work reviewed so far considers allocating the track capacity of a railway
network over time when a proposed timetable is provided. Furthermore, the preced-
ing discussion has largely ignored the notion of periodicity of timetables. All of the
reviewed work assumes the timetable repeats on a daily basis. In what follows we
discuss techniques that have been proposed to construct timetables with much shorter
periods (i.e. 30 or 60 min). Where relevant we discuss how these methods ensure train
movements within the network are conflict free.

The Periodic Event Scheduling Problem, or PESP as it is commonly referred to,
has been the model of choice for the construction of periodic timetables in the railway
industry. First introduced by Serafini and Ukovich (1989), the PESP entails schedul-
ing a set of periodic events E given a set of periodic time window constraints C . By
definition, a periodic event is one that repeats itself at recurring intervals of time λ.
For instance, if an event i ∈ E is scheduled to occur at time πi ∈ [0, λ), then this
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event will also occur at all times πi + kλ, k ∈ Z. All constraints of the PESP model
relate pairs of events and restrict the duration between the occurrence of each event to
be within some specified time interval. Hence, any constraint c ∈ C is of the form

Lc ≤ π j − πi + zcλ ≤ Uc, (1)

where Lc and Uc define the lower and upper limits on the time interval permitted
between the occurrence of events i, j ∈ E , and zc is an integer decision variable
needed to model the periodic nature of the problem. The basic version of PESP is
purely a feasibility problem. That is, either one finds vectors π ∈ [0, T )|E | and z
∈ Z

|C| such that all periodic constraints are satisfied or shows that the problem is
infeasible. Any PESP instance may be viewed as a graph theoretic problem. A so
called constraint graph, also known as an event-activity network, is modelled as a
digraph D = (E, C, L , U ) in which there is a node i ∈ E for each event and an arc
(i, j) ∈ C for every constraint of the form (1).

In the context of train timetabling each event is associated with the arrival or depar-
ture of a train at a particular station, with the constraints of the model suitably enforcing
restrictions on the time intervals between (arrival, arrival), (arrival, departure), (depar-
ture, arrival), and (departure, departure) event pairs. We refer the reader to Peeters
2003, Chapter 3 for a detailed discussion of typical constraints appearing in PESP for-
mulations. In particular, examples of constraints enforcing certain train connections,
trip times between stations, and those that enforce a required headway are provided.
Liebchen and Möhring (2004) describe how the constraints of the PESP formulation
can be used to model more sophisticated features of railway timetabling such as train
line bundling.

PESP models adopt a macroscopic view of the railway network. Furthermore, they
assume that the section of track a train will use in travelling between stations has
been determined a priori; they do not possess the capability to consider alternative
routes for trains. A PESP model ensures a conflict free timetable between nodes of
the network through headway constraints on pairs of events. The ability to enforce
the required headway is dependent on knowledge of the respective trip times for each
train type between stations. However, a variable trip time model based on PESP has
been proposed by Kroon and Peeters (2003).

A variety of solution techniques for the PESP model have been proposed in the
literature. Serafini and Ukovich (1989), in their pioneering work, present a branch-
and-bound based approach which essentially constructs a timetable by sequentially
satisfying the constraints. Odijk (1996) uses a constraint generation approach to con-
struct a set of feasible timetables in an attempt to evaluate the infrastructural capacity
of a station and its surrounding area. Cutting planes for the PESP model are also
presented in Nachtigall (1996), while Nachtigall and Voget (1996) describe a genetic
algorithm based methodology. In addition to this, a constraint programming approach
that also incorporates a local search heuristic to improve the quality of a timetable has
been proposed by Schrijver and Steenbeek (1994). This particular algorithm, known
has CADANS, is one of the core modules of the decision support system DONS
(Designer of Network Schedules) currently used by the Dutch railway company to
develop operational timetables (see Hooghiemstra et al. 1999).
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An alternative formulation of the PESP model, known as the Cycle Periodicity
Formulation (CPF), has also been widely studied (see, e.g. Nachtigall 1998; Lindner
2000; Liebchen and Peeters 2002; Liebchen 2003, 2006; Peeters 2003). Unlike the
classical PESP formulation, which has a decision variable for each event time, the
CPF defines periodic tension decision variables xc for all c ∈ C . The periodic tension
xc can be interpreted as the time difference between events i and j of constraint c.
That is,

xc = π j − πi + zcλ.

To ensure that the chosen tension times do produce periodic event times, the CPF for-
mulation requires that for any cycle in D the sum of the tension values along the arcs
is an integer multiple of λ. This alternative formulation yields a better LP relaxation
than the classical PESP approach and appears to be easier to solve. Liebchen et al.
(2008) provides a detailed empirical study of five different solution approaches for
the PESP. The performance of constraint programming, genetic algorithms, and sim-
ulated annealing each applied to the classical PESP formulation is compared with the
performance of Cplex 8.1 on two MIP models. Furthermore, a different approach for
constructing periodic timetables is presented in Vansteenwegen and Van Oudheusden
(2006). The proposed methodology combines an LP model with simulation. Note also
that, although we have included a discussion on the PESP model in Sect. 3 due to its
prevalence in constructing timetables in the passenger railway industry, it is equally
applicable when timetabling trains on single track networks.

One can see from the preceding discussion that the routing of trains plays an indis-
pensable role in determining an operational timetable for a railway company. Although
the methods described in Sect. 3 ensure mutually disjoint train movements between
nodes of a railway network, the aggregated topology considered means that the detailed
assignment of trains to particular routes through the disaggregated infrastructure is still
undetermined. Indeed, in the case of the PESP approach, the macroscopic solution may
be infeasible with respect to particular junctions. The work of Borndörfer et al. (2005),
Borndörfer and Schlechte (2007a,b), and Caprara et al. (2006) ensures that the provi-
sional macroscopic timetable is feasible with respect to junctions through the inclusion
of capacity constraints. However, the subsequent step of route assignment (including
platform allocation within stations) must still be performed.

4 Junction train routing

We begin this section by introducing the problem of routing trains through railway
junctions in more detail. In particular, we introduce some essential terminology and
discuss variants of the problem. This description is from a German railway perspective;
however, parallels can be drawn with most European railway companies.

Figure 2 illustrates the main components of a railway network. In Germany, track
is classified as either tracks of the open line or station track. The former define the arcs
of the aforementioned aggregated topology, while the latter refer to track within the
station boundary and includes platforms. This boundary is indicated by home signals.
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Fig. 2 Home signal limits and block sections (from Pachl 2004)

In a similar way, the entry to non-station junctions is controlled by block sections.
Depending on their complexity, a junction may contain just station tracks, just tracks
of the open line, or both. For instance, although the network in Fig. 2 contains both
a station and a junction on the open line, one could refer to this entire network as a
junction.

Train movements are controlled by a signalling system. This ensures, among other
things, that trains do not get too close to one another by enforcing the minimum
required headway between trains. To implement a signalling system, the tracks of the
open line are divided into several block sections. Such blocks are delimited by block
signals and ensure that there is at most one train on any block at any given time.
Note that the track leading from a home signal to a platform is not referred to as a
block section. However, trains use it in much the same way. We will refer to this as
an interlocking section. Both block and interlocking sections may contain a number
of smaller track sections. Interlocking (block) sections may have track in common
with other interlocking (block) sections. For instance, they may share a switch or an
intersection. In general, a switch is a track device that allows a train to change railway
lines, whereas an intersection indicates that one set of railway lines crosses another
set. In some cases, however, an intersection can also be used to change railway lines.
Track sections denote the boundary of the infrastructure that is common to multiple
blocks.

On entering a block section, the respective entrance times of all track sections within
the block are synchronized with that of the first section of the block. For this reason
trains are said to claim track sections. In other words, trains will request the use of
several track sections before actually occupying them. On traversing a sequence of
claimed track sections, trains will successively release each one once the tail of the
train has exited, and a small amount of buffer time has elapsed. Released track sections
may then be claimed by other trains. Conflicts occur if trains simultaneously attempt
to claim the same track sections. For a more detailed explanation of the operational
processes within the German rail network we refer the reader to Pachl (2004).

The perimeter of a junction consists of a number of entering and leaving points.
These indicate the points at which a train may enter and/or leave the junction. They also
identify the scope of infrastructure concerned. A route defines a sequence of track sec-
tions connecting a possible entering point with a possible leaving point. If the junction
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coincides with a station, this may involve the train stopping at an available platform.
Depending on the number of switches within a junction, there may be many possible
routes between pairs of entering and leaving points. A path, on the other hand, refers
to the traversal of a given route over time. For any given route, there may be a number
of alternative paths representing different acceleration and deceleration strategies for
the traversal of the underlying route. The problem of routing trains through railway
junctions (henceforth referred to as the train routing problem) entails assigning each
of the trains in a proposed timetable a conflict-free path through the junction while
adhering to several operational constraints.

The importance of this problem to railway planning is emphasized by the fact
that one can identify a variant of the problem at each of the strategic, tactical, and
operational planning levels. On a strategic level it answers questions concerning the
capacity of a junction, while on a tactical level it is required to validate the feasibility
of a proposed timetable. It also appears at the operational level where one is forced
to reroute trains when a disruption has made the planned routings infeasible. In what
follows, we group contributions in this field by the model proposed and where relevant
discuss what variant of the problem is being dealt with.

4.1 Conflict graph approaches

The most common approach when modelling the train routing problem is to use con-
flict graph methodology. Since this forms the basis of the majority of work in this field
we begin our review here. Within this methodology, two quite different approaches
have been used to model variants of the train routing problem. These are known as the
node packing problem and the graph colouring problem, respectively. The former is
typically used when routing trains through railway junctions, while the latter is used
to model the train platforming problem. We now discuss each in turn.

The structure of the node packing problem means it is perhaps the most intuitive
formulation for the train routing problem. The aim is to find a conflict free set of
paths for a set of trains and by representing each train path as a node and connecting
any two nodes for which the corresponding train paths are in conflict by an edge, the
problem can be explicitly modelled as a node packing problem. Figure 3 illustrates an
example conflict graph with ten train paths. In this example, the edge between v1 and
v8 indicates that the corresponding train paths cannot be assigned simultaneously.

Fig. 3 An example conflict
graph
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4.1.1 Node packing formulation

A generic integer programming formulation of the node packing problem in the con-
text of the train routing problem is given next. Assume that there are n variables in
total, that x denotes the vector of binary decision variables governing the selection of
the particular train paths, and that ρ denotes a vector of weights. Each element of ρ

reflects the benefit received in assigning the corresponding train path. The objective
of the model (given by (2) below) is to find a node packing of maximum weight. For
example, in Fig. 3 the set {v2, v4, v9} gives a feasible solution to the routing problem.

Maximize: ρT x (2)

Subject to:

xi + x j ≤ 1 for conflicting train paths i and j, (3)

x ∈ {0, 1}n . (4)

Constraint set (3) enforces the requirement that one can pick at most one of any two
train paths in conflict, while constraints (4) state the binary restriction on the decision
variables. In what is perhaps the first attempt to model and solve the train routing
problem via Operations Research techniques, Zwaneveld et al. (1996), in the develop-
ment of the decision support system DONS for the Dutch railway company NS, pro-
pose a node packing formulation. DONS was developed to assist strategic planners
evaluate infrastructural capacity requirements given different possible scenarios of
expected future demand for rail transportation. It consists of the two separate modules
CADANS and STATIONS, the first of which was introduced in Sect. 3. Zwaneveld
et al. (1996) develop the STATIONS module. This receives as input a provisional cyclic
timetable from CADANS (at the macroscopic level) and then determines whether or
not this is feasible with respect to each of the stations in the network. A node packing
formulation is the underlying model of STATIONS. Note that previous literature terms
the traversal of a sequence of track a “route” where we use “path”. In order to keep
descriptions consistent, we will use our terminology when describing previous work.

Zwaneveld et al. (1996) argue that in order to handle the operational requirements
imposed by NS, one should adopt a modelling approach in which the paths are dealt
with explicitly as opposed to dealing directly with the track sections of a station.
This particular line of reasoning naturally gives rise to a node packing formulation. In
order to determine whether any two paths are in conflict, one must calculate the exact
claim and release times of the track sections comprising the two paths. Although, as
the authors explain, the node packing formulation can be used to incorporate more
general pairwise incompatibilities between paths. Indeed, without any fundamental
change to the formulation, one may prevent the simultaneous selection of any two
paths, regardless of the reason, simply through the inclusion of additional edges in the
conflict graph. This flexibility is particularly beneficial if one wishes to enforce train
connections at adjacent platforms or the coupling/decoupling of two trains.

The particular node packing formulation Zwaneveld et al. (1996) consider is a uni-
cost instance. In other words, all train paths are uniformly assigned a benefit of one
in the objective function. The authors do permit time deviations on the provisional
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arrival and departure times for the trains. For instance, deviations of 1 min on either
side of a train’s provisional arrival and departure time are allowed. Such deviations
are considered in the form of additional variables and are merely duplicates of their
undeviated counterparts shifted forward (or back) in time by 1 min. The inclusion of
these extra variables is an attempt to increase the likelihood of finding a feasible solu-
tion. The authors describe two types of conflict. Firstly, paths for the same train are
conflicting as at most one path for any train is required in a solution, and, secondly, any
pair of paths for two different trains that are pairwise incompatible are conflicting. The
latter form of conflict is most likely to arise from the two train paths simultaneously
claiming some part of the station infrastructure.

The authors do acknowledge that there are several limitations in formulating the
train routing problem this way. From a computational point of view, the resulting for-
mulation is typically very large. Computational experiments reported in Zwaneveld
et al. (1996) suggest that instances involving up to 27 trains can have in excess of
3,000 nodes and as many as 1.5 million packing constraints. Furthermore, node pack-
ing formulations have a notoriously weak LP relaxation. It is trivial to see that the
authors’ formulation will always fractionally achieve an objective of routing all trains
even if it is not possible to route all trains. Each constraint (3) only restricts pairs of
paths for different trains. Hence, if each train has at least two paths, selecting any two
at value 1

2 will always be feasible.
To overcome both the formulation’s intractable nature as well as its weak LP relax-

ation Zwaneveld et al. (1996) show that the model can be strengthened through the
addition of valid inequalities and reduced in size through the removal of dominated
train paths. A path for a particular train is considered dominated if the train has an
alternative path that leaves at least the same routing options open for all other trains.
Valid inequalities for the node packing problem are the well known clique inequalities.
The search for cliques in a conflict graph is exponential in the problem size, and the
authors suggest adding only a subset of the clique inequalities prior to solving the
problem. For example, one may add the following constraint for any train i ∈ T :

∑

j∈Pi

x j ≤ 1, (5)

where Pi ⊆ V , and each node j ∈ Pi defines a possible path for train i . All nodes
corresponding to paths for the same train define a complete subgraph in G, and hence
only one can be selected. In addition to these constraints, the authors also suggest
looking for cliques in the subgraph of the conflict graph defined by the nodes corre-
sponding to two trains. The addition of the clique inequalities results in a reduction in
problem size as such constraints naturally dominate a number of the much weaker pair-
wise constraints. Computational experiments conducted suggest that these reduction
techniques had a dramatic effect on problem size.

Zwaneveld et al. (1996) present a branch-and-cut approach to solve the reduced
node packing formulation. The cut part of the procedure attempts to identify violated
clique inequalities at each node of the branch-and-bound tree. Two heuristics for the
train routing problem are also described. The first randomly selects a train and assigns
it a path, where the path selected attempts to maximize the routing possibilities left for
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the remaining trains. The second also sequentially assigns paths to trains. However,
trains with the least number of routing possibilities are given priority. As the solu-
tions obtained using these heuristics always coincided with the truncated value of the
objective function, the branch-and-cut routine was not needed. It was concluded that
the most time consuming part of the solution approach was in the generation of the
sets of compatible train paths for each pair of trains (required for the conflict graph
generation). Zwaneveld et al. (2001), in a follow-up paper, however, stated that this
approach was unable to solve the train routing problem for two of the larger problems
in The Netherlands.

Zwaneveld et al. (2001) can be considered an extension of Zwaneveld et al. (1996).
The authors adopt the same modelling approach; however, they attempt to improve
the performance of the solution method. By making the reasonable assumption that
trains will prefer certain paths to others, the problem is formulated as a weighted
node packing problem and is hence more aligned at the tactical level than Zwaneveld
et al. (1996). The authors also elect to partition a train path into three components:
namely, inbound path, platform path, and outbound path. An inbound path defines
a sequence of track sections from an entering point to a platform, whereas an out-
bound path defines a sequence of track sections connecting a platform with a leaving
point. The platform path refers to the track sections corresponding to a platform. As
Zwaneveld et al. (1996) explain, such a partitioning allows the shunting of train units
to be considered.

Unlike Zwaneveld et al. (1996), the decision variables of the problem do not pertain
to train paths, but rather the partitions of the paths. To be assigned a path through the
junction a train can receive at most one inbound path, one outbound path, and one
platform path. Constraints of the form (3) can still enforce the possible connections
between path partitions. Zwaneveld et al. (1997) show that such a partitioning can lead
to a reduction in the number of variables.

The calculation of the preference coefficient for a particular inbound/outbound or
platform path is discussed in detail in Zwaneveld (1997). Essentially it consists of three
elements. The first is the train’s preference for the inbound/outbound or platform path.
This is typically a reflection of the number of switches in the preferred position as well
as the speed limits on the track sections. The second reflects the preference for a time
deviation from the train’s provisional arrival and departure times, whereas the third
reflects the importance of the inbound/outbound or platform path. Zwaneveld (1997)
shows how by selecting suitable integer values for each element, a hierarchical list of
objectives can be considered. The first aims to route the maximum number of trains,
whereas the second looks at maximizing the preferences associated with the assigned
paths. The third objective seeks to minimize the total number of shunting movements.

Zwaneveld et al. (2001) include more sophisticated preprocessing and reduction
techniques in the branch-and-cut solution approach. In particular, the techniques of
node-dominance, set-dominance and iterating set-dominance are developed for the
weighted node packing problem. All approaches attempt to show that a certain node
can be replaced by another node in all feasible solutions without a reduction in the
objective function value and hence reduce the size of the problem instance. We refer
the reader to Zwaneveld (1997) for a more detailed discussion of each preprocessing
technique.
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The authors conclude that the refined solution approach is sufficient for solving
the train routing problem arising at any Dutch railway station. The implementation of
the improved preprocessing techniques were very successful in reducing problem size.
The largest instance considered had 79 trains. The initial 9,328 variables were reduced
to just 706, whereas the a priori addition of clique inequalities reduced the number of
constraints from 11,629 to 1,231. The authors also showed that in determining whether
two train paths were in conflict one only needed to consider a subset of track sections
that they termed “relevant track sections”. By considering only relevant track sections
the set of compatible train paths for each pair of trains could be generated faster.

A node packing formulation is also the basis of the model in Delorme (2003).
The author’s PhD thesis considers the problem of evaluating the capacity of railway
junctions. Delorme (2003) presents a formulation that is essentially equivalent to that
of Zwaneveld et al. (2001). An entire train path through a junction is assumed to
consist of a number of smaller subpaths through so called partitions of the junction,
where each partition consists of a number of zones (synonymous with track section).
Constraints of the form (3) are used to enforce a range of incompatibilities between
pairs of subpaths. The binary variables of the model govern the inclusion of particular
subpaths in the solution. All train paths are predetermined, and trains have a set of
possible entering times. Hence, associated with each binary variable is a time stamp
reflecting the time the train enters the respective partition.

In contrast to Zwaneveld et al. (1996), the author defines multiple objective func-
tions, which are considered lexicographically in the following order. The problem is
primarily concerned with capacity assessment, and hence determining the maximum
number of trains that can be routed through the junction is given the highest priority.
The author also suggests that one should consider introducing additional so called
saturating trains as well as maximizing the preferences associated with the assigned
train paths. The last two objectives are considered of equal importance. In addition to
this, Delorme (2003) introduces the notion of stability for a train routing. The stability
measure is calculated as the maximum propagated delay resulting from some initial
delay. This is solved via several shortest path problems, where the network considered
reflects the direct or indirect impact of a late train on all other trains. The nodes of the
network correspond to the trains, whereas the edges represent the immediate delay
one train causes another. For example, if the late arrival of train t causes a delay of
45 s to train t ′, then there is an edge between the respective nodes with weight 45.

Delorme (2003) develops two solution methods for the proposed node packing for-
mulation. The first is noticeably similar to that of Zwaneveld et al. (2001) and involves
extensive preprocessing through variable dominance as well as the a priori addition
of several classes of clique inequalities. The reduced formulation is then solved using
Cplex 8.0. The author tests this approach on both railway specific instances as well as
several randomly generated data sets. The random instances had up to 2,000 variables
and 10,000 constraints. The railway instances, on the other hand, had up to 3,720 vari-
ables (from 200 trains) and 482,887 constraints. The application of the preprocessing
techniques appears to be very successful in reducing problem size, particularly for the
railway specific instances for which it is reported that on average 16% of the variables
and 90% of the constraints are removed. However, this exact solution approach appears
quite inefficient. The gap between the best known integer solution and the LP bound
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can be as bad as 400% for the random instances and up to 25% for railway instances
after 50,000 s of computation time.

A second, more promising, approach using the GRASP (Greedy Randomized Adap-
tive Search Procedure) metaheuristic is presented. GRASP methods typically consist
of two phases. The first is the implementation of a greedy heuristic to yield an initial
feasible solution. The second phase then attempts to improve the solution through a
local search heuristic. The neighbourhood often considered for the local search heu-
ristic is based on the k-p exchange. The k-p exchange neighbourhood for a solution
x is the set of solutions obtained from x by changing the value of k of the variables
from 1 to 0, and changing p variables form 0 to 1. One usually considers the 0–1, 1–1,
1–2, or 2–1 exchange due to the combinatorial nature of the exchange possibilities.
Empirical evidence shows that the GRASP metaheuristic is able to solve the problems
close to optimality in a much more reasonable time frame. Results reported show that
the GRASP metaheuristic finds solutions within 3% of optimality and requires, on
average, less than 800 s of computing time. The particular GRASP method imple-
mented by the author includes both reactive GRASP and path relinking, among other
features. We omit an explanation of the details here and refer the interested reader to
Delorme et al. (2004). This paper not only provides an overview of GRASP, but also
compares various types of GRASP on a number of routing problems arising at the
Pierrefitte-Gonesse junction north of Paris. The algorithmic work of Delorme (2003)
forms the basis of the RECIFE decision support system used by the French national
railway company SNCF to evaluate railway infrastructure capacity.

Gandibleux et al. (2004, 2005) propose Ant Colony Optimization (ACO) metaheu-
ristics as an alternative to GRASP. One major difference between ACO and GRASP
is that at each iteration ACO will produce many feasible solutions, whereas GRASP
will produce just one. With the ACO approaches, initially one defines a pheromone
matrix φ with φi reflecting the probability that variable xi is in a good solution. At each
iteration, starting from the trivial solution xi = 0 for all variables, each ant constructs
a feasible solution by sequentially adding variables. The selection of which variable
to add is usually random or determined by the highest pheromone value. Typically
a local search heuristic is applied to each feasible solution at each iteration, and the
pheromone matrix is updated so that ants remember what constitutes a good solution.

The algorithm described in Gandibleux et al. (2005) is an evolution of that described
in Gandibleux et al. (2004). In particular, new data structures, a new stopping crite-
rion, and an improved local search heuristic are implemented. The ACO algorithms
were tested on a number of railway instances arising at the Pierrefitte-Gonesse railway
junction. Results in Gandibleux et al. (2004) suggest that ACO is competitive with
GRASP procedures despite the fact that it is a much simpler algorithm. The authors
identified the numerical instability as a possible drawback of the method, since ACO
could return solutions with a wide range of quality for multiple runs on the same test
case. Results reported in Gandibleux et al. (2005) suggest that the improved ACO
algorithm can deal with larger problem instances and find better quality solutions
quicker than the earlier version.

The problem of finding a robust routing for the train routing problem is the topic of
Caimi et al. (2005). The node packing formulation used is identical to that of Zwaneveld
et al. (1996). The authors state, however, that the station of Bern in Switzerland, which
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formed the test case of the study, was too large to allow for the successful application
of the branch-and-cut algorithm and propose a fixed-point iteration heuristic to yield
an initial feasible solution. The authors adopted the fixed-point iteration heuristic for
its ability to exploit the clique structure of the underlying conflict graph.

The fixed-point iteration heuristic involves first assigning each train path a prob-
ability, where the probability reflects the likelihood of finding a feasible routing if
the train path is selected. In a second step, the probabilities are iteratively updated
until they have converged (i.e. successive updates yield the same probabilities and are
termed fixed). Updated probabilities are obtained by first calculating the probability
of selecting no conflicting train path for another train, and then adjusting this by the
probability of not picking an alternative path for the same train. Attractive fixed points
are those that correspond to a conflict free routing. It is, however, also possible for the
algorithm to terminate at a fixed point that contains conflicts.

If a conflict free solution is obtained using the fixed point heuristic, the authors
attempt to improve its robustness through the implementation of a local search heuris-
tic. The improvement heuristic attempts to maximize the total weighted sum of time
slots. A time slot is defined to be the time interval during which a train may arrive
and find its designated path open. Time slots are weighted to reflect the importance of
increasing the length of shorter time slots. The local search heuristic looks to reroute
one or two trains in an attempt to improve the objective value.

By using random initial probabilities, this fixed-point heuristic allows a variety of
solutions to be found. Results reported suggest that this approach yields feasible solu-
tions to the train routing problem quickly. However, since unattractive fixed points
(i.e. the heuristic terminates with an infeasible solution) exist, there were occasions
when the heuristic needed to be restarted (as many as 50 times in some cases). Increas-
ing the length of the time slots proved more time consuming; however, evidence
suggests one can improve the length of the time slots dramatically in some cases.
Computational tests involved between 11 and 19 trains with up to 6,800 paths.

Herrman (2006) uses the same fixed point heuristic to obtain an initial feasible solu-
tion and considers both deterministic as well as probabilistic robustness measures for
train timetables. The time slot concept can be considered a deterministic robustness
measure as it is independent of any probability distribution. Herrman (2006) discusses
probability distributions of delays for train timetables and introduces four different
robustness measures. The author’s work forms a component of a larger model devel-
oped by Burkolter (2005) to generate dense timetables within station areas. Burkolter
(2005) considers an aggregated topology of the station infrastructure and models train
movement with Petri Nets. Simulated annealing is used to determine a timetable with
minimum cycle time. This timetable is then tested for feasibility with the fixed point
heuristic of Herrman (2006) by considering the detailed infrastructure of the station.

Caprara et al. (2007a) study a version of the problem which the authors term The
Train Platforming Problem. Recall that the train platforming problem entails assign-
ing the arriving trains at a station to an available platform. Note that this problem
is implicitly dealt with in the studies of Zwaneveld et al. (1996, 2001) and Caimi
et al. (2005) since with these methods one assigns trains to a complete path through
a station, the platform allocated being one component of this. The train platforming
problem has been studied by De Luca Cardillo and Mione (1998), Billionnet (2003),
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Carey and Carville (2003), and Cornelsen and Di Stefano (2007), and each will be
discussed in detail later. As has been mentioned in Sect. 1, the difference in ter-
minology arises from the characteristics of the junctions that have been considered
in the respective studies. If the nature of the station is such that each platform can
be reached via a number of alternative paths, the routing of the trains will play a
more influential role. However, in the studies of De Luca Cardillo and Mione (1998),
Billionnet (2003), Carey and Carville (2003), and Cornelsen and Di Stefano (2007),
the allocation of the platform uniquely determine a train’s path into and out of the
station, meaning the emphasis was less on the routing and more on the platform
assignment.

We believe the study by Caprara et al. (2007a) is more closely related to the train
routing problem as the selection of a platform may not uniquely determine a train’s
path into and out of the station. Each train to be assigned a platform is assumed to
have a number of possible patterns, where each pattern consists of an inbound path,
an outbound path, a platform, and both an arrival and departure time at the platform.
In a similar way to Zwaneveld et al. (2001), deviations from the arrival and departure
times are considered in the form of alternative patterns. The authors make the rather
restrictive assumption that a train takes a constant amount of time to traverse any
inbound path, regardless of the platform it visits.

Caprara et al. (2007a) present an integer programming formulation based on a
pattern incompatibility graph, the nodes of which correspond to patterns, whereas
the edges connect any two patterns that are pairwise incompatible (i.e. they occupy
the same platform during an overlapping time interval). The constraints of the model
enforce the requirement that one pattern must be selected for each train, and that con-
flicting patterns cannot be chosen. To achieve the latter, two sets of constraints are
identified. The first set defines cliques in the pattern incompatibility graph associated
with sets of patterns that use the same platform, whereas the second set defines all the
cliques in the pattern incompatibility graph.

Given the exponential nature of the defined constraint system, the authors pres-
ent alternative versions of the clique inequalities. Each clique inequality relating to
platform occupation corresponds to a set of time intervals, any pair of which is over-
lapping. The authors hence elect to replace the clique inequalities with an enumerated
set of time interval constraints for each platform. Caprara et al. (2007a) also suggest
considering only those clique inequalities defining incompatible patterns for pairs of
trains, rather than determining all cliques in the pattern incompatibility graph.

The objective of the model is to minimize the sum of costs associated with platform
use, pattern allocation, and a quadratic function indicating the costs incurred from the
pairwise assignment of patterns to any two trains. Through the introduction of addi-
tional variables and linear constraints, the authors show how the quadratic term in the
objective function can be linearized. Due to the large number of constraints and vari-
ables of the model, the authors propose a branch-and-cut-and-price solution approach.
In particular, the initial LP contains only a subset of the pattern variables. Separation
routines are defined for the clique inequalities (corresponding to incompatible paths
for pairs of trains) as well as the additional constraints that are required to linearize the
objective. The authors consider several case studies from the Italian railway involving
up to 237 trains over a 24-h period. Although some instances show a significant gap
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between the best known integer solution and the LP relaxation, the approach yielded
significantly better results than the heuristic currently in use at the railway company.

4.1.2 Graph colouring approaches

De Luca Cardillo and Mione (1998), Billionnet (2003), and Cornelsen and Di Stefano
(2007) propose graph colouring approaches for the train platforming problem. The
respective studies consider stations that have limited routing options to and from
platforms. They are, however, particularly relevant as one must still ensure that the
allocation of platforms to trains is conflict free. A conflict graph also forms the basis of
graph colouring approaches; however, unlike the node packing formulations discussed
in Sect. 4.1, the aim is not to select nodes of the conflict graph, but rather to assign
each a colour such that no two adjacent nodes have the same colour. For this reason,
graph colouring methods are not suited to complex junctions where trains have a num-
ber of alternative paths to and from platforms. For instance, there is no possibility of
including path preference for a train if it has more than one path through a junction
that uses the same platform. A formal definition of the graph colouring problem is
given below.

Definition 1 (Graph Colouring Problem) Let G = (V, E) be an undirected conflict
graph, and let C = {1, 2, . . . , k} be a set of colours. A colouring of G with at most k
colours is a function f : V → C , where f (v1) �= f (v2) for all edges e = {v1, v2} ∈ E .

Several extensions of the basic definition above also exist. In particular, a k L-list
colouring of G is a colouring γ of G with k colours such that γ (v) ∈ L(v) for all
v ∈ V , where L(v) ⊆ C . In other words, each node v ∈ G has a list of colours L(v)

that it may receive. De Luca Cardillo and Mione (1998) subsequently introduced the
k L-list τ colouring problem. A k L-list τ colouring is a k L-list colouring with a set
of extra restrictions τ . Each element of τ specifies an incompatible assignment of two
colours to adjacent vertices. That is, each element of τ is of the form {v1, v2, i, j},
where {v1, v2} ∈ E , i ∈ L(v1), and j ∈ L(v2). It specifies that one cannot assign
L(v1) = i and L(v2) = j simultaneously.

As De Luca Cardillo and Mione (1998) explain, the train platforming problem is a
natural application of a k L-list τ graph colouring problem. One can represent every
train in the timetable as a node in the conflict graph, and then connect any two nodes
for which the respective trains cannot be assigned the same platform. Each platform
represents a possible colour. The set τ is used to identify the incompatibilities between
different platforms for two trains due to conflicting paths for the trains to each of the
platforms. De Luca Cardillo and Mione (1998) propose a heuristic algorithm with
backtracking to colour the resulting conflict graph.Computational experiments for
relatively simplified problems involving up to 242 trains and 16 platforms over a 24-h
period are reported with the authors acknowledging that as the problem size grew
their algorithm was unable to find solutions in reasonable time. Problem reduction
techniques were required to decrease the computation time.

The work of Billionnet (2003) builds on that of De Luca Cardillo and Mione (1998)
by showing that the k L-list τ colouring problem has two integer programming formu-
lations. Both formulations are based on a node packing formulation. For instance, one
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can define the binary variables xir , equal to 1 if vertex vr (r = 1, . . . , n) is assigned
colour i ∈ L(Vr ), and formulate the k L-list τ graph colouring problem as follows:

Find: xir (6)

Subject to:
∑

i∈L(vr )

xir = 1, r = 1, . . . , n, (7)

xir + xis ≤ 1, r < s, {vr , vs} ∈ E, i ∈ L(vr ) ∩ L(vs), (8)

xir + x js ≤ 1, {vr , vs, i, j} ∈ τ , (9)

xir ∈ {0, 1}, r = 1, . . . , n, i ∈ L(vr ). (10)

The model has no explicit objective function since it is purely a feasibility problem.
Constraint (7) ensures each node receives one of its possible colours, while constraint
set (8) enforces the requirement that adjacent vertices must receive different colours.
Constraints (9) prevents the incompatible assignments of different colours to adja-
cent vertices, as specified by the τ set. The final set of constraints enforce the binary
restrictions on the decision variables.

Viewed in a train platforming context, the binary variables govern the selection
of a particular platform for a given train. With such decision variables, any objective
function would obviously seek to maximize (minimize) the use of a certain platform
within the station. The constraints of the model are also easy to interpret: each train
must be assigned one of its available platforms (7), no two trains can be assigned
the same platform at the same time (8), and two trains cannot be assigned different
platforms if there respective paths to the platforms conflict (9).

Billionnet (2003) compares model (6)–(10) with a strengthened version. The
strengthened formulation is obtained by observing that if vertex vr receives platform
i , then an adjacent vertex vs cannot receive colour i , or colour j if {vr , vs, i, s} ∈ τ .
Thus, the weaker pairwise packing constraints are replaced by the following set of
constraints:

xir + xis +
∑

j :{vr ,vs ,i, j}∈τ

x js ≤ 1, i = 1, . . . k, i ∈ L(vr ), r < s, {vr , vs} ∈ E .

A discussion on how the two models can be further strengthened through the addi-
tion of clique inequalities is also provided. The models are tested on a number of
randomly generated timetables using a custom integer programming solver and con-
sider daily instances involving 200 trains and 14 platforms. The work of both De Luca
Cardillo and Mione (1998) and Billionnet (2003) can be considered fairly simplified
as no deviations to train arrival or departure times are permitted.

A graph colouring approach is also the basis of the study by Cornelsen and
Di Stefano (2007). The authors similarly assume trains have fixed arrival and depar-
ture times. However, the network considered is perhaps even more simplified; the
station has only one inbound path leading to a number of parallel platforms and one
outbound path (although these are both bi-directional). The aim is to assign trains to
platforms in such a way that they can arrive and depart on time without being blocked
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by other trains. Cornelsen and Di Stefano (2007) propose an identical conflict graph
formulation. The authors look at various timetables (linear and cyclic) as well as con-
sider minor variations of the problem and report on the complexity of solving the
resulting graph colouring problem.

4.2 Constraint programming approach

Constraint programming has also been used to model the train routing problem. The
models presented in Delorme et al. (2001) and Rodriguez et al. (2002) are directed
towards the strategic level problem of capacity assessment, whereas those presented
in Rodriguez and Kermad (1998) and Rodriguez (2007) are an attempt to model the
operational variant of the problem. There is, however, only a subtle difference between
the two respective constraint programming formulations.

Constraint programming approaches view the movement of a train through the
junction as a job. The similarities between job shop scheduling and train scheduling
have been discussed in Sect. 2. Similarly in the junction setting, each track section
is considered a machine, and an operation is associated with the traversal of a track
section by a train. A sequence of operations thus results in an entire train path through
a junction.

In contrast to node packing formulations, allocating a train path entails determin-
ing start times for a set of operations. Precedence constraints are required to ensure
that the scheduled times define a physically possible train path, whereas disjunctive
constraints are required to prevent two conflicting operations being scheduled during
an overlapping time interval. If two operations are scheduled at the same time, they
must use different track sections. In determining entrance times to track sections, one
must calculate the exact claim and release times of the track section. In this regard,
constraint programming methods must explicitly take into account the role of the
signalling system. Typically simulation is used to determine the amount of time a
given train requires to traverse a given track section (this also includes some buffer
time).

The operational level variant of the problem permits trains to wait on track sections
if the subsequent track section is unavailable. This is precisely the difference between
the constraint programming formulations of Delorme et al. (2001) and Rodriguez et al.
(2002) and those of Rodriguez and Kermad (1998) and Rodriguez (2007). The latter
two papers incorporate a possible waiting time (or delay) on the traversal time of each
track section. The release time of a track section is adjusted to be the train’s earliest
possible exit time plus the accumulated delays to that point. No such waiting is per-
mitted in the capacity assessment related work of Delorme et al. (2001) and Rodriguez
et al. (2002).

Rodriguez (2007) defines the waiting time on a track section to consist of two types
of delay: the time spent decelerating and the time spent waiting. A third possible
delay, the wasted time during acceleration (since the train must start from a station-
ary position on entering the next track section), is associated with the delay of the
subsequent section. The objective of the constraint programming formulation is to
minimize the sum of delays.
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The author tests and compares two variants of the constraint programming
formulation. The first considers all three possible causes of delay, whereas the second
ignores the time wasted in the acceleration phase (i.e. it assumes a train can reach
maximum speed instantaneously if starting from rest). Both formulations are solved
using a labelling and consistency procedure for constraint programs. Not surprisingly
the method that ignores the time spent accelerating underestimates the actual total
delay. However, the authors show that this approach required much less computing
time and still produced good solutions. Test instances had between 6 and 24 trains and
were based on the Pierrefitte-Gonesse railway junction in Paris.

Delorme et al. (2001) compares the constraint programming approach for capac-
ity assessment with the GRASP procedure by applying each to a number of railway
instances at the Pierrefitte-Gonesse junction. The variant of GRASP used was applied
to a formulation not dissimilar to that of Delorme (2003), whereas the constraint pro-
gramming formulation was similar to that of Rodriguez et al. (2002) and solved using
constraint propagation. The authors cannot conclusively say one approach is superior
to the other as both have positive aspects. The constraint programming formulation
has limitations in the number of paths it can consider due the huge number of vari-
ables and constraints of the model. Despite this, it does appear to perform better on the
instances where choosing a suitable start time was more influential than path selec-
tion. Contrastingly, the node packing formulation with the GRASP solution approach
was able to consider alternative train paths effectively. It did, however, struggle on the
instances where the selection of suitable start times was required in achieving a good
routing. The authors suggest that future research should be directed toward a hybrid
model.

4.3 Heuristic approaches

Carey and Carville (2003) consider the problem of platforming trains at busy stations.
In contrast to De Luca Cardillo and Mione (1998), Billionnet (2003), and Cornelsen
and Di Stefano (2007), the authors permit deviations on the arrival and departure times
of trains. The considered station, however, is such that the selection of a platform still
uniquely determines a train’s inbound and outbound path. The authors propose a
greedy heuristic that aims to emulate what is done in practice by experienced planners
for platforming a set of trains.

The algorithm is noticeably similar to that of Carey and Lockwood (1995), in that
trains are considered sequentially. The order is usually determined by train priority.
For each train the cost of assigning it to each of its possible platforms is calculated. The
cost incurred in assigning a train to a platform is a function of the time adjustments that
need to be made to obtain a conflict free slot at the platform for the train. Obtaining
a conflict free slot at a platform involves ensuring the respective headways are satis-
fied. The time adjustments pertain to the incumbent train and measure the deviation
from the train’s desired arrival, dwell, and departure times. Each train is assigned the
platform that yields the lowest cost. Computational experiments reported in the paper
focus on the Leeds railway station in England and consider a daily timetable with 491
trains.
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More recently, this work has been extended by Carey and Crawford (2007) to look
at scheduling trains on a network of stations connected by multiple one-way lines in
each direction. In particular, the headway for trains departing from the same station
onto the same line is modified to ensure that if there is disparity in the speeds of the
trains, then a faster train will not catch up to and be delayed behind a slower one.
Essentially this amounts to including extra buffer time in setting the departure time of
a train in such situations. The aim of Carey and Carville (2003) was simply to resolve
conflicts within a particular station regardless of the ramifications the sequencing of
the trains would have on the lines between stations.

The underlying heuristic of Carey and Crawford (2007) is identical to that described
in Carey and Carville (2003), apart from the inclusion of the modified headway restric-
tion described above. Trains are still assigned one after the other and receive a platform
that results in the lowest cost. However, Carey and Crawford (2007) do modify the
algorithm of Carey and Carville (2003) slightly to include some extra flexibility when
resolving conflicts. When determining the cost of a particular platform for a train, if
either departure headway or platform occupation conflicts exist (i.e. the dwell time at
the platform of the train overlaps with an already scheduled train), time adjustments
for both trains are considered depending on which results in the lower, immediate
cost. Carey and Carville (2003) assess the impact of each modification by running and
comparing three versions of the heuristic on a synthetic example which contains 25
linked stations.

4.4 Multicommodity flow formulation

One noticeable limitation with the node packing formulation of the train routing prob-
lem is that, for conflicts arising from conflicting movements within the junction for
different trains, there is no indication in the constraint set where (in both space and
time) the conflicts occur. To achieve this, each train path must by unpacked into a
sequence of topology points. Fuchsberger (2007) introduces the notion of a resource
tree conflict graph for the train routing problem. This approach attempts to find a
conflict free routing for a set of trains by tying the path conflicts to particular track
sections within the junction.

A resource tree graph is a tree structure that is defined for each train and contains an
enumerated list of all the routes for the train between its entering point at the junction
and its leaving point. Each node of the tree structure is associated with a topological
element of the junction and contains information concerning the time at which the
train reaches the corresponding topological element as well as the train’s speed. For
example, the root node of the tree structure contains information on the train’s entering
track section, entering time and entering speed, while the leaf nodes each correspond
to the train leaving the junction at the train’s designated leaving track section via one
of the train’s possible routes. A branch in the tree structure is defined if the topology
point represented by the node provides the train with two alternatives (i.e. it indicates
a switch or an intersection). An edge between two nodes indicates the section of track
connecting the two topological elements and the times on the nodes can be used to
calculate the train’s traversal time.
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By adding, for each train, a dummy source node that precedes the root node and
a dummy sink node that succeeds all leaf nodes, the train routing problem can be
converted into a multicommodity network flow problem. To state this formulation
more formally, we introduce the following notation. We assume that each of the t
trains in the problem has a set O+

k (k = 1, . . . , t) of nodes connected to the source
node of train k and a set of nodes D−

k connected to the sink node of train k. Further-
more, any node j is assumed to have a set of successor nodes �+

j . The parameter
ci j reflects the travel time associated with nodes i and j of the network, the binary
decision variables xi j govern the inclusion of a particular edge (delimited by nodes i
and j) in the solution. The basic multicommodity flow model can hence be stated as
follows:

Minimize:
∑

i

∑

j

ci j xi j (11)

Subject to:
∑

j∈O+
k

xk j = 1, k = 1, . . . , t, (12)

∑

i∈D−
k

xik = 1, k = 1, . . . , t, (13)

xi j =
∑

m∈�+
j

x jm for all i, j : j �∈
t⋃

k=1

D−
k , (14)

xi j ∈ {0, 1}. (15)

The objective function (11) minimizes the total travel time of the trains. Constraints
(12)–(14) are the flow constraints and ensure that each train receives a feasible path
through the junction. Finally, constraints (15) impose the integrality requirements on
the flow variables.

Additional constraints are, however, required to ensure that the train paths selected
are conflict free. In determining resources (track sections) where a conflict occurs,
one must calculate the time each resource is claimed. Overlapping time intervals
for train paths on a particular track section indicate that the train paths are in con-
flict. Fuchsberger (2007) defines conflict cliques pertaining to each resource. Multiple
cliques may exist for the same track section if there is more than one time instant in
which a conflict occurs. The resource tree conflict graph has a node for each resource
and includes all resource tree graphs (i.e. the resource tree graph for each train).
Conflict cliques are identified by edges between the resource nodes and nodes of the
resource tree graphs. The multicommodity flow formulation is modified to include the
following constraints:

∑

(i, j)∈C

xi j ≤ 1 for all C ∈ Cs, for all track sections s, (16)

where Cs , the set of all conflict cliques arising on track section s. The full multicom-
modity formulation is hence given by (11)–(16).
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Fuchsberger (2007) also introduces the concept of pulsed train times. This extends
the resource tree graph structure described above to include variation in the train’s
arrival time at the junction. The author suggests duplicating the resource tree graphs
for the trains. Each resource tree graph for a particular train uniquely corresponds to
a possible entering time at the junction.

Computational experiments reported in the author’s thesis focus on the Bern railway
station in Switzerland and show that the tree conflict graph requires significantly fewer
constraints than an equivalent node packing formulation. By binding the conflicts to
track sections one obtains fewer yet stronger constraints. Computational experiments
are also performed for the pulsed train case. Although the solution times are still
acceptable, the author acknowledges that the approach of duplicating trees to model
arrival time variation requires significant amounts of computer memory. All tests are
solved using Cplex 9.1.

4.5 Alternative graph formulation

D’Ariano et al. (2007) propose an alternative graph formulation for the operational
variant of the train routing problem. The concept of an alternative graph was first intro-
duced by Mascis and Pacciarelli (2000), and has been further studied by Mascis and
Pacciarelli (2002). An alternative graph is a generalization of the disjunctive graph
introduced by Roy and Sussman (1964) and is used to model job shop scheduling
problems.

An alternative graph G A is characterized by the triple (V, F, A). The node set V
corresponds to the set of operations and includes two dummy nodes, 0 and n. The
source node 0 is equivalent to a dummy operation that precedes the first operation of
every job, whereas node n is a dummy task that succeeds the last operation of every
job. The set F corresponds to a set of conjunctive arcs. A conjunctive arc links a pair of
consecutive operations for the same job and defines a precedence relation. The weight
of such an arc reflects the processing time of the operation it emanates from. Set A
defines a set of so called alternative arcs. Alternative arcs are defined in pairs and are
used to model the situation in which there is a potential conflict between pairs of oper-
ations (typically because they require the use of the same machine simultaneously).
Such arcs are equivalent to the ordering constraints defined in the model by Szpigel
(1973). By selecting either one of the two arcs, a processing order is specified for the
two conflicting operations.

Figure 4 highlights the main characteristics of an alternative graph. Let i and k be
two conflicting operations. Conjunctive arcs link these operations with their respec-
tive successor operations j and l, whereas dashed arcs indicate the pair of alternative
arcs required to enforce a processing order. The weight of each alternative arc can be
interpreted as the setup time. This is the time that must elapse before the subsequent
job can be performed on the same machine.

D’Ariano et al. (2007) equate the traversal of a block section with an operation.
Hence a chain of nodes connecting node 0 with node n via conjunctive arcs denotes
a train path. The setup time in this situation reflects the necessary headway that must
exist between two trains that require the use of the same block section. One should
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Fig. 4 The characteristics of an
alternative graph

note that an alternative graph explicitly models the priority decisions associated with
sequencing trains that share block sections. As the work is aimed at the operational
level, in an attempt to deviate as little as possible from the planned schedule, all trains
are assumed to remain on their allocated paths. The alternative graph formulation
tries to determine the best sequencing order of trains at block sections where potential
conflicts occur.

D’Ariano et al. (2007) define a complete selection S to be the set of arcs obtained
by fixing exactly one arc from each pair of alternative arcs. The selection is said to be
consistent if the graph (V, F ∪ S) has no positive length cycles. The authors show that
the length of the longest path in a complete consistent selection (i.e. the path from the
dummy start node to the end node) represents the maximum propagated delay of the
corresponding train sequencing. The authors present a truncated branch-and-bound
algorithm to minimize the length of the longest path. Given an initial selection (which
may be empty), the procedure chooses an unselected alternative arc pair at each step
and creates two extensions of the selection by considering the two sequencing pos-
sibilities. To keep the branch-and-bound tree within a tractable size, both static and
dynamic implication rules are implemented. Essentially these just reduce the number
of unselected alternative arc pairs by automatically setting an arc based on implications
from previously set arcs. For each partial selection a lower bound on the extension of
the selection is obtained via the Jackson preemptive schedule, and if this is greater than
the best current upper bound on the maximum propagated delay, the node is fathomed.

The model is tested on a section of the Dutch railway and compared with three
heuristic methods. The test instances had a time horizon of 1 or 2 h and had 54 or 108
trains. Based on 300 test instances the branch-and-bound algorithm proved to be far
superior in that it could produce optimal or near optimal solutions quickly.

4.6 Set packing problem

First proposed in Velásquez et al. (2005) and further studied by Lusby (2008) is a set
packing inspired model for the train routing problem. This model is very similar in
definition to that which is proposed in Brännlund et al. (1998), and like Fuchsberger
(2007) ties conflicts to particular resources (in both space and time) within the junc-
tion. While the node packing formulations discussed in Sect. 4.1.1 are, by definition,
set packing problems, there are fundamental differences from a modelling perspective
between such models and the methodology discussed in this section. For this reason
they have been classified differently.

Unlike conflict graph approaches, the approach presented in Velásquez et al. (2005)
and Lusby (2008) does not require the a priori generation of all conflicting train paths.
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The models have a resource based constraint system identical to that of Brännlund
et al. (1998); however, a much shorter time interval is observed. Each constraint cor-
responds to the use of a particular track section during a given 15-s time interval. Such
constraints are termed time interval track section (tints) constraints and allow one to
explicitly represent the movement of trains on the junction. Each column of the model
corresponds to a feasible train path, and the non-zero elements of the column indicate
which track sections the train is claiming and during what time intervals. One can
observe that the binary decision variables for this model are identical to that of the
node packing formulation. The paths are, however, unpacked into topological points
of the junction over time and constraints are enforced on the track sections of the
routes.

One can formally state the model as follows. Let us assume we have a set of trains
N (|N | = t), a set of tints constraints S, and a set of paths �(|�| = n). We define
the two matrices T and R, each of which consists of n columns. Matrix T = (Tiω)

contains a row for each train, and Tiω = 1 if column ω ∈ � is a path for train i ∈ N .
Each column of T contains just one non-zero element. Matrix R = (Rsω) contains a
row for each tints constraint s ∈ S. Each element Rsω is usually either zero or one,
indicating whether or not path ω ∈ � claims tints resource s ∈ S; however, Lusby
(2008) also considers 1

2 elements. The cost of path ω ∈ � is denoted as cω. Finally,
the binary decision variable xω is equal to one if path ω ∈ � is used in the solution
and is zero otherwise. The full formulation is given below.

Minimize: cT x (17)

Subject to:

T x = 1, (18)

Rx ≤ 1, (19)

x ∈ {0, 1}n . (20)

The objective function (17) minimizes the total cost in routing all trains. Constraints
(18) ensure that all trains receive a path, while constraints (19) enforce the restriction
that at most one train can claim any track section during each time interval. Finally,
constraints (20) give the binary restrictions on each of the decision variables. The
nature of the constraint system is such that it inherently guarantees a conflict free
routing for the trains. Furthermore, greater flexibility is provided as the structure of
the model allows one to dynamically add train paths. This is primarily because the row
dimension of the model is independent of the number of conflicting train movements.

From a modelling perspective one can also identify similarities with the aforemen-
tioned constraint programming approaches. In particular, in calculating the exact claim
and release times (to the nearest time interval) of the track sections on any of the pos-
sible routes for a train the role of the signalling system must be explicitly modelled.
Lusby (2008) models the movement of a train over a given route using an acyclic
time–space network. Such a tree structure is similar to that proposed in Fuchsberger
(2007); however, one noticeable difference exists—the route tree structure proposed
by Fuchsberger (2007) contains all the possible routes through the junction for a train,
whereas Lusby (2008) defines a tree structure for each of train’s possible routes. This
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Table 1 Junction routing literature review

Author Level Model Solution approach

Zwaneveld et al. (1996) S Conflict graph Branch-&-cut

De Luca Cardillo and Mione (1998) T Conflict graph Backtracking Heuristic

Zwaneveld et al. (2001) T Conflict graph Branch-&-cut

Delorme et al. (2001) S Constraint program Constraint propagation

Billionnet (2003) T Conflict graph Branch-&-bound

Carey and Carville (2003) T – Greedy heuristic

Delorme (2003) S Conflict graph GRASP metaheuristic

Caimi et al. (2005) T Conflict graph Fixed point + Local search

Gandibleux et al. (2005) S Conflict graph ACO metaheuristic

Velásquez et al. (2005) T Set packing Branch-&-bound

Herrman (2006) T Conflict graph Fixed point + Local search

Caprara et al. (2007a) T Conflict graph Branch-&-price-&-cut

Carey and Crawford (2007) T – Greedy heuristic

Cornelsen and Di Stefano (2007) T Conflict graph Graph colouring algorithms

D’Ariano et al. (2007) O Alternative graph Branch-&-bound

Fuchsberger (2007) T Multicommodity flow Branch-&-bound

Rodriguez (2007) O Constraint program Constraint Propagation

Lusby (2008) S, O Generalized set packing Branch-&-price

difference comes from the fact that the traversal time of a track section is not assumed
to be constant in Lusby (2008). The route tree structure contains all the different
acceleration and deceleration strategies (i.e. paths) for the train on the particular route.
Lusby (2008) shows that the track section discretization of a junction is not trivial to
model; the same physical piece of track can be defined by more than one track section
and for this reason one cannot use a strict set packing model for the problem.

To overcome the models large row dimension Lusby (2008) presents a branch-and-
price based solution methodology that utilizes the dual representation of any basic
feasible solution. The model is first applied to the strategic level variant of the train
routing problem. Instances of up to 45 trains are considered and results suggest that
the improvement in the bound obtained from the LP relaxation over an equivalent,
unpreprocessed node packing formulation can be as high as 66.7%. The author exploits
the flexibility of the model and shows that it can be used to solve the operational level
variant of the train routing problem. Here the objective is to minimize the total delay
incurred in recovering feasibility of a timetable. A real-life instance in Germany, and
supplied by Deutsche Bahn, is the focus of the operational work. Instances of up to
66 trains are considered and results show that near optimal solutions can be found
quickly with this approach.

To conclude our discussion on junction train routing, Table 1 summarizes all the
reviewed contributions. In particular, the planning level the study focuses on is given
(i.e. strategic, tactical, or operational), the underlying model, and the solution method
are reported.
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5 Conclusions and future work

In this paper we have considered the important problem of routing rolling stock in
the railway industry and discussed the various techniques that have been proposed to
determine how the track capacity of a railway network should be allocated to trains. We
have identified and reviewed several variants of the problem, and where possible tried
to group the contributions according to certain characteristics. An exhaustive survey
on contributions in the field of junction train routing has been included to compare
and contrast the work that has been done in this area. Table 1 as well as the discussion
in Sect. 4 highlight the fact that conflict graph approaches are the most widely used
models for this problem. Contributions in this area suggest that the such approaches
typically lead to large formulations that require significant amounts of preprocessing
and are inflexible in the sense that additional train paths cannot be included easily.
Hence, making them impractical in a real-time environment. More recent studies have
shown that there is potential in adopting resource based constraint systems, and fur-
thermore, that such models provide more flexibility in a dynamic environment.

For complex junctions currently the timetabling and routing phases are performed
separately. Possible future work might look at integrating these two problems to see if
additional benefits can be had. In addition to this, a natural extension to such routing
problems would be to consider more than one junction in the routing phase. This is
particularly true in a dynamic setting where delays at one junction will undoubtedly
affect the routings at subsequent stations on the line.
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