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Abstract A chain wants to set up a single new facility in a planar market where
similar facilities of competitors, and possibly of its own chain, are already present.
Fixed demand points split their demand probabilistically over all facilities in the mar-
ket proportionally with their attraction to each facility, determined by the different
perceived qualities of the facilities and the distances to them, through a gravitational
or logit type model. Both the location and the quality (design) of the new facility
are to be found so as to maximize the profit obtained for the chain. Several types
of constraints and costs are considered. Applying an interval analysis based global
optimization method on several spatial patterns in a quasi-real-world environment,
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the behaviour of optimal solutions is investigated when changes are made in the basic
model parameters. The study yields valuable insight for modellers into the impact of
spatial pattern and various model parameters of the model on the resulting location
and design decision. Spatial patterns differ in distribution of demand, of own and/or
competing facilities, and of facility qualities. Studied model parameters include push
force effects, investment restrictions and aggregation of demand.

Keywords Continuous location · Facility design · Competition · Global
optimization · Sensitivity analysis

1 Introduction

When a retail chain considers entering or extending its presence in a market, the two
major questions are ‘how’ and ‘where’. ‘How’ indicates the facility design part of the
decision, required when several options exist in the type of outlet and/or the goods and
services that will be available there. ‘Where’ clearly states that a location has also to be
found. In order to be able to evaluate the market share resulting from the entry of the
new facility, one needs to consider the way consumers behave in their choice between
facilities offering similar goods/services. Many quite different proposals exist in the
literature, as extensively explained by Drezner-Eiselt (2001). The goal pursued by
the chain is to increase its profit, through an increase of its expected market share and
without a too high investment in the facilities’ design. This leads to optimization ques-
tions of various difficulty levels, depending on the modelling assumptions, see, e.g.
the surveys of Eiselt et al. (1993), Eiselt-Laporte (1996) and Plastria (2001). Observe
that in most of the literature only the question of location is investigated, whereas we
would like to determine design and location simultaneously, since these two features
cannot be separated. A remarkable exception is the work of Aboolian et al. (2007), who
consider a related problem, although in discrete space. In a non-competitive setting,
Dasci-Laporte (2005), Verter (2002), Verter-Dasci (2002) have studied the problem of
simultaneous optimization of the plant location and technology selection decisions in
a multi-product environment. There is another major question to be considered when
locating a new outlet, the ‘when’. However, this dynamic component is out of scope
of this research.

The general situation we investigate in this paper is static, without looking ahead in
time towards possible later newcomers (as in Drezner-Drezner 1998; Sáiz et al. 2008)
or changes in the market (as in Drezner-Drezner 2002b; Averbakh-Berman 2003). We
consider essential goods only, in other words, demand is assumed to be known and fixed
(see Berman-Krass (2002) for a discrete competitive location model with elastic (var-
iable) demand, and McGarvey-Cavalier (2005) for a planar location space). Accord-
ing to the terminology introduced by Hakimi (1983), we study a (1|Xm)-medianoid
problem: given a set of m pre-existing facilities that are located at a set of points Xm ,
we would like to determine where a competitor should locate a single new facility so
as to maximize his profit. Notice, however, that in this paper some of the pre-existing
facilities may belong to the locating chain, and that the objective is maximization of
expected profit, instead of market share.
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Within these restrictions and considering a single new facility only, we investigate
one of the most complicated situations for designing and locating a facility: Huff-
type customer behaviour in a continuous region of the plane. This model assumes,
following Reilly (1931, 1953), that customers will patronize all available facilities
offering the adequate service in a probabilistic way, with probability proportional to
their attraction to this facility, as compared to the other existing facilities. We assume
that attraction depends on the customer’s view of the quality offered by the facility
and its distance to it, thereby generalizing the proposals of Huff (1964), Nakanishi-
Cooper (1974) and Jain and Mahajan (1979). The chosen site for the new facility
determines the distances from the potential customers, while the chosen design influ-
ences their quality assessments. Taking both effects together yields the probabilities
with which the different customers will make use of the new facility. This then allows
to evaluate the expected total market share of the new facility. No pricing policy is
assumed in this paper. The influence of the prices in the patronizing behaviour of
the customers is assumed to be included in the perception of the quality of the
facilities.

The resulting model is a highly nonlinear optimization problem, involving sev-
eral modelling decisions and many corresponding parameters to be estimated, the
influence of which remains virtually unexplored. It is also intuitively clear that the
number, location and relative size or design, both of the existing chain outlets and of
its competitors, should have a significant impact on the location decision for a new
facility of the chain. Existing literature says almost nothing about this impact, and
we may say that the model’s behaviour is not really well understood. It is the aim of
this study to make a contribution to this understanding, by investigating the changes
in optimal design/location when the model environment and parameters change. To
this end one must first of all be able to solve the problem optimally in a reliable
way.

But even for a fixed design, the objective function has a complicated multimodal
shape as can be seen for example in the graph shown by Drezner (1994). The situation
is complicated further when considering, as we do here, the presence of locational
constraints, unavoidable in any realistic description of a real-world problem. For such
functions and/or constraints, traditional analytic solution techniques or more model-
specific iterative methods (see Drezner 1994) are unable to find guaranteed optimal
solutions: what is obtained is a proposal of a site apparently close to a local optimal
solution, without clear indication of the actual degree of (non)optimality, both in terms
of objective value as in terms of spatial position. More precise information can then
only be gathered through a more or less blind repetition of the method from varying
starting solutions. It is not uncommon that very different solutions are then produced
and an actual global optimum is not necessarily found. Even if it is found, one does
not know so.

Additionally, the model typically contains many parameters, which are quite dif-
ficult to estimate precisely. On the one hand, it is therefore important to know how
stable the solution is with respect to these parameters, in order to be able to appreciate
whether the uncertainty in certain parameters may be ignored or not. This calls for
a sensitivity analysis of the optimal solution in terms of changes in the parameters.
But how can one correctly appreciate the results of such an analysis without a clear
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distinction between jumps in the solution due to parameter modification rather than
due to algorithm inaccuracy? Traditional local optimization approaches therefore are
not acceptable for an adequate sensitivity analysis. One way of tackling this difficulty
was described by Fernández-Pelegrín (2000): they incorporate the uncertainty on the
parameter values as interval-valued data, specifying both an upper and a lower bound
on each uncertain parameter, and apply interval analysis-based optimization tools,
which construct a close approximation of the set of all possible optimal solutions for
any setting of each parameter within its bounds.

On the other hand, recognizing that the model captures only approximately the
real-world situation, Plastria (1992) argues that in practice a good idea of the full set
of almost-optimal solutions is more useful than knowledge of an optimal solution,
and proceeds to obtain such information by extending the global optimization method
BSSS devised by Hansen et al. (1985).

Both methods, as well as a more recent variant based on triangle subdivisions
(Drezner-Drezner 2004; Drezner-Suzuki 2004), were described for a pure location
problem only. In a recent paper (Fernández et al. 2003), a solution strategy was devel-
oped for the full location-design problem using ‘rigorous’ global optimization based
on interval analysis (see, e.g. Hansen 1992; Kearfott 1996; Ratschek-Rokne 1988),
and including several novel acceleration techniques. This approach yields a complete
view of the set of close-to-optimal solutions to any desired degree of accuracy, and
therefore lends itself better to the proposed sensitivity analysis. To the best of our
knowledge, no other available local or global optimization method allows to obtain
the same amount of reliable information. However, a number of new interpretation
difficulties arise, as will be explained in the sequel.

This tool has allowed us to investigate the behaviour of the optimal solution of
Huff-type competitive location and design problem under various circumstances. The
experimental design was made in such a way as to maximize the information gath-
ered while keeping the computational burden within reasonable limits. We have done
all experiments on data sets based on a single set of real-world demand data from
the region of Murcia in southeastern Spain and recorded the variation of the optimal
objective value and of the optimal solution set, both in design and in location.

Broadly speaking, we have studied the effects of

– the market structure, comparing chain superiority with strong competition in
Sect. 4,

– the aggregation of demand in Sect. 5,
– homogeneous versus widely different facility qualities in Sect. 7,
– the location-cost relative to the quality cost in Sect. 8,
– and a restricted budget for initial investments in Sect. 9.

A precise description of these experiments and their results is given in separate
sections, after the model has been fully formalized in the next section. The paper con-
cludes with an overview of the experience gathered through these results and a number
of recommendations for analysts and practitioners. Note: in the extended version of
this paper Tóth et al. (2008) the effect of some more technical modelling parameters
are also investigated.
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2 The Huff-type competition model

2.1 The formal model

A chain wants to set up a single new facility in a given area of the plane S ⊂ R
2. There

already exist m facilities in the vicinity offering the same good or product. The first k
of these belong to the chain, and the next m − k facilities belong to competing chains.
Since it does not matter in this model whether the competing facilities are of the same
competing chain or of different competing chains, we will assume the former to be the
case. Note that k = 0 means that the entering chain, which we will call ‘the chain’,
is new to the market, whereas k = m indicates simple expansion of the chain without
competition. Existing facility j = 1, . . . , m is located at point f j and has a known
design, expressed by a quality α j > 0. The unknown location of the new facility will
be denoted by x , and its quality by α.

Demand is concentrated at n demand points with known locations pi and buying
power wi (i = 1, . . . , n).

The distance between the demand point i and the new (resp. existing) facility ( j) is
denoted by dix (resp. di j ), and are considered to be Euclidean throughout. Each demand
point i has its own subjective perception of distance, obtained by application of some
positive non-decreasing function gi to actual distance. The inverse function 1/gi is
called the distance decay function. Several typical perceived distance functions gi are
found in literature, such as gi (dix ) = eλi di x (see Hodgson 1981) or gi (dix ) = (dix )

λi

(see Drezner 1994), with λi > 0 a given parameter.
Attraction is modelled multiplicatively as quality divided by perceived distance, i.e.

the attraction that demand point pi feels for facility f j is given by α j/gi (di j ), and for
the new facility by α/gi (dix ). This generalizes the ‘law of retail gravitation’ of Reilly
(1931, 1953), who considered the perceived distance to be the squared distance. In this
paper, we made the same assumption. Quality was first estimated as store surface by
Huff (1964), and later several other store characteristics were incorporated by Jain and
Mahajan (1979) and Nakanishi-Cooper (1974) [for details see Drezner-Eiselt (2001)].

In the spirit of Huff (1964), we consider that the patronizing behaviour of customers
is probabilistic, that is, demand points split their buying power among the facilities
proportionally to the attraction they feel for them. By these assumptions the total
market share captured by the chain is given by

M(x, α) ≡
n∑

i=1

wi

α
gi (di x )

+ ∑k
j=1

α j
gi (di j )

α
gi (di x )

+ ∑m
j=1

α j
gi (di j )

.

The chain’s market share gives rise to expected sales through a strictly increasing
function F(·). Operating costs for the new facility are given by a function G(x, α) of
both its location x and its quality α.

The profit of the chain is obtained as sales minus costs. Since operating costs of the
existing facilities of the own chain are assumed to be constant, we take into account
costs of the new facility only.
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The problem to be solved may therefore be written as follows

⎧
⎪⎪⎨

⎪⎪⎩

max �(x, α) ≡ F(M(x, α)) − G(x, α)

s.t. dix ≥ dmin
i ∀i

α ∈ [αmin, αmax]
x ∈ S ⊂ R

2

(1)

where the set S denotes the feasible space where the new facility is to be located. The
parameters dmin

i > 0 and αmin > 0 are given thresholds, guaranteeing on the one hand
that the new facility is not located on top of demand point i and on the other hand that
it has a minimum level of quality. The parameter αmax is the maximum quality that a
facility may have in practice. Note that in case some legal protection rules exist to guar-
antee a minimal market to any installed facility, one could also incorporate a minimum
allowed distance to competitors, or another kind of constraint on the location.

In this study F was chosen to be linear, F(M(x, α)) = c · M(x, α), meaning each
unit of goods sold yields a fixed income c. The cost-function G is assumed to have
the separable form G(x, α) = G1(x) + G2(α), with G1(x) = ∑n

i=1
wi

(di x )ϕi0 +ϕi1
and

G2(α) = e
α
β0

+β1 − eβ1 . Notice how G1(x) increases as x approaches any demand
point, expressing that in centres of high population concentrations the operational cost
of the facility will be higher due to the value of land and premises, thus raising the cost
of buying or renting the site. Also the minimal distance to demand point constraints
dix ≥ dmin

i > 0 ensure the existence and differentiability of G1(x) at all feasible
x . On the other hand, the cost of quality G2(α) is an increasing convex function
with G2(0) = 0: the higher the quality of the facility, the higher are the costs, at an
increasing rate.

As discussed in Fernández et al. (2003) many other income and cost functions may
be considered and handled by the general algorithm proposed there.

2.2 Representation of the results

Results of an optimization problem may be understood in several ways. On the one
hand there is the optimal value found, and on the other hand one may look at the
optimal solution. In our location-design problem, we are clearly more interested in
the latter, since it is the choice of the site that matters most, although the actual profit
figure is also important for judging the profitability of the project. Therefore, we would
like to represent both types of results, so as to be able to judge the sensitivity of these
results when the parameter settings change.

Theoretically, this seems relatively simple, particularly for the optimal values: sin-
gle values, which are easily compared. But this does not take into account that the
outcome of a traditional local optimization algorithm usually only gives an approxi-
mation for the optimal value, very often without any information about the precision
of the approximation or, even worse, without guarantee of having found (an approxi-
mation of) a globally optimal value. However, with the global optimization method we
have used, we do have quite precise information about the global optimal value: dur-
ing the optimization stage both an upper and lower bound on the global optimal value
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are available, and gradually improved until their difference is below a prespecified
precision ε. The resulting upper bound is therefore guaranteed to be an overestimation
within ε-accuracy of the actual global optimal value. In our computations, we used
ε = 0.05. It follows that when we compare the ‘optimal’ objective values obtained for
two different parameter settings, the conclusions can be trusted, as long as they differ
by significantly more than 0.05 units.

The situation is more complicated in variable space, when we look at the optimal
sites and corresponding qualities found. Traditional methods simply give an approxi-
mate solution, which might be close to a local optimal solution (but not necessarily a
globally optimal one), without information about how far it might be from such a solu-
tion (except possibly some very fuzzy indication one might derive from a Lipschitz
constant, which is often awfully overestimated), nor about the possible existence of
other (near)-optimal solutions. The second stage of our global optimization algorithm
is aimed at producing an outer approximation (up to a precision η) of the set Rδ of
δ-optimal solutions, i.e. with objective value at least a fraction 1 − δ of the optimal
value. To be more precise, it yields a list of solution boxes, and for each box an upper
and lower bound on the objective values at any solution within the box. The final
result is a list of all boxes lying fully within this δ-optimal region and those on its
‘boundary’, i.e. probably containing solutions that are not δ-optimal, but not too far,
as indicated by the second precision parameter η. These solutions are all guaranteed
to lie within Rδ+η(1−δ). This is illustrated graphically in Fig. 1 for a two-dimensional
problem. The first (inner) set I Rδ contains all boxes for which the lower bound is at
least a fraction 1 − δ of the (approximate) global optimal value. The second set (sur-
rounding) O Rδ\I Rδ consists of boxes with upper bound at least reaching this fraction
1 − δ and the lower bound below it, but not by more than η% [for details, see Plastria
(1992)]. This implies that in case the objective is quite flat around a global optimum,
these boxes may cover a non-negligible area. The advantage of this approach is that in
case alternative near-global optimal solutions exist anywhere else in the area, this will
immediately be apparent from the results, since the lists of boxes then define several
disconnected regions. In our computational tests we used δ = 0.01 and 0.002.

A more precise reporting of the near-optimal region calls for a graphical representa-
tion of the resulting lists of boxes in variable space, which leads to new difficulties, due

Fig. 1 Inner and outer approximation of the near optimal region
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to their three-dimensional shape. We resolve this by reporting the information in three
two-dimensional maps, each showing the interactions between some pair of variables.
This is obtained by adding two windowpanes on the right and bottom of the basic
spatial map, allowing us to view all three two-dimensional projections of the three-
dimensional solution set; see, e.g. Fig. 4. The map itself shows the two-dimensional
spatial part, without the quality (x1 increases from left (0) to right (10) and x2 increases
from top (0) to bottom (10)). The right-hand pane shows the quality and vertical space
part (quality increases from left (0.5) to right (5)). The bottom pane shows the quality
and horizontal space part (quality increase from top (0.5) to bottom (5)).

Note that often the spatial solution set is quite small or falls almost exactly on
the boundary of some forbidden region, and is therefore not well visible. One may
however know where it is, by combining the regions shown in the two side panes.

3 Base data

The real-world data consists of an area around the city of Murcia in southeastern Spain.
The city of Murcia is the capital of the autonomous region of Murcia (A.R.M.), a prov-
ince with 11314 km2 and over 1 million inhabitants. More than half of the inhabitants
of A.R.M. live in the city of Murcia or in the villages close to it.

A working radius of 25 km around the main city was considered to be suitable for
use in a Huff-type model. This choice was motivated by two concerns. On the one
hand, customers are assumed to patronize all existing facilities, so none of the facil-
ities should be too far away from a population centre (e.g. within a 15 min drive),
because otherwise none of its inhabitants would go there. On the other hand, in the
region at hand, increasing the radius of the circle to 30 km increases the number of
covered inhabitants only slightly, whereas reducing the radius to 20 km decreases it
considerably.

Within the circle of radius 25 km, centred at Murcia, live 557,746 inhabitants of
A.R.M. and another 74,812 inhabitants from the neighboring province of Alicante,
on the east of A.R.M. (see Fig. 2). These 632,558 inhabitants form our primary set of
customers. They are distributed over 71 population centres, with population varying
between 1,138 and 178,013 inhabitants. In this study we have considered each popu-
lation centre as a demand point, with buying power proportional to its total population
(one unit of buying power per 17.800 inhabitants). Their position and population can
be seen in Fig. 3a: each demand point is shown as a black dot, and also a grey circle,
the radius of which is proportional to the buying power. In Fig. 3b the aggregated
case is depicted, as discussed in Sect. 5. Note that here the grey circles also show the
forbidden regions, but contrary to (a), do not represent the demand proportionally.

Our basic data deals with the location of supermarkets. Currently there are five
supermarkets present in the area: two from a first chain, the ‘Small Chain’, and three
from another chain, the ‘Large Chain’. Figure 3 shows the location of each supermar-
ket as viewed from some chain’s point of view: firms belonging to the own chain are
marked by a ×, and firms from the other chain are shown by a � marker on the map.

The feasible set S was taken exactly as depicted in Fig. 3, i.e. the smallest rectangle
containing all demand points. This is approximately a square centred at Murcia and
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Fig. 2 Population centres in the neighbourhood of the city of Murcia

of sides close to 45 km. It is reduced further by some forbidden regions around each
population centre as defined by dmin

i (see below).
The coordinates of the population centres and the supermarkets were obtained with

the geographical information system called VisualMap (see Visual G.I.S. Engineering
2003), and were rescaled from coordinates [200, 245]× [243, 285] to an approximate
standard square [0, 10]×[0, 9.3]. Thus, the units correspond approximately to 4.5 km.
Note that, as usual in computer graphics, the origin is at the top left, and the vertical
axis runs downwards. The population data were obtained from the Regional Centre
of Statistics of Murcia (see Anuario Murcia 2003) and correspond to the year 2002,
rescaled to ]0, 10]. The minimum distance dmin

i at which the new facility must be from
the population centre i was chosen to be wi

ξ
, where ξ is set to 30. This means that

for a demand point with 1,500 inhabitants (wi = 0.067) dmin
i = 0.00223 (∼10 m),

and for the largest demand point (Murcia, wi = 10) dmin
i = 0.3̇ (∼1.5 km). All final

data, together with all the used parameter values discussed below, may be found in the
Appendix of the extended version of this paper Tóth et al. (2008).
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Fig. 3 Existing facilities, demand points (black) and forbidden regions (grey), a full problem for the Small
Chain. b aggregated problem for the Large Chain

Approximate values for the quality parameters α j for the five existing supermar-
kets were obtained through a small survey among ten persons who had visited all
five supermarkets. Each respondent was asked to rank the supermarkets in increas-
ing order of their perceived quality and to indicate the difference in quality between
any two consecutive supermarkets in their ranking by a score between 1 (small) and
4 (big). That information yielded individual marks for all supermarkets, by starting
from a lowest mark of 1 and adding each difference score to obtain the mark of the
next supermarket in their ranking. Finally, these marks were rescaled to the interval
[3, 4], because, according to all the respondents, in a proposed scale from 0.5 to 5
all considered supermarkets have a quality above the mean (2.75). But they all still
have a large margin for improvement. The qualities α j we finally considered are the
average rescaled marks over the ten respondents. The optimization of quality was done
in the interval [αmin, αmax] = [0.5, 5]. In that scale, 1 is considered to be the quality
of small-size low-quality supermarkets, and 5 the quality of very big-size big-quality
supermarkets. The range 3 to 4 for the existing facilities shows that all these super-
markets are of similar type (size and quality above average) with small differences.

Due to the lack of real data from the chains (they consider those data sensitive
for them and are not willing to make them public), the other parameters have been
validated in an ad hoc way to obtain ‘reasonable’ results. In particular, we used the
following initial settings: the income per unit sold c = 12, in the location cost func-
tion G1 we chose the parameter ϕi0 = 2 for all i , while value of ϕi1 decreases as the
population increases. Finally, the parameters of the cost of quality function G2 were
initially set to β0 = 7 and β1 = 3.75.

4 Impact of market structure

The basic data described above have been used to define three quite different compet-
itive market structures:
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Newcomer: a new chain enters the market with one new facility, which has to compete
with all five existing facilities,

Small Chain: the smaller chain wants to strengthen its two existing facilities by add-
ing a new one to compete on a more equal basis against the three facilities of the
Large Chain,

Large Chain: the larger chain wants to extend its dominance in the market by moving
from the current three against two to a four against two facility situation.

The results obtained in these three problem instances are described in Table 1 and
depicted in Figs. 4 and 5 at the left.

Table 1 Results for the basic problems

Newcomer Small Chain Large Chain

Optimum (best found) 44.93 210.39 242.96

δ-opt interval [44.39, 45.02] [207.87, 210.81] [240.05, 243.44]

Market share 0 → 8.47 15.77 → 18.70 19.74 → 21.14

Best point found (4.82, 6.11, 5.00) (8.40, 3.18, 1.43) (3.29, 6.48, 0.52)

Hull of results
x1 [4.78, 4.88] [8.32, 8.57] [3.07, 3.57]

x2 [5.99, 6.19] [2.98, 3.22] [6.19, 6.70]

α [4.56, 5.00] [0.69, 2.47] [0.50, 1.70]

Second region
x1 [3.25, 3.31] [4.77, 5.45]

x2 [4.26, 4.36] [5.61,6.26]

α [1.34, 2.08] [2.01, 4.23]

Volume of the δ-opt 1.7e−04 2.1e−02 1.8e−01

Time in seconds 137.07 165.55 340.32

Fig. 4 Near optimal regions for the Newcomer with unaggregated (left) and aggregated (right) demand
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Fig. 5 Near optimal regions for the Large Chain with unaggregated (left) and aggregated (right) demand

All the computational results in this and later sections have been obtained under
Linux on a Pentium IV with 2.66 GHz CPU and 2GB memory. The algorithm has
been implemented in C++ using the interval arithmetic in the PROFIL/BIAS library
(Knüppel 1993), and the automatic differentiation of the C++ Toolbox library
(Hammer et al. 1995).

In the table, we first see the maximal value found for the profit of the locating chain,
which is guaranteed to be within ε = 0.05 units of the global optimal value. Next, we
indicate the interval of objective values reached within the δ = 1%-optimal region,
up to a precision of η = 0.2%.

Bear in mind that the objective values concern the total income from the chain
minus the costs of the new facility. Due to the quite different sizes of the locating
chain, this value is not directly comparable between the three cases.

A much better point of comparison is obtained when looking at the change in market
shares after entry of the new facility, which is indicated on the third line of the table.
The original market shares were estimated by applying the model parameter settings
to the location of the existing facilities only, using our estimation of their quality. The
Newcomer’s single facility would be able to obtain a market share of 8.5 out of a total
of approximately 35.5, i.e. 24%, a quite amazing success. The Small Chain would
see its market share expand from its (estimated) current value of 44–53%, thus doing
slightly better than its competitor with the same number of facilities. This shows,
incidentally, that the Large Chain was not optimally located. Expansion of the Large
Chain increases its current market share of 56% to only 59%, which is rather low
considering that this results from twice as many facilities as the competition.

This may be explained when looking at the corresponding best solutions found on
the fourth row of the table, indicated as the triplet (horizontal position x1, vertical
position x2, and quality α), or in the graphical representation in Figs. 4 and 5 at the
left.

The Newcomer’s best strategy turns out to be to go for the largest demand concen-
tration, although the competition there is quite fierce. That is why its quality should
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be taken as high as possible: the best quality is at the maximum value of 5. The facil-
ity should be sited next to the central and main city of Murcia, at the southwestern
boundary of its forbidden region, which is as far as possible from both competitors
already present around the city. Since the competitors do not have quality better than
4, it obtains almost one-third of Murcia’s market and a quite large part of the demand
points on the southwest. This comes with an important cost of around 57 though,
as can be evaluated by the difference between sales (12 × 8.5 = 102) and actual
profit (45).

The Small Chain, however, is already well and exclusively present around Mur-
cia, and can therefore better aim at the next largest and cheaper city, Orihuela at the
northeast of Murcia, in direct competition with the existing facility of the Large Chain
next to it. At a low quality around 1.4, it quite easily grabs a good part of its com-
petitor’s market. This explains the relatively better gain/cost ratio as compared to the
Newcomer’s strategy.

For the Large Chain, the most interesting place is at Alcantarilla, only slightly to
the west of Murcia. This region is currently badly served, and here minimum quality
is sufficient to take over the southeastern market.

The next rows in the table give much more precise information about the near-
optimal location and qualities: for each of the three basic variables of the problem
it indicates the ‘hull’, i.e. the range within which it varies within the near-optimal
region. One must, however, be quite careful with this hull: the near-optimal region
may be disconnected, which happens if there exist more than one local optimum,
yielding almost the same global optimal value. In such a case, the ‘naive’ hull would
enclose all of these connected components and would be uninformative, since it
would yield wide overestimations of the range. But the disconnectedness would not
be apparent. Therefore, the hull is then given for each connected component sepa-
rately.

One might argue that this should not happen very easily. Though many local optima
may exist, there usually is a clear winner and only rarely more than one near-global
optimum. This is perhaps true for pure location problems and is then restricted to some
exceptional circumstances such as almost symmetrical situations. Consideration of the
quality issue as part of the decision, as is done here, changes the setting. This indepen-
dent choice variable offers the additional freedom of allowing to more easily obtain
similar close to optimal profits at different sites. And this is what is observed here.
This phenomenon happens in two of the three instances. Both the Small Chain and
the Large Chain have two almost equivalent possibilities, which appear as the ‘second
region’ in the table, and are also clearly visible in the left part of Figs. 5 and 6. No
more than two connected components were observed in our experiments, but with
other data such may certainly appear.

The penultimate row in each table gives the total volume of the three-dimensional
boxes defining the near-optimal region. The ratio between the third root of this value
and the size of the near optimal objective interval gives a more precise impression of
the flatness of the objective function around the optimum value, although boundary
effects on quality somewhat cloud the issue. Still, it is quite clear that the Large Chain
has the flattest objective, the Small Chain case comes next, and in the Newcomer’s
case the objective seems quite steep.
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Fig. 6 Near optimal regions for the Small Chain with unaggregated (left) and aggregated (right) demand

Finally, in the last row we give the required computational time to find the near-
optimal regions, which varied from a few seconds to several minutes.

As already observed, and clearly visible in the figures, the two last cases are quite
interesting since they show that there are two near-optimal regions, which are quite far
apart. The Small Chain has two almost equivalent options, first to locate at the north-
east of Murcia, more precisely at Orihuela, or to locate at the northwest, at Molina.
In both cases, it will be in direct competition with the facilities of the Large Chain in
these same areas.

Similarly, the Large Chain also has two main options, which are almost equivalent,
but of quite different type: either locating an additional facility around the main city
Murcia and increasing its presence against the two-facility strong competition there, or
grabbing the badly served market around the region’s fourth city Alcantarilla, west of
Murcia. The second and third largest markets (Orihuela and Molina) are not of interest
to this chain since it already well covers them with its existing facilities. Observe also
that several positions around Murcia’s border are available, needing slightly different
but rather upper average quality, whereas Alcantarilla is already conquered at almost
minimum quality.

These last two examples demonstrate the power of global optimization: all (nearly)
global optima are found. This is extremely useful when alternative location criteria are
to be considered. A usual local optimization method might have found any of these
global optima or perhaps a worse local optimum, but will probably not have found out
that there are also almost equivalent solutions totally elsewhere.

5 The impact of aggregation

We have also constructed a reduced data set by aggregation of the demand. The aim is
to study to what extent the aggregation may influence the solution to the problem. This
is a very relevant question in practice, where the data may be available at different
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levels of aggregation at very different costs. One should then have some idea if it is
worth the effort/money to obtain the more detailed unaggregated data, and if this can
affect the results considerably. Such errors incurred by aggregation have been studied
intensively for several types of location models, see, e.g. Francis et al. (2002). But for
competitive Huff-like location models, no theoretical or empirical information seems
to be available as yet, even in the most recent survey Francis et al. (2008). The question
has never been considered before with quality as part of the decision.

5.1 Aggregation design

An aggregated data set was obtained as follows. Several population centres do not have
a city hall, so for public administrative tasks they depend on another town’s city hall.
The 21 towns with city hall form our reduced set of demand points, with population
obtained by aggregating all population centres at the town on which they administra-
tively depend. The resulting reduced demand distribution is shown in Fig. 3b. This
way of aggregating is quite typical. Our two sources of data, Anuario Murcia (2003)
and Visual G.I.S. Engineering (2003) give the data grouped by city hall, as in our
aggregated case, while for the larger cities they are subdivided by population centres,
as in our non-aggregated case.

In the aggregated problems, exactly the same forbidden regions were kept as in
the corresponding unaggregated instances, including the forbidden regions around the
population centres that are not demand points anymore after aggregation. Therefore,
the results are directly comparable with the unaggregated instances, allowing to see
the effect of the concentration of the demand by the aggregation.

5.2 Results

Three aggregated versions were considered, considering the same market structures
as in the previous section, but now with the aggregated demand. The results obtained
for these instances are described in Table 2 and are depicted in Figs. 4, 5 and 6 at the
right.

For the Newcomer, the figure seems to show almost exactly the same results after
aggregation: the best site is at Murcia at the western boundary of the forbidden region
and using top quality almost exclusively. A closer look, in particular at the right pane,
shows that the vertical position is less precisely determined than in the unaggregated
case. The optimal profit, as found in the table, has increased by 18%, though. Both
phenomena are explained by the demand at Murcia, which has now more than doubled,
whereas it was spread around this city without the aggregation. On the one hand, this
yields a less precise positioning of the optimum and a higher income evaluation. The
latter is also clearly shown by the increase in market share. One may also observe that
the objective has become steeper around the optimum.

For both the Small Chain and the Large Chain one observes that only one of the two
alternative near-optimal solution regions have remained when the demand is aggre-
gated. In the first instance, it is the former global optimum at Orihuela that remains
as the only good choice. The former second option around Molina was very small,

123



616 B. Tóth et al.

Table 2 Results for the aggregated problems

Aggr. Newcomer Aggr. Small Chain Aggr. Large Chain

Optimum (best found) 53.11 210.19 246.90

δ-opt interval [53.00, 53.75] [207.67, 210.61] [243.95, 247.40]

Market share 0 → 9.00 15.52 → 18.62 19.70 → 23.73

Best point found (4.78, 5.92, 5.00) (8.53, 3.05, 1.36) (4.79, 6.02, 3.54)

Hull of results
x1 [4.78, 4.90] [8.33, 8.56] [4.76, 5.45]

x2 [5.70, 6.12] [3.00, 3.21] [5.61, 6.30]

α [4.75, 5.00] [0.69, 2.33] [2.15, 4.93]

Volume of the δ-opt 8.4e−05 1.6e−02 5.3e−02

Time in seconds 48 57 190

and now differs too much in value from the global optimum to remain visible at the
δ = 1% level. This indicates that the differences between the local optima have been
sharpened in value by the aggregation. The slightly smaller volume of the near-opti-
mal region, together with a virtually unchanged objective value also indicates that the
objective has become somewhat sharper at the optimum.

For the Large Chain, however, it is the second option in the central Murcia that
has taken the clear lead. This may be explained by the fact that Murcia has grown the
most, and by far, through the aggregation, and thus has gained more in competitive
interest than the smaller market around Alcantarilla. The estimation of the gain in
market share has indeed been strongly influenced by the aggregation in this case.

This last result is quite interesting, because it shows that the decision may be strongly
influenced by the fact that aggregated data were used.

As a final observation, note that the computational times have been more or less
halved. This may be seen as basically due to the reduction of 71–21 demand points,
which has proportionally reduced each objective function evaluation.

6 Comparing lists of boxes

The remainder of the paper is devoted to several types of sensitivity analysis, every
time carried out for each of the three unaggregated instances and their three aggregated
counterparts, yielding six base instances, varying in installed base of the locating firm
and in the dispersion of demand.

In each analysis a particular model parameter is modified sequentially, and the
intention is to measure the corresponding change in optimal value and in optimal
solution. However, as explained in Sect. 2.2, these results are not simple values or
points, but lists of boxes. In order to compare the sets of optimal solutions for two or
more instances of our model, we must be able to judge the ‘likeness’ of the outcomes
we obtain in each case. Therefore, we need a dissimilarity measure between lists of
(pairwise non-overlapping) boxes.
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According to the standard notation for interval analysis, lower case is reserved for
scalar quantities or vectors, while intervals are indicated by boldface, where vector
intervals are boxes (set theoretic products of intervals). A list of boxes L in R

d is then
a finite set of non-overlapping d-dimensional boxes. Clearly any box x = (xi )i=1,...,d

has a volume vol(x), and the volume of a list is the sum of volumes of its boxes:
vol(L) = ∑

x∈L vol(x).
Let us introduce first the following asymmetric connector distance from a box x to

the box y:


(x, y) = max
x∈x

min
y∈y

‖x − y‖

where ‖.‖ is the standard Euclidean norm. We then define the following dissimilarity
measure for two lists L and L′:

diss(L,L′) =
∑

x∈L

vol(x)

vol(L)
min
y∈L′ 
(x, y) +

∑

y∈L′

vol(y)

vol(L′)
min
x∈L


(y, x).

Applied to two single boxes (singleton lists of boxes), this formula yields the symme-
trization of 
 as follows

diss(x, y) = 
(x, y) + 
(y, x).

For instance, in dimension 1, i.e. for two (disjoint) intervals on a line, this corresponds
to the sum of the lengths of the two arrows in Fig. 7. It is similar to the traditional
Hausdorff distance between the intervals, but uses a sum instead of a maximum. This
means that the one-dimensional dissimilarity roughly doubles the distances between
the corresponding bounds.

Notice that diss(L,L′) is not a metric, but still has some nice properties. For
instance, diss(L,L′) = 0 iff ∪L = ∪L′. A full study falls outside the scope of
this paper, but it should be clear that lists describing close shapes will be much less
dissimilar than lists of very different shape or lying far apart. Therefore, this dissimi-
larity is quite appropriate to our purpose to be able to compare in a synthetic way the
outcome from optimizing two (apparently slightly different) objectives, as obtained
by changing some parameter setting.

This dissimilarity measure allows to compare the results in variable space. How-
ever, for objective values one should not only be able to see the amount of change, but
also the direction of the change, either improvement or worsening. Since the results
come as intervals of values known to bracket the corresponding optimal value, we
have to compare two such intervals. However, since the bracket has an almost fixed

Fig. 7 The dissimilarity measure for two intervals
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relative size, both extremes will either have increased, indicated by a +, or worsened,
indicated by −. In the few cases when the extremes change with different signs, which
only happen when the change is very small, no sign notations are used.

7 Impact of facility quality range

The first sensitivity analysis concerns the influence of the quality of each existing
facility, as given by the parameters α j . These were varied in several ways as described
by the following scenarios:

Original In the base data, as given in the Appendix of the extended version of this
paper Tóth et al. (2008), all existing qualities lie in the range [3, 4]. Since the new
facility’s quality is allowed to vary between 0.5 and 5, this means that it may be
chosen as having a quality quite different from the qualities already present in the
market.

Rescaled In this scenario, we rescaled all the α j to the interval [1, 4.5], to make the
existing facilities’ range of qualities closer to the new facility’s possibilities.

S>L Here the Small Chain has much higher quality facilities than the Large Chain.
This is obtained by setting α j = 4 for all the existing facilities of the Small Chain
and α j = 2 for all the existing facilities of the Large Chain.

S<L This is the opposite situation, where the largest chain offers the highest quality:
Large Chain’s existing facilities are now of quality 4 and those of the Small Chain
of quality 2.

Closer better Now all existing facilities close to Murcia (two of the Large Chain and
one of the Small Chain) have high quality 4, and those far from Murcia have quality
of only 2.

Closer worse This final scenario inverses the previous scheme and gives the lowest
quality 2 to all existing facilities in the surroundings of the city of Murcia, but high
quality 4 to all those far from the main city.

Table 3 gives an overview of the comparative results for each of the six consid-
ered cases: Newcomer, Small Chain, Large Chain, each both in unaggregated and in
aggregated form. This table is organised as follows.

In all cases, unaggregated and aggregated, the top row recalls the obtained range of
objective values of the original problem reached within the near-optimal region given
by the final list of solution boxes. All other rows show dissimilarities between the
newly found list of boxes enclosing the optimal solution set with another list of boxes,
and this in four ways: ‘3D’ considers both quality and location variables together,
while ‘Loc’ (resp. ‘Qual’) considers only the locational aspect (resp. only the quality
aspect) by using the projections of all boxes on the two-dimensional location space
(resp. one-dimensional quality space), and finally ‘Obj’ shows the dissimilarity in
objective value ranges, using the sign convention explained in Sect. 6. In the rows
‘rescaled’, ‘S>L’, ‘S<L’, ‘closer better’ and ‘closer worse’ the comparison is made
with the solution of the original problem.

We first observe that in most cases nothing much happens with respect to location.
None of the quite important variations in the quality of the existing facilities have
significant influence on the optimal spatial solution. In particular, the Small Chain
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Fig. 8 Near optimal regions for the Small Chain with aggregated demand: left ‘rescaled’, right ‘S<L’

with unaggregated demand systematically keeps its two almost equivalent options, a
quite remarkable fact. The best solution for the Newcomer is also remarkably stable
throughout.

In the Small Chain case with aggregated demand, however, we see appreciable dis-
similarities appear with the corresponding base case. Two of such results are shown
in Fig. 8. The first remark is that the original optimal solution around Orihuela shown
at the right of Fig. 6 always still exists.

‘rescaled’ When rescaling the qualities one observes the reappearance of the second
near optimal region around Molina, which had been lost by the aggregation of
demand (compare with Fig. 6). This site is in direct competition with the existing
Large Chain’s facility in the same area, which by rescaling of its original quality
of 3.1 has now a quality around 1. In other words, the range of interesting qualities
for the entering facility is still spread around its direct competitor’s quality.

‘S<L’ When the competing Large Chain has better quality facilities, we see a totally
different second possibility appearing for the Small Chain: locate a third facility
around Murcia, now of competitively high quality, to grab a larger share of this most
important demand point from the competitor. Apparently the existing two facilities
are of too low comparative quality to do this job correctly.

For the Large Chain under unaggregated demand, some smaller changes arise in
the optimal solution, in particular in the scenarios ‘S>L’, ‘closer better’ and ‘closer
worse’ (see Fig. 9).

‘S>L’ When the competing (small) chain has a better quality facilities the Large
Chain’s best option is to go into direct competition for the largest demand in Mur-
cia, helping out its comparatively weak facility there and doing so at high quality.
The alternative option appearing in the base case is not present anymore.

‘closer better’ When there are already three high quality facilities near Murcia, part of
its demand can be gained only with the highest quality. Since that is too expensive,
in this situation it is much better to go for Alcantarilla.
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Fig. 9 Near optimal regions for the Large Chain with unaggregated demand: left ‘S>L’, right ‘closer
better’

‘closer worse’ Finally, when the own facility and both competing ones close to Mur-
cia have a lower quality, it would be in the interests of the Large Chain to add a
second facility around Murcia with a rather high quality, because this sufficiently
grabs its opponent’s market share.

We conclude that for a very small player the quality of existing facilities does not
strongly influence its decision: it systematically goes towards the large demand areas
where it is not yet present, taking over part of the competitor’s market. A medium size
player should be somewhat more careful in its appreciation of the facility qualities
present in the market. Particularly when demand is quite concentrated it may otherwise
miss some chances. But for chains having many and dispersed facilities (as the Large
Chain has) almost any new facility may lead to a lot of cannibalization (loss of market
share of the existing facilities of the chain), and therefore the qualities of own and
competing facilities should be as accurate as possible if a correct decision is to be
made. This seems to be particularly the case in a dispersed market.

With respect to optimal objective values, however, one observes quite strong vari-
ations in general, even when the optimal solution itself did not change much. Keep in
mind that what is given in the table is the change in objective value, as compared to the
original near-optimal interval, and expressed by the dissimilarity. In most cases, we
see clear increases or decreases by relatively large amounts (although our dissimilarity
roughly doubles the distances). Profit may increase by almost 50% compared to the
original case (see the Newcomer in scenario ‘closer worst’) or reduced by over 25%
(see the Small Chain in case ‘S<L’). This implies that the evaluation of the expected
profit is extremely sensitive to the existing facilities’ quality assessment. Since any
small chain has to attain a given minimum level of increase in profit in order to survive,
qualities of the existing facilities will have to be estimated very precisely, if one wants
to have confidence in the estimation of future profit.

From the cases ‘S>L’ and ‘S<L’, we can see that the chain that increases the qual-
ity of its facilities also has an increase in profit, and vice versa, when the competitor
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increases the quality, the profit drops. These increases are almost perfectly proportional
to the number of existing facilities with higher quality, but the drops are not: the Small
Chain loses relatively much more profit, when the Large Chain increases its three
facilities’ quality, than the Large Chain in the opposite situation.

One may also observe that when existing facilities close to the global optimum
increase (decrease) their quality, the optimal profit of the new facility decreases
(increases) accordingly.

To understand the case of rescaled qualities, we should recall the original qualities
of the existing facilities. In the case of the Small Chain, the qualities are 3.25 and 4,
whereas for the Large Chain they are 3.1, 3.5 and 3.15. When we rescaled [3,4] to
[1,4.5] the lower bound 3 goes down to 1, but the upper bound 4 goes up to only 4.5.
Thus, the rescaled facilities of the Large Chain have lost more quality, when compared
to the facilities of the Small Chain. This explains why the Newcomer and the Small
Chain increase their profit, whereas the Large Chain sees a decrease.

8 Location cost versus quality cost

Next, we studied the influence of the relative importance between the two cost function
elements, the location cost given by G1 and the cost of quality, as described by G2.
This was done using the modified cost function G(x, α) = µx G1(x) + µαG2(α),
with µα = 2 − µx . The original case corresponds to µx = µα = 1. The results are
given in Table 4, following a structure similar to the previous tables.

One may expect the following phenomenon. When µx is very small, quality is quite
expensive, so rather low quality settings will be chosen. When µx increases, and thus

Table 4 Cost sensitivity results changing parameter µx (µα = 2 − µx )

µx Loc. Qual. 3D Obj. Loc. Qual. 3D Obj. Loc. Qual. 3D Obj.

1.0 Newcomer [44.39, 45.02] Small Chain [207.87, 210.81] Large Chain [240.05, 243.44]

0.1 0.008 3.363 3.400 −34.2 0.022 0.180 0.507 −4.7 0.265 1.461 0.557 +8.1

0.5 0.002 1.682 1.717 −24.1 0.005 0.076 0.185 −3.5 0.264 1.300 0.446 +4.4

0.9 0.000 0.043 0.037 −6.2 0.000 0.004 0.010 −1.0 0.051 0.182 0.079 +0.9

1.1 0.000 0.020 0.018 +6.4 0.000 0.004 0.011 +1.1 0.007 0.033 0.043 0.0

1.5 0.001 0.104 0.090 +31.9 0.010 0.436 0.773 +8.6 1.279 1.929 3.612 +20.2

1.9 0.002 0.126 0.114 +57.4 0.033 4.419 4.519 +31.7 1.278 2.921 4.498 +45.7

1.0 Aggr. Newcom. [53.0, 53.75] Aggr. Small Ch. [207.7, 210.6] Aggr. Large Ch. [243.9, 247.4]

0.1 0.002 2.779 2.798 −46.0 2.017 0.176 2.293 −5.0 3.092 4.365 5.452 −7.1

0.5 0.001 1.045 1.073 −30.6 0.730 0.073 0.851 −3.6 0.618 0.708 1.542 −9.4

0.9 0.000 0.007 0.010 −6.8 0.000 0.004 0.007 −0.9 0.000 0.011 0.021 −3.2

1.1 0.000 0.002 0.004 +6.8 0.000 0.004 0.009 +1.1 0.000 0.006 0.021 +3.9

1.5 0.001 0.021 0.027 +34.2 0.004 0.299 0.462 +7.8 0.000 0.571 0.780 +28.0

1.9 0.003 0.031 0.044 +61.5 0.677 3.518 3.965 +26.6 0.000 1.079 1.329 +55.4
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Fig. 10 The results for Large Chain for µx = 0.5 (left) and µx = 1.5 (right)

µα decreases, it becomes cheaper to increase quality, if possible, which will increase
sales as long as the site does not change, thus increasing profits. This is exactly what
happens in both Newcomer instances and in the unaggregated Small Chain instance,
where the best location remains stable throughout.

For the Newcomer the maximum quality is almost reached in the base case (see
Fig. 4). When µx increases above 1 both site and quality remain fixed, resulting in a
corresponding linear increase in profit. When µx decreases, however, we see a steady
decrease of optimal quality and a less than linear decrease in profit.

For the Small Chain the location remains stable too, but now quality starts at around
minimum value and very slowly increases towards the still low 1.4 in the basic case.
This slow increase goes on but accelerates towards the end, not quite reaching the
maximum of 5, even when quality is cheapest. As the quality was quite similar at the
two δ-optimal sites, Molina and Orihuela, both places remain optimal with the only
change in quality. The same holds in the aggregated case, although at the extremes
values of µx Molina also becomes part of the δ-optimal region, as in the unaggregated
case.

For the Large Chain, in the base case, the optimal solution is at Alcantarilla with
low quality, and also at Murcia with relatively high quality. When µx decreases Mur-
cia is no longer a suitable place to locate: the high quality needed there becomes too
expensive, see Fig. 10 left for µx = 0.5. When µx increases, however, Alcantarilla is
no longer a suitable place, because a location in Murcia at the higher quality that now
becomes affordable obtains more and more profit, see Fig. 10 right for µx = 1.5. Note
also that this shift in optimal site may lead to increasing profits in both directions.

With the concentrated demand, this last effect is more pronounced around the same
shift in the best site, but it occurs already at the much lower value µx = 0.5.

9 The impact of budget restrictions

In our final study, we investigated the influence of a limited budget on the optimal
solution. This was done as follows. The optimal solutions (x∗, α∗) of the base cases
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Table 5 Results on budget restriction

Loc. Qual. 3D Obj. Loc. Qual. 3D Obj. Loc. Qual. 3D Obj.

Newcomer [44.39, 45.02] Small Chain [207.87, 210.81] Large Chain [240.05, 243.44]

95% 0.000 0.081 0.098 −0.4 0.127 0.192 0.443 −0.1 0.490 1.711 0.905 −4.5

85% 0.001 0.876 0.904 −2.4 0.128 0.311 0.584 −0.5 4.914 1.445 4.732 −14.3

75% 0.002 1.906 1.932 −6.4 0.129 0.482 0.761 −1.6 5.155 1.327 5.381 −16.0

65% 0.005 3.023 3.050 −12.9 0.130 0.713 1.000 −3.8 5.525 1.439 5.826 −16.9

55% 0.012 4.247 4.273 −22.8 0.132 1.049 1.339 −7.9 6.281 1.526 6.610 −16.9

Aggr. Newcom. [53.0, 53.75] Aggr. Small Ch. [207.7, 210.6] Aggr. Large Ch. [243.9, 247.4]

95% 0.000 0.186 0.224 −1.1 0.001 0.203 0.325 −0.1 0.000 0.331 0.299 −0.2

85% 0.000 1.082 1.102 −4.7 0.002 0.344 0.478 −0.6 0.000 0.617 0.566 −1.0

75% 0.000 2.062 2.075 −10.3 0.003 0.494 0.645 −2.0 0.001 0.970 0.982 −3.0

65% 0.001 3.137 3.158 −18.5 0.005 0.752 0.923 −4.6 0.001 1.643 1.709 −6.3

55% 0.002 4.295 4.318 −30.9 0.046 1.052 1.214 −9.5 0.914 2.625 3.531 −11.4

yielded a corresponding maximally needed budget B∗ = G(x∗, α∗). Then, we added
a budget constraint of the form G(x, α) ≤ B, and solved these problems by reducing
the available budget B to 95, 85, . . ., 55% of B∗ for the corresponding base case. The
results are summarized in Table 5. All values are shown as dissimilarities as compared
to the corresponding base case near-optimal region.

Note that when B increases, we obtain a relaxation of the problem at hand, so max-
imal profit cannot decrease. Therefore each ‘Obj’ column in the table should show
decreasing negative values.

When the budget decreases slightly, the only effect observed is that quality is low-
ered in order to stay within the budget, resulting in a corresponding loss in sales,
thus in profit. But at some point, the budget becomes so small that lowering quality
does not suffice anymore and one also has to move to cheaper places. This typically
means moving away from the population centres. In the Newcomer and Small Chain
instances, for example, the optimal location remains fixed, and we observe only a
reduction in the quality of the new facility as B decreases. Additionally, the Small
Chain loses one of its two near-optimal locations in the move from 100 to 95%.

This spatial outward effect is fully due to the locational cost part in our model, and
may become so large that the facility is pushed completely towards the boundaries of
the feasible region. This happens for example for the Large Chain case at very low
budgets, as illustrated in Fig. 11. The inner region is now unfeasible due to the added
constraint, and one obtains a wide boundary region at low quality. Observe that the
sheer size of this near-optimal region indicates a very flat objective function. This
flatness is also the reason why the optimal profit is almost insensitive for a whole
range of low budgets.
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Fig. 11 Results for Large Chain
when the budget is restricted by
55%

Overall the profit losses due to budget restrictions may be considered as reasonable
in absolute terms in all cases. However, the relative losses due to budget constraints
for the Newcomer move up to 25%. The Small Chain loses the least. This is because
it starts out in the unconstrained base case by choosing a not too expensive location
(Orihuela) at rather low quality. Thus, when the budget decreases it can cope by a small
decrease of its quality and still capture most of its original market share. In contrast,
the Newcomer has to decrease its quality by much more, so it loses more market share,
while the Large Chain has to move out to much cheaper locations because reducing
quality cannot compensate for the reduction in budget.

10 Conclusions

Not all results collected have led to significant conclusions, but we felt it important
to give the reader access to the full study results. It should be considered as a first
broad exploratory step towards a better understanding of Huff-type competitive mod-
els. In view of the relatively modest size of each particular sensitivity analysis, the
conclusions remain, of course, tentative. But they have allowed to prove that several
parameters of the model play a significant role, and should therefore be estimated with
care in real applications in order to have confidence in the decisions suggested by the
model.

Let us conclude by summarizing the main conclusions we consider to have obtained.

– First of all, it is very important to decide the location and the quality simultaneously,
because each one may influence the other considerably (see also Tóth et al. 2009).

– Our experiments have shown the importance of using global optimization methods,
in particular methods that guarantee that the found optimum is global and that they
construct a region of near-optimality. This region is a great help to the decision
maker to choose the best location and quality, in particular by indicating possible
alternatives.
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– All studied parameters have a direct impact on profit evaluations, and most of them
turned out to be able to sometimes strongly modify the best choice. Therefore, esti-
mation of data and parameters should always be done carefully, particularly when
the profit forecasts are requested to be accurate.

– The technical parameters influencing the tradeoff between costs and income are
very important.

– When demand is aggregated there is an almost systematic tendency to underesti-
mate optimal profits. A more important effect is that the objective function usually
becomes sharper with aggregation, and therefore may lead to the disappearance of
good alternate optimal solutions.

– A newcomer in the market works in a considerably more hilly environment, and
usually only a single best option appears, remaining quite insensitive to data
changes.

– For cases when the owner’s chain is already present, wrongly approximated data
can cause wrong estimation, not only in profit but in location and design as well.
Thus, apart from accurate approximation of the data and parameters, the decision
maker has to look not only at the globally optimal location and design, but also at
the near-optimal regions. We observed that the Large Chain has the flattest func-
tion, and thus larger near-optimal regions, often showing more than one almost
equivalent options. The best choice among these may vary with relatively small
parameter changes. For these larger chains, one may also recommend computing
a larger near-optimal region and select from the possible new insights according
to the chain’s requirements and facilities.
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