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Abstract This paper presents a review of four decades of research on dynamic lot-
sizing with capacity constraints. We discuss both different modeling approaches to
the optimization problems and different algorithmic solution approaches. The focus
is on research that separates the lot-sizing problem from the detailed sequencing and
scheduling problem. Our conceptional point of reference is the multi-level capacitated
lot-sizing problem (MLCLSP). We show how different streams of research emerged
over time. One result is that many practically important problems are still far from
being solved in the sense that they could routinely be solved close to optimality in
industrial practice. Our review also shows that currently mathematical programing
and the use of metaheuristics are particularly popular among researchers in a vivid
and flourishing field of research.
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1 Introduction

Many production processes can only start after the required resources have been set up.
This setup usually requires a setup time and/or causes setup cost. As a consequence, a
lot-sizing problem arises, because a decision has to be made whether future demands
should be produced to stock to save setups. Research on lot-sizing dates back to the
early twentieth century, and a large number of different lot-sizing problems have been
identified, for which an even larger number of modeling approaches and algorithms
have been developed.

Production planning and particularly lot-sizing is strongly related to the layout
type and organizational structure of a production system. In industry, many different
kinds of production systems are found which have a significant impact on the type of
lot-sizing model applicable in a certain planning environment. Lot-sizing problems
mainly arise in job-shop production as well as flow production systems. In each type
of production system, specific lot-sizing problems emerge for which the literature
provides appropriate modeling and solution approaches. For example, in job-shop
production systems where setup times are relevant, the dynamic multi-level capaci-
tated lot-sizing problem (MLCLSP) arises. This problem is also the theoretical basis
of the standard material requirements (MRP) calculations. Unfortunately, standard
MRP (and MRP II) software systems overemphasize the demand explosion part of the
problem and almost completely ignore the limited capacity of resources when dealing
with the lot-sizing part, if lot-sizing is considered at all. The resulting inability to
produce capacity-feasible plans is one of the reasons why the standard MRP approach
often fails in industrial practice.

In a different layout type, e.g., when several production stages are arranged serially
to produce multiple products with significant setup times, the static economic lot sche-
duling problem (ELSP), see Rogers (1958), or one of its dynamic counterparts can
be applied, for example the continuous setup lot-sizing problem (CSLP), see Karmar-
kar and Schrage (1985), the dynamic lot-sizing and scheduling problem (DLSP), see
Fleischmann (1990), the proportional lot-sizing and scheduling problem (PLSP), see
Drexl and Haase (1995), or the general lot-sizing and scheduling problem (GLSP),
see Fleischmann and Meyr (1997), just to name a few. All these different lot-sizing
problems or rather lot-sizing models require specific solution techniques.

Numerous reviews of solution approaches to lot-sizing, which cover different
aspects of the planning problem, exist. Bahl et al. (1987) discussed the subsets
of unconstrained and constrained single- and multi-level lot-sizing. Maes and van
Wassenhove (1988) gave a structured overview of lot-sizing heuristics to the CLSP
and carried out a computational study. Gupta and Keung (1990) reviewed uncapacita-
ted single- and multi-stage lot-sizing models. Salomon et al. (1991) gave an overview
of several dynamic capacitated lot-sizing models and some solution algorithms. Kuik
et al. (1994) studied the impact of lot-sizing and batching and responded to some gene-
ral criticism of batching analysis. Wolsey (1995) and Brahimi et al. (2006b) reviewed
solution methods for single-item lot-sizing problems. Drexl and Kimms (1997) dis-
cussed simultaneous lot-sizing and scheduling models. Staggemeier and Clark (2001)
reviewed metaheuristics applied to the solution of lot-sizing and scheduling problems.
Karimi et al. (2003) considered solution approaches to single-stage capacitated
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lot-sizing problems. Jans and Degraeve (2007) gave a review on metaheuristics for
dynamic lot-sizing. Quadt and Kuhn (2008) reviewed capacitated lot-sizing problems
with extensions.

The remainder of this paper is structured as follows. In Sect. 2, we present the stan-
dard mathematical formulation of the MLCLSP and discuss variations of this model
w.r.t. the scope of problem aspects covered. Section 3, which is the main part of the
paper, provides a structured discussion of the different solution approaches. We start in
Sect. 3.1 with mathematical programing-based heuristics that use reformulations and
restructuring techniques to make an MIP formulation manageable by a standard MIP
solver. Then, in Sect. 3.2, Lagrangian heuristics are discussed, followed by decom-
position and aggregation approaches in Sect. 3.3. Section 3.4 covers metaheuristics
and finally in Sect. 3.5 common sense (greedy) approaches are presented. Although
arguable in individual cases, our classification focusses on the solution approaches to
solve these problems. The paper ends with some concluding remarks.

2 The standard model formulation

2.1 The multi-level capacitated lot-sizing problem

The dynamic multi-level capacitated lot-sizing problem (MLCLSP) was introduced
by Billington et al. (1983). It describes the following scenario. The planning horizon
is finite and divided into T discrete time periods (e.g. weeks). There are K items with
period-specific external demands which must be met without delay. The items are
produced on M non-identical resources with limited period-specific capacities. Each
resource comprises one or more resource units, such as similar machines or workers,
which are treated as a single entity.

The capacity of a resource per period is thus the product of the number of units
and the net available time. For each item, a unique assignment to a single resource
exists. Therefore, an item can also be interpreted as the result of an operation. This
operation is part of a process plan describing how to produce the item. The items or
rather operations are interrelated through input–output relationships. The production
of each unit of an item takes a constant amount of processing time. Whenever the
production quantity in a period is greater than zero, the model assumes that a given
setup time is incurred—independent of the number of resource units actually required
to process the production lot. In addition, setup cost may result. Setup times and cost
are assumed to be independent of the sequence of products during a period. A specific
characteristic of the standard MLCLSP is that each positive production quantity during
a period induces a setup, even in cases where the production of an item takes place in
two consecutive periods.

Numerous model formulations have been proposed for the MLCLSP, to allow
for an efficient numerical solution. These formulations differ mainly in the type of
variables used. The earliest formulation uses production quantities and inventory levels
as variables. This so-called inventory and lot-size (I&L) formulation will be described
first. Throughout the paper, we use the notation given in Table 1.

The MLCLSPI&L reads as follows:
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Table 1 Notation

Index sets

K Set of items, K = {1, . . . , K }
M Set of resource groups, M = {1, . . . , M}
T Set of periods, T = {1, . . . , T }
Km Set of items k produced on resource m

Sk Set of direct successors of item k

Parameters

ak j Quantity of item k directly required to produce one unit of item j (Gozinto factor)

cmt Available capacity of resource m in period t

dkt External demand of item k in period t

hk Holding cost of item k per unit and period

sk Setup cost of item k

tpk Production time per unit of item k

tsk Setup time for the production of item k

zk Planned lead time of item k

bkt Sufficiently big number

Variables

γkt Binary setup variable of item k in period t

Qkt Production quantity of item k in period t

Ykt Inventory of item k at the end of period t

Model MLCLSPI&L

min Z =
∑

k∈K

∑

t∈T
(sk · γkt + hk · Ykt ) (1)

subject to

Yk,t−1 + Qk,t−zk −
∑

j∈Sk

ak j · Q jt − Ykt = dkt ∀k, t (2)

∑

k∈Km

(tpk · Qkt + tsk · γkt ) ≤ cmt ∀m, t (3)

Qkt ≤ bkt · γkt ∀k, t (4)

Yk0 = YkT = 0 ∀k (5)

Qkt , Ykt ≥ 0 ∀k, t (6)

γkt ∈ {0, 1} ∀k, t (7)

The objective function (1) minimizes the total sum of setup cost and inventory
holding cost. Constraints (2) are the inventory balance constraints which guarantee
that the external demand dkt and the secondary demands (

∑
j∈Sk

ak j · Q jt ) of item
k in every period t are met. For item k a planned lead time zk is used. Historically,
this planned lead time was used in non-capacitated lot-sizing models to account for
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waiting processes etc., during production. In the considered capacitated lot-sizing
model, congestion in front of a resource is prevented by shifting production quanti-
ties backward. Nevertheless, a minimum planned lead time zk = 1 is required for all
component products to ensure that a feasible production schedule can always be gene-
rated based on the solution of the lot-sizing model. Consider a serial product structure
with one end product that requires a single component, both produced on different
resources. Assume that the resource for the end product is fully loaded to produce a
single unit of the end product during a period. Then it is not feasible to produce a unit
of the component in the same period such that it enters the unit of the end product.
Thus, this unit of the component must be produced at least one period ahead, i.e. with
a minimum lead time zk = 1 of one period.

Constraints (3) are the capacity constraints concerning production and setup time
for each resource m. Constraints (4) ensure that production of item k takes place in
period t , only if the resource is setup for this item (γkt = 1). To guarantee this, the
constant bkt must be large enough not to restrict the lot-size of item k in period t .
The initial inventory Yk0 and the final inventory YkT are assumed to be 0, according
to constraint (5). Note that this setting makes production in the last periods of the
planning horizon unattractive (see Stadtler 2000). Finally, the variables Qkt and Ykt

must be non-negative [see constraints (6)] and the setup variables γkt are defined as
binary variables in constraints (7). Variable production cost are usually not included
as they are assumed to be constant over the whole planning horizon T .

2.2 Simplified lot-sizing models derived from the MLCLSP

If the sum describing the derived demand on the left-hand side of (2) is omitted, the
MLCLSP decomposes into M (single-level) lot-sizing models known as the capacita-
ted lot-sizing problem (CLSP).

If in addition the capacity constraints are relaxed, each CLSP further decomposes
into K single-level uncapacitated lot-sizing models known as the Wagner–Whitin pro-
blem (see Wagner and Whitin 1958), also referred to as the single-level uncapacitated
lot-sizing problem (SLULSP).

Relaxing the capacity constraints in model MLCLSP leads to the so-called multi-
level uncapacitated lot-sizing problem (MLULSP) (see Jacobs and Khumawala 1982).
If all binary setup variables γkt are fixed with respect to a given setup pattern, then a
linear program (LP) is obtained, which can be solved easily (see Kuik and Salomon
1990; Millar and Yang 1994). Further extensions to the above lot-sizing problems have
been presented. Some authors account for overtime and backorder decisions ensuring a
feasible solution in a mathematical sense, as the corresponding decision variables have
the function of slack variables. Further extensions introduce, e.g., parallel machines
each considered as a distinct resource.

2.3 Setup carryovers

As the above model formulation does not provide any information about the sequence
of production within a period, each production quantity of an item assigned to a period
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is assumed to induce a setup. However, in reality it might be possible to continue the
production of the same item at the beginning of the next period without a setup.
Without changing to a complete lot-sizing and scheduling perspective of the PLSP or
GLSP type, the above models can be extended through the introduction of additional
setup state variables to determine the products processed at the period borders, which
introduces partial sequencing decisions into the model.

Dillenberger et al. (1993) extended the CLSP by this aspect. The term capacitated
lot-sizing problem with linked lot-sizes (or setup carryovers) (CLSPL) has been coined
by Haase (1994). Later, Sürie and Stadtler (2003) extended the CLSPL to the multi-
stage case (MLCLSPL). Note that the notion of a setup state requires the consideration
of individual resource units.

To model setup carryovers, additional variables and constraints are used. Binary
setup state variables ωkt (∀k, t) are introduced reflecting the setup state of the resource
at the beginning of period t .

Note that ωkt = 1 implies that product k is the first one to be produced in period t
using the setup state carried over from period (t − 1).

Two cases can be distinguished. First, a setup carryover can only be allowed, if
a corresponding setup operation has taken place in the directly preceding period.
Second, if consecutive setup carryovers are allowed, the setup state can be transferred
across several consecutive periods without additional setup operations. In the latter
case, no other setup activity is allowed which would suspend the current setup state.
Hence, dummy variables νmt are introduced. νmt = 1 indicates that a setup state for
one item is carried over from a period t − 1 to the consecutive periods t and t + 1
on resource m. In the case of consecutive carryovers, the additional constraints are
(Sürie and Stadtler 2003):

Qkt ≤ bkt · (γkt + ωkt ) ∀k, t (8)
∑

k∈Km

ωkt ≤ 1 ∀m, t = 2, . . . , T (9)

ωkt ≤ γk,t−1 + ωk,t−1 ∀k, t = 2, . . . , T (10)

ωk,t−1 + ωkt ≤ 1 + νmt ∀m, k ∈ Km, t = 2, . . . , T (11)

γkt + νmt ≤ 1 ∀m, k ∈ Km, t (12)

νmt ≥ 0 ∀m, t (13)

ωkt ∈ {0, 1} ∀k, t (14)

Except for the additional constraints (9)–(14), the only change to the original for-
mulation of the I&L formulation of the MLCLSP is in restrictions (8), which replace
restrictions (4). They enforce a setup for every positive production quantity, unless the
particular setup state has already been preserved from the preceding period.

For each resource m, at most one setup state can be carried over per period [con-
straints (9)]. The constraints (10) ensure that a setup can only be carried over into
period t if either a setup occurred in period t − 1 or if the setup state had already been
carried over from period t − 2 to period t − 1. In the latter case no other item may be
produced in the period t − 1 on this resource.
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This is guaranteed by constraints (11) and (12) and by the auxiliary variables νmt .
If two consecutive setup carryovers for the same item occur “into” and “out of” period
t , the variable νmt is forced to 1 and hence all γkt = 0. However, if there is at least one
γkt equal 1, νmt is forced to 0 [due to (12)]. Hence, at most one setup carryover can
take place for another item. If consecutive setup carryovers are not allowed, constraints
(10) are changed in that ωk,t−1 is removed from the right-hand side and constraints
(11) and (12) are omitted.

Florian et al. (1980) have proved that the single-item CLSP is NP-hard. Later,
Bitran and Yanasse (1982) showed that even special cases which are solvable in poly-
nomial time become NP-hard through the introduction of a second item. Trigeiro et al.
(1989) pointed out that for the CLSP with setup times the question whether a feasible
schedule exists is already NP-complete. Trigeiro et al. (1989) referred to bin packing
as a special case of the CLSP with setup times. For the proof of NP-completeness
see Garey and Johnson (1979). As the MLCLSP and the MLCLSPL can be reduced
to the CLSP with setup times by setting some parameters to 0, they are at least as hard
to solve and hence also NP-hard.

In addition to the standard I&L model formulation, several reformulations have been
proposed which are closely related to specific solution approaches. These reformula-
tions will be discussed in the following within the context of the associated solution
approach.

3 Solution approaches

The approaches to solve the different types of capacitated lot-sizing models can be
classified into five groups, as shown in Fig. 1.

3.1 Mathematical programing-based approaches

The MP-based approaches are rather general and tend to be more flexible than other
procedures with respect to model extensions. One can distinguish between exact
methods and MP-based heuristics. If an optimal solution exists, the former stop after
an optimal solution has been found, regardless of the effort in terms of required com-
putation time and memory. The latter only explore parts of the solution space and
try to find a good feasible solution in reasonable time. Imposing a time-limit on an
exact method is a simple way to construct an MP-based heuristic. Even if the solution
obtained within the time limit is infeasible, it can still serve as a possibly promising
starting point to construct a feasible solution. Table 2 gives a systematic overview of
the MP-based solution approaches.

Branch and bound The branch and bound method (B&B) is an exact solution proce-
dure that enumerates feasible solutions implicitly. This method consists of two parts,
“branching” and “bounding”. While during the “branching” part new disjoint subsets
of the solution space are generated, unpromising ones are removed during the “boun-
ding” part. For mixed integer programs (MIPs) with binary variables, as considered
here, branching is based on subsequently fixing the binary variables to 0 and 1.
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Mathematical
Programming

Heuristics

Problem-specific
Greedy Heuristics

Decomposition
and Aggregation

Heuristics

MetaheuristicsLagrangean
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Heuristics

Lagrangean
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Heuristics
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Local Search
Heuristics

Variable
Neighborhood

Search
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Tabu Search
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Genetic
Algorithms

Memetic
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Greedy

Heuristics

LP-based
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Rounding
Heuristics

Dantzig-Wolfe
and Column
Generation

Reformulations

Valid Inequalities

Ant Colony
Optimization

Heuristics

Fig. 1 Classification of solution approaches

A relaxed version of each subproblem is solved to determine a bound. Different
options are proposed to relax the model formulation. First, in the LP relaxation the
integrality constraint of the original binary variables of the MIP is removed. Another
relaxation method is Lagrangian relaxation (see below). B&B methods imbedded into
a Lagrangian relaxation scheme are described in Billington et al. (1986), Gelders et al.
(1986), Chen and Thizy (1990) and Diaby et al. (1992a). Armentano et al. (1999) used
a B&B procedure to solve the CLSP. Here, the corresponding LP relaxation is based
on a network flow model.

One major research trend in the field of lot-sizing is to reformulate the mathema-
tical model, to redefine the corresponding decision variables and to introduce valid
inequalities. As the bounds obtained by relaxing the aforementioned I&L formulation
are quite poor, the goal is to tighten the lower bounds and thus to increase the efficiency
of the B&B method.

Reformulations Two reformulations have been introduced which assign each
production quantity to a corresponding demand quantity. First, the shortest route (SR)
formulation was introduced by Eppen and Martin (1987) for the CLSP.
Tempelmeier and Helber (1994) extended this formulation to the capacitated multi-
level case. Stadtler (1996, 1997) suggested an improved SR formulation which
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Table 2 MP-based heuristics

Reference FORM REL SolA MOD

Armentano et al. (1999) I&L LP B&B, NFA SL

Billington et al. (1986) I&L LR B&B ML, ST

Diaby et al. (1992a) I&L LR B&B SL, ST, OV

Gelders et al. (1986) I&L LR B&B SL

Chen and Thizy (1990) I&L, SR LR B&B SL

Stadtler (1996) I&L, SPL, SR LP B&B ML, ST, OV

Stadtler (1997) SR LP B&B ML, ST, OV

Tempelmeier and Helber (1994) SR LP B&B ML

Barany et al. (1984) I&L LP B&B, VI SL

Belvaux and Wolsey (2000) I&L LP B&C, VI ML, ST, BO

Belvaux and Wolsey (2001) I&L LP B&C, VI ML, ST, BO

Clark and Armentano (1995) I&L LP B&C, VI ML, ST

Miller et al. (2000) I&L LP B&C, VI SL, ST

Pochet and Wolsey (1991) I&L LP B&B, VI ML, ST

Sürie and Stadtler (2003) SPL LP B&C, C&B, VI SL, ML, ST, SC

Dillenberger et al. (1993) I&L LP F&R SL, PM, BO, SC

Dillenberger et al. (1994) I&L LP F&R SL, ST, PM, BO, SC

Federgruen et al. (2007) I&L LP F&R SL, JSC

Mercé and Fontan (2003) I&L LP F&R SL, ST, BO

Stadtler (2003) SPL LP F&R ML, ST, OV

Akartunalı and Miller (2008) I&L LP RH, F&R, VI ML, ST

Alfieri et al. (2002) SPL, SR LP RH SL

Eppen and Martin (1987) SR LP RH SL

Kuik et al. (1993) SPL LP RH ML

Maes et al. (1991) SPL LP RH ML

Salomon (1991) SPL LP RH ML

Harrison and Lewis (1996) I&L LPB ML, ST, BO

Hung and Hu (1998) I&L LPB SL, ST, BO

Katok et al. (1998) I&L LPB ML, ST

Bahl (1983) SPP CG SL, ST, OV

Bitran and Matsuo (1986) SPP DW SL, ST

Cattrysse et al. (1990) SPP CG SL

Degraeve and Jans (2003) SPP CG SL, ST

Dzielinski and Gomory (1965) SPP DW SL

Haase (2005) SPP, SPL LP CG, F&R SL

Hindi (1995) SPP CG SL

Hindi (1996) SPP CG SL

Huisman et al. (2003) SPP CG SL, OV
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Table 2 continued

Reference FORM REL SolA MOD

Lasdon and Terjung (1971) SPP CG SL

Manne (1958) SPP DW SL, OV

Salomon et al. (1993) SPP CG SL, ST

Abbreviations
FORM Model formulation (I&L = inventory and lot-size, SPL = simple plant location, SPP = set
partitioning problem, SR = shortest route)
REL Relaxation (LP = LP relaxation, LR = Lagrange relaxation)
SolA Solution approach (B&B = branch and bound, B&C = branch and cut, C&B = cut and branch, CG =
column generation, DW = Dantzig–Wolfe decomposition, F&R = fix and relax, LPB = LP-based approach,
NFA = network flow algorithm, RH = rounding heuristic, VI = valid inequalities)
MOD Problem solved (ML = multi-level, SL = single-level, BO = backorders, JSC = joint setup cost,
OV = overtime, PM = parallel machines, SC = setup carryover, ST = setup time)

decreases the number of non-negative coefficients in the constraints’ matrix, with
the effect that the computational effort for solving the corresponding LP relaxa-
tion decreases as well. Another formulation is based on the analogy to the Simple
Plant Location (SPL) problem. Rosling (1986) introduced the SPL formulation for the
MLULSP as an extension of the work of Krarup and Bilde (1977). Later, Maes et al.
(1991) used the model of Rosling (1986) with the inclusion of capacity constraints,
whereby both lot-sizing models were limited to assembly-type bill-of-material
structures. Stadtler (1996) extended the SPL formulation for the case of general
bill-of-material structures. The LP relaxation of the SR formulation and of the SPL
formulation have identical objective function values, see Denizel et al. (2008). The
number of decision variables is also identical, but the number of constraints is not. For
the SPL formulation K · T ( 1

2 (T + 1) − 1) additional constraints are needed.

Valid inequalities Another possibility to tighten the bounds of the LP relaxation is
to generate valid inequalities. They reduce the size of the solution space by cutting off
irrelevant parts. Three methods can be distinguished. First, if the valid inequalities are
generated dynamically to cut off current non-integer solutions, this is referred to as
the cutting plane method. Second, valid inequalities can be introduced in the course
of a B&B algorithm. This method is called branch and cut (B&C). Third, the cut
and branch procedure (C&B) incorporates all generated inequalities into the model
formulation prior to starting the B&B algorithm.

Barany et al. (1984) defined a set of valid inequalities. They included lot-sizing
variables and inventory variables for the SLULSP. These additional inequalities des-
cribe the convex hull for the single-item uncapacitated lot-sizing polytope. They can
also be applied to the CLSP. Furthermore, other valid inequalities are derived by Miller
et al. (2000) for the capacitated problem. Pochet and Wolsey (1991) and Clark and
Armentano (1995) extended the work of Barany et al. (1984) to the multi-level case.

Belvaux and Wolsey (2000) presented a general framework for modeling and sol-
ving lot-sizing problems. This system, called bc–prod, includes preprocessing espe-
cially for lot-sizing problems and generates lot-sizing specific and general cutting
planes. Their work is extended in Belvaux and Wolsey (2001) to further model exten-
sions, e.g., start-ups, changeovers and switch-offs.
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Sürie and Stadtler (2003) derived valid inequalities for the CLSPL and the
MLCLSPL. To do so, they introduced extended model formulations by redefining
the setup carryover constraints. In addition, they performed a pre-processing step
which leads to inequalities that link inventories to setups and single-item produc-
tion to capacity. They adopted C&B and B&C with a given time limit to find the
optimal or the first feasible solution. To reduce complexity, a time-oriented decom-
position approach with overlapping planning windows (see Stadtler 2003) is
applied.

Fix and relax heuristics Fix and relax (F&R) heuristics reduce the number of binary
variables to be treated simultaneously by dividing the problem into several subpro-
blems. Three sets of binary variables can be distinguished. The first is solved to opti-
mality, the second is relaxed and the setup states of the third set are fixed to the values
of a previous iteration.

Dillenberger et al. (1993) developed an F&R algorithm for the CLSPL. It essentially
consists of a B&B algorithm, where the order of branching is determined by the
sequence of periods, i.e. a period-by-period heuristic with binary setup variables in
the first period of the current lot-sizing window, fixed setup variables in all prior
periods and relaxed setup variables in all ongoing periods until the end of the planning
horizon. Dillenberger et al. (1994) again applied the F&R heuristic to an extended
model formulation.

Stadtler (2003) proposed to use overlapping planning windows. The binary variables
preceding a given planning window have been determined in prior iterations and those
after the end of the planning window are excluded from the currently solved model,
thus capacity requirements are only approximated. This approach yields high-quality
solutions for the MLCLSP, but is limited to problems without lead times. It is also
applied to the CLSPL in Sürie and Stadtler (2003).

Mercé and Fontan (2003) proposed an MIP-based heuristic, which relies on the divi-
sion of the planning horizon into several sub-horizons and different freezing methods
for past decisions.

Federgruen et al. (2007) presented a so-called progressive interval heuristic for the
CLSP with joint setup cost. Starting with a small subset of periods, all binary setup
variables are solved to optimality within this time window. In each iteration, this time
window is extended while only the binary variables of the last τ periods are determined
to optimality. In contrast, the setup variables related to earlier periods are fixed. The
heuristic stops when the end of the planning horizon is reached.

Rounding heuristics In rounding heuristics (RH), the LP relaxation of the MIP is
solved and the fractional binary variables are subsequently rounded. In the case of
capacitated lot-sizing problems, these solutions are often infeasible, as capacity may
not be sufficient. Hence, during the RH the fractional binary variables are usually
rounded up and rounded down only with respect to a given threshold.

Maes et al. (1991) introduced several RHs using the SPL formulation for the
MLCLSP without setup-times. The relaxed setup-variable with the highest value is
fixed to 1 and the reduced LP relaxation is solved. Furthermore, all relaxed binary
variables within a given range can also be fixed to 1.
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Eppen and Martin (1987) and Alfieri et al. (2002) presented RHs, which solve the
LP relaxation of the SR formulation for the CLSP. All fractional binary variables are
fixed within a given threshold, and a limited B&B is started with the remaining binary
variables. Kuik et al. (1993) presented a further RH for the MLCLSP without setup
times and one resource. Based on the LP relaxation of the SPL formulation, all binary
variables within a given range are fixed either to 0 or 1. The remaining binary variables
are initially set to 1 and a simulated annealing or Tabu search approach follows, where
changes only affect the unfixed binary variables. A similar approach can be found in
Salomon (1991).

Akartunalı and Miller (2008) combined a RH and F&R heuristic for the MLCLSP. In
the first step, the LP relaxation of the I&L formulation with additional valid inequalities
is solved. Thereby, the setup variables within a given interval are fixed. Subsequently,
an F&R heuristic is applied using a moving time window.

LP-based approaches These iterative solution methods exploit the fact that omitting
the binary variables leads to a significantly easier problem. Here, the complete setup
pattern is either given or only implicitly accounted for, and the remaining LP is solved
to optimality.

Hung and Hu (1998) presented an iterative solution approach for the CLSP, in
which at each iteration the setup-pattern is fixed and the remaining LP is solved.
They started with an initial setup-pattern assuming a production for every product
in every period (lot-for-lot). Hence, all setup variables are fixed to 1. After sol-
ving the resulting linear program, they used the information of the shadow prices
relating to the capacity constraints to identify products and periods for which it is
beneficial to fix the corresponding setup variables to 0. Subsequently, the resulting
LP is solved.

Harrison and Lewis (1996) presented the iterative coefficient modification heuristic
(CMH) for the MLCLSP. They exploited the fact that in the MLCLSP each setup
variable is linked to a corresponding continuous production variable, in that both
variables must be equal to zero or positive at the same time. Therefore, the binary
variables are omitted and setup times are accounted for implicitly via modification of
the production time coefficients of the related production variables. This leads to a
reduced linear program, as not only the binary variables but also the linking constraints
to the continuous variables can be eliminated. In each iteration, the respective linear
program is solved and the production time coefficients are modified according to the
capacity consumption in the previous iteration. In a later paper, Katok et al. (1998)
introduced the coefficient modification subroutine with cost balancing (CMSB), which
is an extension to the CMH. Here, also the production cost coefficients are modified
to account for setup cost implicitly.

Dantzig–Wolfe decomposition and column generation Dantzig–Wolfe decomposi-
tion (see Dantzig and Wolfe 1960) has been applied to the CLSP which is modeled
as a set partitioning problem. The objective is to find a convex combination of given
single-item schedules, which keeps the capacity constraints of the original CLSP and
leads to minimal cost. The decision variables are continuous variables to combine
schedules for each item.
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To find the optimal solution to the set partitioning problem (SPP), column generation
(CG) is applied. Column generation is a general iterative solution procedure for large-
scale linear programs. In the case of mixed integer programs, CG can be applied to the
relaxed problem to find promising lower bounds. In the current problem environment
it is used to dynamically generate new schedules with the Wagner–Whitin property.
The SPP serves as a master problem. The corresponding subproblem is to find the
single-item schedules to feed into the master problem. For the CLSP, it consists of
a set of SLULSPs. The CG procedure starts with a limited number of schedules for
each product. At each iteration, first the SPP is solved. Then shadow prices related to
the capacity and convexity constraints are updated and used to modify the objective
function of the subproblems, which are subsequently resolved. The new schedules thus
generated are introduced into the master problem, only if their objective function value
is negative and therefore beneficial. The procedure is repeated until no more schedules
that improve the objective function of the SPP can be generated. The approach stops
with a promising lower bound for the CLSP. Afterward, an additional solution heuristic
has to be applied to generate a feasible solution.

An early approach was introduced by Manne (1958). In an SPP, Manne selects from
a large set of production plans satisfying the condition qt · yt−1 = 0 ∀ k, t (see Wagner
and Whitin 1958) only those dominant production plans which ensure the capacity
constraints. Bitran and Matsuo (1986) derived error bounds for Manne’s formulation.
The work by Manne was extended by Dzielinski and Gomory (1965), who developed
a column selection procedure to handle larger problems. Later, Lasdon and Terjung
(1971) developed a CG approach. Algorithms of this type are also presented by Bahl
(1983), Cattrysse et al. (1990), Salomon et al. (1993), Degraeve and Jans (2003) and
Huisman et al. (2003).

Hindi (1995) presented a heuristic including variable redefinition and CG. He solved
a minimum cost flow problem to compute the upper bound. Hindi (1996) combined the
ideas of LP relaxation, CG, minimum cost network flow and Tabu search into a hybrid
algorithm. Haase (2005) also solved the CLSP via column generation. The resulting
lower bound is very tight (like in the SR and SPL model formulations) as most of
the variables are already integer. Only a small number of variables are left which are
considered in a following rolling time window procedure similar to Dillenberger et al.
(1993).

If CG is used to solve the LP-relaxation of the MLCLSP, the number of relaxed
binary variables with fractional (non-integer) values is often much higher than for
single-level CLSPs. For this reason, effective CG-based heuristics for the MLCLSP
have not yet been presented.

3.2 Lagrangian heuristics

Lagrangian heuristics (LH) are iterative solution approaches applying Lagrangian
relaxation (LR). In LR, the complicating constraints of a problem are relaxed and
their violation is punished at penalty cost in the objective function. At each iteration,
a lower bound is computed based on a Lagrangian relaxation or decomposition and
given values of the Lagrangian multipliers. A feasible solution is constructed and
serves as the new upper bound. Finally, the Lagrangian multipliers are updated.
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Lagrangian heuristics are based on the convergence of the lower and the upper
bound through the adaptation of the Lagrangian multipliers. The basic idea of LH
is that with the adequate Lagrangian multipliers the solution to the relaxed pro-
blem will be very close to the optimal solution of the original problem and only
small modifications will have to be made to obtain a close-to-optimal feasible
solution.

To compute the lower bounds, the complicating constraints are relaxed. In the
case of the CLSP, the only complicating constraints are the capacity constraints.
When they are relaxed, the remaining problem decomposes into K problems of the
SLULSP type. The inventory balance equations of the MLCLSP represent a second
type of interdependencies between products, which results from the input–output
relationships between component items and their successors in the bill-of-material
structure.

Relaxing both constraints again leads to K problems of the SLULSP type. An
alternative consists of relaxing only the capacity constraints and trying to solve the
remaining MLULSP. For the CLSPL, the capacity constraints and the setup carryover
constraints are relaxed, i.e. the restriction to at most one setup carryover per resource
and period. The remaining problem is of the SLULSPL type. A number of exact
and heuristic algorithms have been introduced to solve the uncapacitated lot-sizing
problems efficiently, e.g. Wagner and Whitin (1958), Evans (1985), Federgruen and
Tzur (1991), Wagelmans et al. (1992), Silver and Meal (1969, 1973) and Groff (1979).

Lagrangian multipliers are updated via subgradient optimization, until a stopping
criterion is met. The subgradient indicates the direction, in which the Lagrangian mul-
tipliers have to be altered, to achieve the greatest possible improvement of the objective
value. Generally, in the case of optimization problems with multiple constraints, the
subgradients can be based on the violation of the constraints themselves. Table 3 gives
an overview.

Lagrangian relaxation Thizy and van Wassenhove (1985) developed a solution algo-
rithm to the CLSP, which was later extended by Diaby et al. (1992b) to a CLSP with
setup times and overtime. Based on the LR of the capacity constraints, the setup deci-
sions are determined. Once the setup decision has been made, the resulting problem can
be formulated as a transportation problem (TP). A perturbation scheme is developed
based on this formulation.

Trigeiro (1987) solved the CLSP without setup times. Later, Trigeiro et al. (1989)
extended their heuristic to problems with setup times. To generate feasible solutions,
they apply a smoothing procedure which was adapted by other authors. Its objective
is to minimize total opportunity cost divided by the quantity of overtime eliminated.
The smoothing routine consists of up to two backward and two forward passes, star-
ting either from the end or from the beginning of the planning horizon. In the case of
the backward passes, lots are shifted backward either to the immediately preceding
period or to the closest preceding period with a corresponding setup. Either the com-
plete lot or as much as necessary to eliminate a capacity violation is shifted. For the
forward passes, the target period is always the next period and the quantity shifted is
always the inventory of the respective item. At most one lot per period may be split.
The heuristic moves on to the next period when all overtime has been eliminated in
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Table 3 Lagrangian heuristics

Reference DC RC SP SOL FEAS MU MOD

Brahimi et al. (2006a) LR C, TW (TW) SLU DP FC, B, F SO SL, TW

Campbell and Mabert (1991) LR C, II CYCSLULSP ENUM F, B SO SL, CS, II, MINQ

Chen and Chu (2003) LR BIN LMLCLSP LP SET1 SSG ML

Diaby et al. (1992b) LR C SLU DP TP SO SL, ST, OV

Hindi et al. (2003) LR C SLU DP FC, B, F SO SL, ST

Millar and Yang (1994) LR SET TP, INT LCINT TP SO SL, BO

Moorkanat (2000) LR C, I SLU DP F, B, M SO ML, ST

Özdamar and Barbarosoglu (1999) LR PM SLU, LOAD GR SA SSG ML, ST, PM, OV, BO

Özdamar and Barbarosoglu (2000) LR C, (I) M(S)LULSP DP SA, LS, GS SSG ML, ST

Sambasivan and Yahya (2005) LR C MPSLULSP B&B F, B, M SO SL, ST, MP

Sox and Gao (1999) LR C, S SLULSPL DP FC, F, B, SC SO SL, SC

Tempelmeier and Derstroff (1993) LR C, I SLU DP FC, B, F SO ML, ST

Tempelmeier and Derstroff (1996) LR C, I SLU DP FC, B, F SO ML, ST

Thizy and van Wassenhove (1985) LR C SLU DP TP SO SL

Trigeiro (1987) LR C SLU DP FC, B, F SO SL

Trigeiro et al. (1989) LR C SLU DP FC, B, F SO SL, ST

Millar and Yang (1994) LD DEC TP, SLU Zangwill (1966) TP SO SL, BO

Abbreviations
DC Decomposition approach (LD = Lagrangian decomposition, LR = Lagrangian relaxation)
RC Relaxed constraints (BIN = binary setup variables, C = capacity constraints, DEC = coupling constraint
between duplicates and the corresponding original variables in decomposition approaches, I = inventory
balance constraints, II = initial inventory constraints, PM = coupling between production on each resource
and total production for an item, S = setup carryover constraints, SET = coupling constraint between pro-
duction and setup, TW = time window constraints)
SP Subproblem solved in the case of decomposition (CYCSLULSP = SLULSP with cyclical schedules,
INT = integer problem to determine setup scheme, LMLCLSP = linear MLCLSP, LOAD = capacitated
loading problem, MPSLULSP = multi-plant SLULSP, SLU = SLULSP, TP = transportation problem,
TWSLU = SLULSP with time windows)
SOL Solution method applied to solve the subproblem (B&B = branch and bound, DP = dynamic progra-
ming, ENUM = enumeration of all possible schedules, GR = greedy, LCINT = least cost search to determine
setups, LP = linear programing)
FEAS Type of feasibility check (B = backward, BC = backward shifting of cumulative overtime,
F = forward, FC = forward shifting of cumulative overtime, GS = global search, LS = local search,
M = machine-by-machine, SA = simulated annealing, SC = feasibility of setup carryover constraints,
SET1 = all positive setup variables are set to 1, TP = fix setups and solve transportation problem)
MU Type of multiplier update (SO = Subgradient Optimization, SSG = Surrogate subgradient method)
MOD Problem solved (ML = multi-level, SL = single-level, BO = backorders, CS = cyclical schedules, II =
initial inventory, MINQ = minimum production quantity, MP = multi-plant, OV = overtime, PM = parallel
machines, SC = setup carryover, SD = sequence dependency, ST = setup time, TW = time windows)

the incumbent period. It is guided by the constraints, the cost and the Lagrangian
multipliers. Among the forward passes, the first considers cumulative overtime only,
while the second eliminates overtime in every period. When a feasible solution is
found, unnecessary inventory for the given setup pattern is eliminated in a final step
by postponing production to the extent possible (that is limited by demand and capacity
constraints).

Hindi et al. (2003) solved the CLSP with setup times. Their heuristic consists
of three parts. First, a smoothing heuristic is applied, which is similar to that of
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Trigeiro et al. (1989). Second, after each pass, the solution is optimized further
by solving a capacitated transshipment problem by the dual network complexity
method for the given setup schedule. The transshipment model equals the trans-
portation model of Diaby et al. (1992b), but it is claimed to be much smaller. The
smoothing heuristic is followed by a variable neighborhood search based on simple
cost comparisons.

Tempelmeier and Derstroff (1993, 1996) developed a solution procedure to the
MLCLSP with setup times and positive lead times based on the formulation of
Billington et al. (1986). To account for the derived demands in the bill-of-material
structure, a sequence of SLULSPs is solved according to a low-level code sorting of
the items. Then they apply a smoothing procedure similar to Trigeiro et al. (1989) to
ensure capacity feasibility. However, as they solve a multi-level problem, they applied
both single- and multi-item shifts. A multi-item shift affects a subset of the product
structure simultaneously. Their procedure is extremely fast, but relatively complex
and difficult to implement.

Moorkanat (2000) solved the MLCLSP with setup times using the single- and multi-
item shifts introduced by Tempelmeier and Derstroff (1996). The major difference
to the implementation by Tempelmeier and Derstroff (1996) is that back-logging is
allowed for the end items. Hence, while the schedule may not be feasible with respect
to the inventory balance constraints, it is guaranteed to be feasible with respect to the
capacity constraints.

Campbell and Mabert (1991) developed an LH similar to Trigeiro et al. (1989),
but solved the CLSP with cyclic schedules in which the times between produc-
tion periods of an item are constant. To solve the relaxed problems, all combina-
tions of a first production period and cycle length are evaluated and the least cost
solution is chosen. Sox and Gao (1999) developed an LR heuristic (which they
refer to as Lagrangian decomposition) with relaxation of the capacity and setup
carryover constraints.

Özdamar and Barbarosoglu (1999) developed a hybrid algorithm, combining LR
and simulated annealing to solve a multi-level production system with serial product
structures for several end items. Production takes place on parallel machines. They
relax the coupling constraint between production quantities on each machine and
the respective total production quantity. The problem therefore decomposes into a
set of SLULSPs and a set of capacitated loading problems for given total production
quantities per item and period. Both subproblems are solved only approximately. From
a generated inventory feasible solution, capacity feasibility is finally achieved through
a specialized procedure based on simulated annealing.

Özdamar and Barbarosoglu (2000) applied a similar procedure to solve the standard
MLCLSP with general product structures. They developed two relaxation schemes.
The first is called hierarchical relaxation, as only the capacity constraints are relaxed.
The second relaxes both the capacity and the inventory balance constraints. Neither
relaxation is solved to optimality and therefore the solutions do not represent lower
bounds to the original problem. First, they generate a feasible solution by an itera-
tive procedure shifting production to eliminate capacity violations. Then, a simulated
annealing approach is applied. It searches the direct neighborhood, defined by shifting
a randomly selected partial lot to the next resource or the next period. Finally, another
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procedure is based on the same neighborhood definition, but allows cost reductions
only.

Chen and Chu (2003) developed a solution algorithm to the MLCLSP, in which the
binary constraints for the setup variables are relaxed. The remaining linear model is
solved by an iterative linear programing algorithm, which does not lead to the exact
solution. Feasibility is achieved trivially by rounding up all non-zero relaxed setup
variables. To update the Lagrangian multipliers, they used a surrogate subgradient
method, which is a subgradient method adapted to the fact that the relaxed problem
is only solved approximately. At each iteration, the setup states are computed for a
given set of production quantities and vice versa. The procedure terminates when both
computations lead to the same solution. Finally, the solution is improved through a
local search procedure.

Sambasivan and Yahya (2005) applied LR to a multi-plant version of the CLSP
with setup times. This extension is reflected through several resources, item transfer
in the inventory balance constraints and the corresponding cost factor in the objective
function. They also altered the problem to forbid inter-plant transfers. The resulting
problem corresponds to the CLSP with parallel resources. A lot shifting–splitting–
merging routine is used to generate a feasible solution. Initially, capacity violating lots
are shifted within the same period to another plant where the corresponding demand
arises. If capacity violations persist, production is shifted across periods within the
same plant. The shifts are executed forward and backward without incurring capacity
violations in the target periods.

Brahimi et al. (2006a) proposed several LR schemes for the CLSP with time win-
dows. In the standard CLSP, production can take place not later than the “due” demand
period. Here, production is additionally limited to be not earlier than a given “release”
period.

Lagrangian decomposition Lagrangian decomposition (LD) via variable duplica-
tion is a variant of LR. Instead of relaxing the complicating constraints, all original
constraints are kept. However, the original problem is decomposed into subproblems
via variable duplication, where each subproblem only contains some of the constraints.
For the solutions to the subproblems to be a valid solution to the original problem, the
duplicates must equal the corresponding original variables. These coupling constraints
are finally relaxed.

Millar and Yang (1994) developed both an LR and an LD approach to solve the
CLSP with backorders. Both decompose the original problem into two subproblems.
In both cases, one of them is a TP. In the case of the LR, the other is an integer problem
to determine setups which is solved by inspection of the given cost coefficients. In the
case of the LD, the second subproblem is a set of SLULSPs, which is solved by the
algorithm introduced by Zangwill (1966). To compute the upper bound, again a TP is
solved for the setup decisions given by the relaxation.

3.3 Decomposition and aggregation approaches

The idea of decomposition and aggregation approaches is to solve subproblems of
reduced size and then coordinate the individual solutions. Aggregation approaches
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Table 4 Decomposition and aggregation heuristics

Reference AG/DC SP SOL MOD

Blackburn and Millen (1984) DC (K) SLU MRP ML

Helber (1994) DC (K) SL DS ML, ST

Helber (1995) DC (K) SL DS ML, ST

Kirca and Kökten (1994) DC (K) SL DP SL

Newson (1975a) DC (K) SLU DP SL, ST

Newson (1975b) DC (K) SLU DP SL, ST, OV

Sambasivan and Schmidt (2002) DC (K) SLU EX SL, ST, MP

Tempelmeier and Helber (1994) DC (K) SL DS ML

Bourjolly et al. (2001) DC (T) SL TS SL, ST, SC

Boctor and Poulin (2005) AG (K) SL GR ML, ST (OV), MM

Özdamar and Bozyel (2000) AG (K) SI EX SL, ST, OV

Abbreviations
AG/DC Aggregation or decomposition approach (AG = aggregation, DC = decomposition,
K = item-based, T = period-based)
SP Subproblem that is solved in the case of decomposition (SI = single-item CLSP, SL = CLSP,
SLU = SLULSP)
SOL Solution method applied to solve the (sub)problem (DP = dynamic programing, DS = modified
Dixon–Silver heuristic, EX = exact solution, GR = greedy, MRP = capacitated MRP, TS = Tabu Search)
MOD Problem solved (ML = multi-level, SL = single-level, MM = multi-machine, MP = multi-plant,
OV = overtime, SC = setup carryover, ST = setup time)

reduce the problem size by omitting details first and breaking the solution down later.
Decomposition approaches split the original problem into subproblems and coordinate
the schedules later. In item-based decomposition capacity restrictions may be neglec-
ted for the subproblems. Time-based decomposition is mostly combined with rolling
schedules. The idea is to split the planning horizon into shorter (usually overlapping)
time windows. Once a solution is found for the current window, the solution is fixed
for some periods at the beginning of the window and the problem solved again for the
next time window. The F&R algorithms presented above are closely related. Table 4
gives an overview of decomposition and aggregation approaches.

Item-based decomposition approaches Newson (1975a,b) developed a heuristic to
the CLSP without and with overtime, respectively. The idea is to neglect the capa-
city constraint first, which decomposes the CLSP into single-item problems of the
SLULSP type. The latter are solved with the help of the Wagner–Whitin algorithm.
Then infeasible combinations of production schedules are eliminated from the set of
possible solutions. The reduced set is resolved until a feasible solution is achieved.

Kirca and Kökten (1994) developed an item-by-item heuristic to the CLSP. In an
iterative algorithm, one of the yet unscheduled items is selected with respect to a cost
criteria. In the next step, production quantities are bounded, with the intention to ensure
feasible plans for the remaining items. Finally, for the selected item the modified single-
item CLSP with inventory restrictions is solved via an algorithm based on dynamic
programing developed by Kirca (1990).
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Sambasivan and Schmidt (2002) solved a multi-plant CLSP with inter-plant
transfers by first solving SLULSPs and then applying a smoothing procedure which
shifts production quantities across plants and periods to remove capacity violations.
The uncapacitated subproblems are reformulated as shortest-route problems and sol-
ved exactly.

One decomposition principle for the MLCLSP is based on the assumption that the
only link between production levels is via derived demand. The implication is that
lot-sizing decisions for a given item may have an impact on the lot-sizing decisions
for all predecessor items and hence the arising cost. Thus, one way of reflecting these
interdependencies is via cost modification. Blackburn and Millen (1984) suggested
a set of algorithms for the MLULSP for assembly type bill-of-material structures.
Firstly, holding and setup cost are modified based on the assumption that the order
interval of a component is always an integer multiple of its successor. Secondly, based
on a low-level-code ordering of the items, independent SLULSPs are solved.

Tempelmeier and Helber (1994) solved the MLCLSP by decomposing the MLCLSP
into a sequences of CLSPs. They proposed four versions, which arise by combining
two ways to construct the CLSPs and two types of cost adjustments. The CLSPs are
solved with a modified version of the Dixon–Silver heuristic which includes a multi-
level feasibility check. Helber (1994, 1995) extended the algorithm to cover problems
with setup times.

Period-based decomposition approaches Bourjolly et al. (2001) extended the method
of Gopalakrishnan et al. (2001) for the solution of the CLSPL by applying it in a rolling
horizon fashion. Based on the idea of dynamic recursion, first the problem for period
1, then for periods 1 and 2, etc., are solved. The best schedule obtained for a given
subproblem is used to find the best schedule for the next subproblem. Setup carryovers
are introduced later by linking lots for an item, if it is produced in two consecutive
periods.

Aggregation approaches Özdamar and Bozyel (2000) proposed a planning approach,
which is based on the aggregation of the demand of all items in a period. Setups are not
accounted for explicitly but via a setup allowance percentage, which reduces capacity.
Finally, individual lots that respect the aggregated lot-sizes are determined via a filling
procedure. As a good estimation of the setup allowance is not trivial, the authors also
proposed an iterative approach, in which the estimate is updated based on setup time
required in the previous solution.

Boctor and Poulin (2005) solved an MLCLSP for a serial bill-of-material structure
with item-specific resources. With the underlying assumption that lot-sizes are the
same on each stage, they treated the multi-level problem by constructing a surrogate
single-level problem which is then solved by a greedy heuristic.

3.4 Metaheuristics

Metaheuristics are general strategies guiding the process to solve optimization
problems. They may make use of domain-specific knowledge in the form of
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problem-specific heuristics that are controlled by the upper level strategy. The hope
behind this approach is to gain flexibility and the ability to handle large and complex
problems. Metaheuristics are usually non-deterministic and may incorporate mecha-
nisms to avoid getting trapped in confined areas of the search space. Furthermore, the
search space may also include infeasible solutions, where the violation of constraints
is charged with penalty cost.

Metaheuristics belong to the group of improvement procedures starting from a
given initial solution. The two basic principles that largely determine the behavior of a
metaheuristic are intensification and diversification. The latter enhances the explora-
tion of the search space, while the former allows for the exploitation of the accumulated
search experience.

Most of the metaheuristics for lot-sizing problems use a direct solution represen-
tation, e.g. binary variables for setups, as well as continuous variables for production
decisions. Furthermore, some heuristics are restricted to finding a close-to-optimal
binary grid. The respective production plan can then be derived via linear progra-
ming, heuristic approaches or dual reoptimization, as described earlier. Alternatively,
in genetic algorithms, an indirect encoding can be used, e.g. by Kohlmorgen et al.
(1999). They used a priority rule for selecting items to build a feasible production
plan.

Metaheuristic algorithms range from simple local search procedures to complex
learning processes. Presently, more advanced metaheuristics use search experience
to guide the search. Examples include simulated annealing (SA), Tabu search (TS),
variable neighborhood search (VNS), genetic algorithms (GA) and ant colony opti-
mization (ACO). Table 5 gives an overview on papers dealing with metaheuristics for
capacitated lot-sizing problems.

Local search It is arguable whether local search (LS) itself is a metaheuristic. Howe-
ver, it is described here as all procedures based on neighborhood search (e.g. simu-
lated annealing) follow the principles of LS. Also called iterative improvement or
hill-climbing methods, LS methods are based on the idea that at least a local optimum
can be found by starting from a given solution and iteratively trying to find a better
one in an appropriately defined neighborhood. Here, the neighborhood is defined as
the set of solutions which can be obtained from the current one by performing simple
modifications, called moves. In the field of lot-sizing, possible moves include lotshif-
ting, lotsplitting, as well as elimination and creation of setups. LS procedures also vary
according to whether they explore the complete or only a part of the neighborhood of
a solution and the stopping criterion applied.

Haase (1994) applied a stochastic backward-oriented scheduling procedure based
on a randomized regret measure to solve the CLSPL. Haase (1998) embedded the
same method in an LS procedure where the regret measure is determined iteratively
resulting in the best solution value.

Chen and Chu (2003) combined an LR approach with LS. In every iteration, the
feasible solution constructed during the LR phase is further improved by changing the
values of two setup variables simultaneously during a subsequent local search.

As mentioned earlier, simulated annealing (SA), Tabu search (TS) or variable neigh-
borhood search (VNS) can be seen as extensions to LS as they tried to escape from
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Table 5 Metaheuristics

Reference NHS PB MOD

Chen and Chu (2003) LS ML

Haase (1994) LS SL, SC

Haase (1998) LS SL, SC

Hindi et al. (2003) VNS SL, ST

Barbarosoglu and Özdamar (2000) SA ML, ST

Berretta et al. (2005) SA, TS ML, ST, LT

Helber (1994) SA, TS GA ML, ST

Helber (1995) SA, TS GA ML, ST

Hung and Chien (2000) SA, TS GA ML, ST, BO

Özdamar and Barbarosoglu (1999) SA GA ML, ST, PM, OV, BO

Özdamar and Barbarosoglu (2000) SA ML, ST

Özdamar and Bozyel (2000) SA ML, ST, OV

Özdamar et al. (2002) SA, TS GA SL, ST, OV

Kuik et al. (1993) SA, TS ML

Salomon (1991) SA, TS ML

Salomon et al. (1993) SA, TS ML

Gopalakrishnan et al. (2001) TS SL, SC

Hindi (1996) TS SL

Hung et al. (2003) TS SL, ST, BO

Gutierrez et al. (2001) GA ML

Haase and Kohlmorgen (1995) GA SL

Hung et al. (1999) GA SL, ST, BO

Kohlmorgen et al. (1999) GA SL

Xie and Dong (2002) GA ML, ST, OV

Berretta and Rodrigues (2004) MA ML, ST

Pitakaso et al. (2006) ACO ML, ST

Abbreviations
NHS Neighborhood search (LS = local search, SA = simulated annealing, TS = Tabu search, VNS =
variable neighborhood search)
PB Population-based heuristics (ACO = ant colony optimization, GA = genetic algorithms, MA = memetic
algorithms)
MOD Problem solved (ML = multi-level, SL = single-level, BO = backorders, OV = overtime, LT = lead
times, PM = parallel machines, SC = setup carryover, ST = setup time)

local optima to find a better solution in yet unexplored parts of the solution space.
However, a sensible choice of the stopping criterion is required, when the algorithm
is designed to overcome local optima.

Variable neighborhood search VNS was proposed in Hansen and Mlaydenović
(1999, 2001). The basic idea is that the process consists of three phases of shaking,
local search and move. During the shaking phase, a neighboring solution is randomly
selected from each current solution. The size of the neighborhood increases if no
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improvement is made. The neighboring solution then becomes the starting point of an
LS method. Finally, the resulting solution is compared to the current. If it is beneficial,
the move is executed.

In their solution approach, Hindi et al. (2003) combined LR and VNS. Starting
with the solution obtained by the LR, a smoothing heuristic similar to that presented
by Trigeiro et al. (1989) is used to eliminate capacity infeasibility and to improve the
current best solution during the VNS.

Simulated annealing Simulated annealing was proposed for combinatorial optimi-
zation by Kirkpatrick et al. (1983) and can be seen as a combination of iterative
improvement and random walk. Neighboring solutions are randomly selected and the
search is guided by a decreasing probability to accept such a neighboring solution
even though it is worse than the current solution.

Kuik et al. (1993) combined their RH as described in Sect. 3.1 with an SA approach
for the MLCLSP without setup times. Helber (1995) investigated different cooling
schemes for SA approaches to determine a good setup pattern for the MLCLSP (see
also Helber 1994). Furthermore, he examined the impact of different initial solu-
tions on the overall solution quality. Further SA algorithms have been presented by
Salomon (1991), Salomon et al. (1993), Hung and Chien (2000), Barbarosoglu and
Özdamar (2000), Özdamar and Barbarosoglu (2000), Özdamar et al. (2002), Özdamar
and Bozyel (2000) and Berretta et al. (2005).

Tabu search Tabu search was first introduced by Glover (1986). It can be either a
deterministic or a stochastic procedure. The distinct characteristic giving the name to
Tabu search is that it uses so-called Tabu lists. Tabu lists store information on recent
moves to prevent their reversal. The Tabu list length is decisive for the size of the
section of the solution space that is searched. More advanced algorithms apply adaptive
Tabu lists, which depend on the quality of the recently visited solutions (improvement
or deterioration). To prevent the exclusion of beneficial moves, so-called aspiration
criteria can be defined (e.g. if the corresponding solution is the best found so far),
which allow Tabu moves to be executed.

Salomon et al. (1993) presented a TS and SA approach to solve the subproblems
of their CG heuristic for the CLSP without setup times. Hung et al. (2003) solved
the CLSP with backlogging with an improved TS method. Neighboring solutions
are generated by minor changes to the current setup pattern. The remaining LP is
solved to optimality and post-optimization information is used to conduct the next
move. Gopalakrishnan et al. (2001) developed a TS heuristic for the CLSP with setup
carryover using different move types for the sequencing and lot-sizing decisions. TS
was also applied by Salomon (1991), Kuik et al. (1993), Helber (1994, 1995), Hindi
(1996), Hung and Chien (2000), Özdamar et al. (2002), and Berretta et al. (2005).

Genetic algorithms Genetic algorithms belong to the category of evolutionary algo-
rithms (EA). They are population-based and incorporate a learning component via the
recombination of solutions.

Genetic algorithms are inspired by the principles of natural selection. They operate
simultaneously on a population of individuals encoded as “chromosomes” by creating

123



Dynamic capacitated lot-sizing problems 253

new generations of offsprings through an iterative process until some convergence cri-
terion is met. The best chromosome generated is then decoded, providing the corres-
ponding solution. The underlying reproduction process is mainly aimed at improving
the fitness of individuals, i.e. the cost to be minimized while exploring the solution
space. The algorithm applies stochastic operators such as selection, crossover and
mutation on an initially random population, to compute a new generation of indivi-
duals. A major challenge is to represent solutions in such a way that the offspring of
two different feasible solutions is again feasible.

Özdamar and Barbarosoglu (1999) introduced a hybrid algorithm, which incorpo-
rates SA and GA into an LR scheme. Haase and Kohlmorgen (1995) and Kohlmorgen
et al. (1999) implemented a parallel GA for the CLSP using an indirect encoding.
Here, a solution consists of a string of real values, which is decoded by a heuristic
to create a production plan. Further genetic algorithms have been proposed for lot-
sizing by Helber (1994, 1995), Hung et al. (1999), Hung and Chien (2000), Özdamar
and Bozyel (2000), Gutierrez et al. (2001), Özdamar et al. (2002) and Xie and Dong
(2002).

Memetic algorithms Other evolutionary algorithms that are similar to GA are meme-
tic algorithms (MA). Basically they combine LS heuristics with crossover operators of
genetic algorithms. Although population-based, memetic algorithms are not restrai-
ned by a biological metaphor. The aim is to exploit during the LS all the available
knowledge about the problem. This includes optimal solution properties, heuristics
and truncated exact algorithms. Berretta and Rodrigues (2004) proposed a memetic
algorithm for the MLCLSP based on the work of França et al. (1997).

Ant colony optimization Ant colony optimization techniques (ACO) are inspired by
the real world’s behavior of ant colonies. During their search for food, ants lay down
pheromone trails. Following ants usually choose the trail with the highest concentration
of pheromone. The reason is that satisfactory paths possess a higher concentration of
pheromone than unsatisfactory ones.

Pitakaso et al. (2006) combined an ant colony optimization algorithm with an F&R
heuristic for the MLCLSP. During the F&R heuristic only a subset of the constraints
and variables are considered relating to a reduced number of products and periods.
The corresponding MIP is solved to optimality and the binary variables are fixed. The
ACO uses virtual pheromone concentrations that have been built up during previous
iterations to single out promising subsets for the next iteration. Subsequently, the
pheromone information is updated.

3.5 Problem-specific greedy heuristics

Finally, a set of rather intuitive heuristic algorithms are the greedy heuristics (GH).
Starting from scratch and working period-by-period or starting from a given initial
solution, they usually increase lot-sizes successively to achieve cost savings. GH
usually consist of a feasibility routine and a priority index to select the best can-
didate for such a move. While the former ensures feasibility of the overall schedule,
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Table 6 Problem-specific greedy heuristics

Reference TGR DIR FEAS CC MOD

Dixon and Silver (1981) C F LA SM SL

Dogramaci et al. (1981) C F LA SM SL

Eisenhut (1975) C F FB PPB SL

Gupta and Magnusson (2005) C F FB CD SL, ST, SC

Lambrecht and Vanderveken (1979) C F FB SM SL

Maes and van Wassenhove (1986c) C F LA SM, LUC, LTC, PPB SL

Boctor and Poulin (2005) I (L4L) F FB PPB, MC, AC SL, ST, OV, MM

Clark and Armentano (1995) I (WW) F, B SP CPO ML, ST

Dogramaci et al. (1981) I (L4L) G SP LTC SL

França et al. (1997) I (WW) F, B SP CPO ML, ST

Günther (1987) I (L4L) F LA CPP (G) SL

Karni and Roll (1982) I (WW) G SP LTC SL

van Nunen and Wessels (1978) I (WW) B 1P CPP SL, ST, OV

Selen and Heuts (1989) I (L4L) F LA CPP (G) SL

Trigeiro (1989) I (L4L) F, B SP CPP (mod SM) SL, ST, OV

Abbreviations
TGR Type of greedy algorithm (C = constructive, I = improving, L4L = lot-for-lot, WW = Wagner–Whitin)
DIR Direction of greedy algorithm (B = backward, F = forward, G = considering the complete schedule
at each step)
FEAS Type of feasibility check (1P = lots are respectively shifted back one period—slack capacity is
shifted forward, FB = feedback, LA = look-ahead, SP = smoothing procedure)
CC Cost criterion for choice of item (AC = exact average cost savings, CD = cumulative demand, CPO =
cost per overtime reduction, CPP = cost per setup and production time, G = Groff, LTC = least total cost,
LUC = least unit cost, MC = marginal cost, PPB = part period balancing, SM = silver-meal)
MOD Problem solved (ML = multi-level, SL = single-level, MM = multi-machine, OV = overtime, SC =
setup carryover, ST = setup time)

i.e. that all demand is served without backlogging and capacity violation, the latter
serves as a cost criterion to manipulate scheduling decisions.

Two types of feasibility routines can be distinguished: feedback mechanisms and
look-ahead mechanisms. The former are usually used in backward routines and push
infeasible production quantities to earlier periods. Look-ahead mechanisms, normally
used in forward routines, compute a priori the minimum inventory needed to avoid
future capacity violations and schedule production lots accordingly. The priority index
is often some criterion taken from uncapacitated dynamic lot-sizing heuristics, such as
Silver Meal (SM), see Silver and Meal (1969, 1973), least unit cost (LUC), Groff (GR),
see Groff (1979), and part period balancing (PPB), see DeMatteis (1968). Table 6 gives
an overview.

Constructive heuristics One set of Greedy Heuristics—also referred to as single-
resource heuristics, common-sense or specialized heuristics—is constructive, i.e. they
generate a solution from scratch by adding components to an initially empty partial
solution, until the solution is complete. Most work period-by-period either forward
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or backward. They are myopic, so that at each step the current lot-size is increased
ignoring future cost. This myopic approach can have the beneficial effect of stability
if only the decisions for the first periods are implemented in a planning system with
rolling horizons. The first heuristic of this type was introduced by Eisenhut (1975).
However, the use of a feasibility routine is only suggested, rather than implemented
here. Further heuristics of this type include Lambrecht and Vanderveken (1979), Dixon
and Silver (1981) and Dogramaci et al. (1981).

Maes and van Wassenhove (1986c) suggested a so-called ABC heuristic. It consists
of 72 alternative algorithms based on the combination of (a) six a priori orderings of
items, (b) four cost criteria and (c) three search strategies. They suggested applying
various combinations and then choosing the best solution.

Gupta and Magnusson (2005) solved the CLSPL with setup times. First, they gene-
rated a feasible solution to the CLSP without setup times with the help of a greedy algo-
rithm. Then setup times are introduced under the assumption that a setup is carried over
for each period and a smoothing procedure is applied. Finally, a backward-oriented
improvement procedure is applied.

Improvement heuristics The other set of Greedy heuristics consists of improvement
heuristics that generate a better feasible solution from a usually infeasible inferior
starting solution by simple shifting routines. Heuristics of this type have been pre-
sented amongst others by van Nunen and Wessels (1978), Günther (1987), Selen
and Heuts (1989) and Trigeiro (1989). Selen and Heuts (1989) modified the priority
index used by Günther (1987) to account for setup time savings in case a complete
lot is shifted.

Boctor and Poulin (2005) solved a CLSP with multiple capacity restrictions. It
arises when a serial multi-stage system is aggregated to a single-stage system by
the assumption that lot-sizes are the same on each stage. They improved on a lot-
for-lot schedule. Initially, a feasible schedule is aimed to be achieved in a forward
pass. Through all stages, residual capacity after meeting demand is calculated. If it is
positive, the lot is further increased, if negative, production is shifted into earlier per-
iods. Finally, the solution is improved by lot merging (backward shifting of complete
lots).

Dogramaci et al. (1981) developed a “four-step algorithm”, which improves a lot-
for-lot schedule by shifting complete or partial lots to reduce setup cost, eliminating
capacity violations, and finally reducing holding cost. Karni and Roll (1982) initially
solved the SLULSP optimally for each item. Then they applied an algorithm similar
to the one presented by Dogramaci et al. (1981).

Clark and Armentano (1995) solved the MLCLSP. While the starting routine com-
putes a solution to the MLULSP by solving a series of SLULSPs along the product
structure, the smoothing procedure shifts production backward and forward to obtain
a feasible schedule. The priority rule is based on the cost changes incurred by the shift
(including penalty cost for the overall capacity violations) over the incurred reduction
in capacity violation. Penalty cost for capacity violation are gradually increased at each
shifting cycle. França et al. (1997) extended the algorithm by adding improvement and
merging. The smoothing procedure again shifts production quantities forward and
backward, but only if this decreases cost without violating the capacity restriction.
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A merging procedure shifts production quantities to periods with an existing setup
regardless of the capacity violation. Smoothing, improvement and merging are repea-
ted until a given number of iterations is reached.

Maes and van Wassenhove (1986a,b) compared the heuristics of Lambrecht and
Vanderveken (1979), Dixon and Silver (1981) and Dogramaci et al. (1981) when
applied on static and rolling horizon problems.

4 Conclusions

In this paper, we presented a structured survey of the broad literature on dynamic
capacitated lot-sizing. We focused on models and algorithms for problems of the
CLSP type, thus ignoring the literature in sequencing and detailed scheduling.

Five major streams of research were identified with respect to the general algorith-
mic approach. More than 100 papers from four decades were classified. In many cases,
our classification is arguable as authors often creatively combine ideas from different
streams of research. A substantial part of the discussed research was published during
the past 10 years. This shows how vivid this field of research is. Two streams that
appear to be particularly active are those that are based on mathematical programing
and those that work with metaheuristics. These two approaches offer the flexibility
to treat a broad variety of problems that arise in practice. They require and use the
increased computing power that is nowadays available. Most papers present numeri-
cal results to address the question how accurate and efficient the proposed method is.
However, it is extremely difficult to assess the relative performance of these methods
as no agreed-upon standard test bed has been established and accepted in the field and
it is doubtful whether such a data set can be established which covers all the different
lot-sizing problems arising in reality.

It appears to be impossible to make a precise statement about problem dimensions
that can be solved nowadays. It is our impression that the single-level CLSP without
setup-times is particularly well-solved by column-generation-based approaches for
any relevant problem size, see Haase (2005). Setup times, a setup carryover or multi-
level product structures can make the problem much harder to solve, in particular, when
capacity limits are tight and/or setups are costly. In these cases, problem instances with
103 − 104 binary setup variables can still be solved heuristically within seconds or a
few minutes. However, it can be difficult to assess the quality of these solutions as the
optimal objective function values are usually unknown.

Although some so-called advanced planning systems (APS) provide the possibi-
lity to address lot-sizing issues, the solution methods available in a typical APS are
often too generic and not always applicable to realistic problem sizes. Thus, dyna-
mic lot-sizing still appears to be an open question in the field of advanced planning.
Nevertheless, the authors’ experience shows that an increasing number of companies
is aware of the improvement potential inherent in lot-sizing and that planners are
open to the application of model-based solution approaches. Methods to solve the
MLCLSP or variants thereof are required as layout-type specific components in a hie-
rarchically structured advanced planning system. The objective of the current review
was to provide an overview over the methods that are currently available.
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Hansen P, Mlaydenović N (1999) An introduction to variable neighborhood search. In: Voß S, Martello S,
Osman I, Roucairol C (eds) Metaheuristics: advances and trends in local search paradigms for opti-
mization. Kluwer, Dordrecht, pp 433–458
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