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Abstract In this paper, a new model formulation for the dynamic multi-level
capacitated lotsizing problem with linked lotsizes is introduced. Linked lotsizes means
that the model formulation correctly accounts for setup carryovers between adjacent
periods if production of a product is continued in the next period. This model formula-
tion is a good compromise between the big-bucket and small-bucket model formulation
in that it inherits the stability of a big-bucket model and at least partially includes the
precise description of setup operations provided by a small-bucket model. A Lagran-
gean heuristic is developed and tested in a numerical experiment with a set of invented
data and a data set taken from industry. The solutions found show a good quality.

Keywords Lotsizing · Multi-level · Setup carry-over

1 Introduction

Many real-life production processes can only start after a setup of the resources with
associated setup time and/or setup costs has been completed. Depending on the layout
type of the production system (job shop, flow line, flexible manufacturing system,
etc.) a variety of different lotsizing problems may occur. Although in the standard
MRP approach which is the basis for most software systems lotsizing is only treated
in its simplest form, i.e. isolated for each item and without consideration of capac-
ity constraints, in the literature a large number of model variations and solution ap-
proaches have been proposed. The dynamic capacitated lotsizing models available
differ mainly in the extent to which lotsizing and sequencing decisions are considered
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simultaneously. Big-bucket model formulations such as the (single-level) capacitated
lotsizing problem (CLSP) and its multi-level extension, the multi-level capacitated lot-
sizing problem (MLCLSP), determine production quantities and periods only, without
consideration of the actual production sequence of the orders within a time period.
This type of modelling has the virtue that it allows a flexible re-sequencing of orders
within a period, at the cost, however, that a detailed production plan must be gen-
erated in a sequent planning step. On the other hand, a number of model variations
completely integrate lotsizing and sequencing decisions. These small-bucket models
are known as the discrete lotsizing and scheduling problem (DLSP), the continuous
setup lotsizing problem (CSLP) and the proportional lotsizing and scheduling prob-
lem (PLSP), among others. For recent detailed reviews on these models see e.g. Meyr
(1999), Staggemeier and Clark (2001) and Sürie (2005).

In order to ensure that an MLCLSP solution can be transformed into a feasible
production schedule, a minimum planned lead time of one period must be introduced
for each component product. In a multi-level bill-of-material (BOM) structure the
cumulated flow time from the beginning of the processing of the raw material to the
completion of the finished product is then equal to the number of levels in the BOM
structure. As for a period length of 1 week with a ten-level BOM structure this would
result in a minimum flow time of at least ten weeks, the cumulated flow time can only
be shortened by a reduction of the period length to, say, one day. However, if the time
buckets are too small, then only a small number of products will be produced within a
single period and in this case it will often happen that production in period t is contin-
ued in period t + 1 (and possibly periods t + 2, . . .) without an additional setup. The
standard big-bucket MLCLSP formulation counts this as a second setup, and therefore
with short period lengths provides only a rough estimate of the real number of setups.

In order to avoid this problem, one could apply a simultaneous lotsizing and
sequencing model. The main difference of such a small-bucket model compared to
big-bucket lotsizing models is that it correctly counts the number of setups. However,
this modelling advantage is achieved at the cost of a significant increase of complexity
and a high sensitivity to the change of the planning data which introduces nervousness
into the planning process. Setups are reduced, because the setup state can be preserved
across periods, whenever the same item is produced at the end of one period and at the
beginning of the next. This reduces setup costs as well as setup time and sometimes
is the only way to find a feasible solution.

From the perspective of a practical application, a good compromise between plan-
ning stability and precision of setup modelling is the capacitated lotsizing problem
with linked lot sizes (CLSP-L) (see Haase 1994, 1998). This is a big-bucket model
and therefore allows the production of any number of products within a period, but
it incorporates partial sequencing of the production orders in the sense that the first
and the last product produced in a period are part of a feasible solution of the model,
thereby preserving the setup state across periods. Besides being less complex than
a small-bucket model formulation, the CLSP-L has the virtue that it provides sig-
nificant planning flexibility to the planner, who as a reaction of unforeseen events
can change the sequence of those products which are not produced across the period
borders.
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Parallel to the numerous different modelling approaches a great variety of solution
procedures for lotsizing problems have been developed. However, despite the large
progress that has been achieved, at present exact solution methods are successful for
relatively small problems only. Thus, from a practical point of view, when hundreds
of products and dozens of periods are to be considered, heuristic solution methods are
required. Recent reviews of available modelling and solution approaches are provided
by Drexl and Kimms (1997), Salomon (1991), Staggemeier and Clark (2001), Karimi
et al. (2003) and Jans and Degraeve (2004).

In this paper, a new model formulation of the multi-level capacitated lotsizing prob-
lem with linked lotsizes (MLCLSP-L) is presented, which is the multi-level extension
of the CLSP-L. We propose a Lagrangean heuristic to solve this problem. The pro-
cedure is closely related to the heuristic of Tempelmeier and Derstroff (1996) (T&D)
which was designed for the MLCLSP. We now explicitly handle setup carryovers and
we consider a deterministic planned lead time of exactly one period. In capacitated
dynamic lotsizing models, lead times greater than one period (to account for congestion
at the resources, as applied in the MRP approach) do not make sense, as any feasible
solution guarantees that no congestion-related waiting times may occur. Additional
time such as transportation time can be accounted for by including the transportation
operation into the multi-level lotsizing model. We test the heuristic with respect to
data set B of Tempelmeier and Derstroff (1996), to a new data set of 1920 problem
instances and to a data set taken from industry with two production stages and a total
of 77 end items, 20 components and 70 periods.

In the remainder, we first present a model formulation of the MLCLSP-L. Thereby
we focus on the situation with a single setup carryover. Next, we describe a solution
procedure. Finally, the results of a computational test are presented.

2 Model formulation

We consider a generally structured multi-level BOM structure with several end prod-
ucts, each with dynamic external period demands over a finite planning horizon. Each
item is produced on a single resource with finite period capacity. A setup may cause
setup costs as well as setup time. If the production of the last item produced at the end
of period t is continued at the beginning of the next period t + 1, no additional setup
is required. The problem is to find the cost-minimal production plan.

In particular, the following assumptions are in effect:

– The planning horizon is divided into T periods (usually shifts or days).
– There are M resources with period-specific capacities.
– K items with dynamic external period demands are arranged in a general prod-

uct/process structure with a unique assignment of each item to a single resource.
The production of a product requires variable production time and fixed setup time.

– Setups are assumed to be sequence-independent.
– A setup is carried over from one period to the next at most once.
– Holding costs per unit and period are applied to the inventory at the end of a period.
– Backorders are not allowed.
– The planned lead time for each product is one period.
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– The objective is to minimize the sum of holding costs, setup costs, and variable
production costs.

We use the following notation.
Indices and sets:
k index of items, k = 1, 2, . . . , K
Km set of items k that are produced on resource m
m resource index, m = 1, 2, . . . , M
Pk set of predecessors of item k
Sk set of immediate successors of item k
t period index, t = 1, 2, . . . T .
Data:
akj Gozinto factor (quantity of item k which is

directly required to produce one unit of item j)
bm

t capacity of resource m in period t (in time units)
dkt external demand of item k in period t
Dkt total demand of item k in period t ;

Dkt = dkt +∑ j∈Sk
ak j · D jt ; Dk,T +1=0

ek echelon holding cost for item k
hk full holding cost for item k
� a very large number
pkt variable production cost for item k in period t
sk setup cost for item k
tbk variable production time per unit of item k
trk setup time for item k (on its associated resource)
ŷk initial inventory of item k at the beginning of the planning horizon.
Decision variables:
γkt binary setup (action) variable for item k in period t
ωkt binary setup state variable for item k in the beginning of period t
qkt production quantity of item k in period t ; qk,T +1 = 0;

note that a production lot may be composed of the
production quantities of two consecutive periods (i. e. qkt + qk,t+1).

The model formulation is in the line of the MLCLSP formulation of Billington et al.
(1986) and Tempelmeier and Derstroff (1996) and reads as follows:

Model MLCLSP-L

Z =
K∑

k=1

{
T∑

t=1

(sk · γkt +[pkt +ek · (T − t + 1)] · qkt )+(hk −ek) · qk1

}

−C (1)

subject to

t∑

τ=1
(qkτ −dkτ )+ ŷk ≥ ∑

j∈Sk

t∑

τ=0
akj ·q j,τ+1 k = 1, 2, . . . , K ; t = 0, 1, . . . , T

(2)
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∑

k∈Km

(tbk · qkt + trk · γkt ) ≤ bm
t m = 1, 2, . . . , M; t = 1, 2, . . . , T (3)

qkt ≤ (γkt + ωkt ) · � k = 1, 2, . . . , K ; t = 1, 2, . . . , T (4)
∑

k∈Km

ωkt ≤ 1 m = 1, 2, . . . , M; t = 1, 2, . . . , T (5)

ωkt ≤ γk,t−1 k = 1, 2, . . . , K ; t = 2, 3, . . . , T (6)

qkt ≥ 0 k = 1, 2, . . . , K ; t = 1, 2, . . . , T (7)

γkt , ωkt ∈ {0, 1} k = 1, 2, . . . , K ; t = 1, 2, . . . , T (8)

with

C =
K∑

k=1

T∑

t=1

hk · ((T − t + 1) · dkt − ŷk) +
K∑

k=1

T∑

t=1

(hk − ek) · Dkt (9)

The objective function (1) minimizes the sum of setup costs, variable production
costs and inventory holding costs. Constraints (2) are the inventory balance constraints,
which state that for each time interval [1, t] the cumulated production quantity that is
left over after subtraction of the external demand (left-hand side) must be sufficient to
cover the cumulated derived demands in the interval [1, t + 1] (right-hand side). Note
that the planned lead time for derived demands is one period. Constraints (3) are the
capacity constraints requesting that for each resource type m and period t the sum of
setup and production time for all products produced on that resource must not exceed
the available capacity. Constraints (4) ensure that production of item k takes place in
period t only if the resource is setup for this item by a setup operation during that
period (γkt = 1) or if the resource is already in the correct setup state at the beginning
of that period (ωkt = 1). Each resource can be only in one setup state at the beginning
of each period. This is requested by constraints (5). For a setup state to be carried over
to period t , there must have been a corresponding setup operation in period t − 1,
according to constraints (6). Finally, qkt must be non-negative and γkt and ωkt are
defined as binary variables. The derivation of the constant C is given in the Appendix.

Model MLCLSP-L reduces to the standard MLCLSP (with no setup carryovers),
if ωkt = 0 (k = 1, 2, . . . , K , t = 1, 2, . . . , T ). See also Tempelmeier and Derstroff
(1996).

3 Solution method

As model MLCLSP-L can be solved with standard mixed-integer programming soft-
ware only for very small problem sizes with no practical relevance, we propose a
heuristic solution approach based on Lagrangean relaxation.

The heuristic is composed of the following steps. First, through the Lagrangean
relaxation of the inventory balance constraints (2), the capacity constraints (3) and the
setup carryover constraints (5), the multilevel multi-item capacitated dynamic lotsizing
problem with setup carryovers is decomposed into multiple single-item uncapacitated
dynamic lotsizing problems with setup carryovers. These are solved with a dynamic
programming algorithm. The optimal solutions are then used to compute an actual
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lower bound. Next, the violations of the relaxed constraints by the current solution are
computed and used to adjust the Lagrangean multipliers applied in the next iteration.
Finally, a feasible solution to problem MLCLSP-L is constructed which provides an
upper bound to the optimal objective value. These steps are performed iteratively and
will be detailed in the sequel.

3.1 Computation of the lower bound

Introducing Lagrangean multipliers u (for the inventory balance constraints), v (for
the capacity constraints) and w (for the setup carryover constraints), we obtain the
relaxed model MLCLSP-L-LR.

Model MLCLSP-L-LR

MinimizeL(u, v, w) =
M∑

m=1

∑

k∈Km

T∑

t=1

⎡

⎢
⎢
⎣pkt + ek · (T − t + 1)

+

⎛

⎜
⎜
⎝

∑

j∈Vk

T∑

τ=t−1
τ>0

a jk · u jτ −
T∑

τ=t

ukτ

⎞

⎟
⎟
⎠+ vm

t · tbk

⎤

⎥
⎥
⎦ · qkt

+
M∑

m=1

∑

k∈Km

T∑

t=1

(
(sk + vm

t · trk) · γkt + wm
t · ωkt

)

+
M∑

m=1

∑

k∈Km

(hk − ek) · qk1

−
K∑

k=1

T∑

t=1

(hk − ukt ) · ((T − t + 1) · dkt − ŷk)

−
K∑

k=1

T∑

t=1

(hk − ek) · Dkt −
M∑

m=1

T∑

t=1

(vm
t · bm

t + wm
t ) (10)

subject to

t∑

τ=1

(qkτ − Dkτ + ŷk) ≥ 0 k = 1, 2, . . . , K ; t = 1, 2, . . . , T (11)

qkt ≤ (γkt + ωkt ) · � k = 1, 2, . . . , K ; t = 1, 2, . . . , T (12)

ωkt ≤ γk,t−1 k = 1, 2, . . . , K ; t = 2, 3, . . . , T (13)

qkt ≥ 0 k = 1, 2, . . . , K ; t = 1, 2, . . . , T (14)

γkt , ωkt ∈ {0, 1} k = 1, 2, . . . , K ; t = 1, 2, . . . , T . (15)
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Equations (11) ensure that for each item k the cumulated production until any period
t is large enough to fill the cumulated total demand up to that period. Constraints (12)
to (15) are identical to constraints (4) and (6) to (8) which have been repeated here for
better readability.

Problem MLCLSP-L-LR decomposes into K single-item uncapacitated dynamic
lotsizing problems with setup carryovers. As the constant part in the objective function,

F =
K∑

k=1

T∑

t=1

(hk − ukt ) · ((T − t + 1) · dkt − ŷk)

+
K∑

k=1

T∑

t=1

(hk − ek) · Dkt +
M∑

m=1

T∑

t=1

(vm
t · bm

t + wm
t ), (16)

does not influence the optimal lotsizing decision, it can be dropped. Thus, for product
k ∈ Km that is processed by resource m we obtain model SLULSP-Lk(u, v, w).

Model SLULSP-Lk(u, v, w)

Minimize Zk =
T∑

t=1

(ηkt · γkt + θkt · qkt + wm
t · ωkt ) (17)

subject to

t∑

τ=1

(qkτ − Dkτ + ŷk) ≥ 0 t = 1, . . . , T (18)

qkt ≤ (γkt + ωkt ) · � t = 1, . . . , T (19)

ωkt ≤ γk,t−1 t = 2, . . . , T (20)

qkt ≥ 0 t = 1, . . . , T (21)

γkt , ωkt ∈ {0, 1} t = 1, . . . , T (22)

with

ηkt = sk + vm
t · trk t = 1, 2, . . . , T (23)

θk1 = pk1 + ek · T +
⎛

⎝
∑

j∈Vk

T∑

τ=1

a jk · u jτ −
T∑

τ=1

ukτ

⎞

⎠

+vm
1 · tbk + hk − ek t = 1, 2, . . . , T

(24)

θkt = pkt + ek · (T − t + 1) +
⎛

⎝
∑

j∈Vk

T∑

τ=t−1

a jk · u jτ −
T∑

τ=t

ukτ

⎞

⎠

+vm
t · tbk t = 2, 3, . . . , T

(25)
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... t-2 t-1 t
setup

carry-over

setup

setup

carry-oversetup

...

(1)

(2)

(3)

(4)

Fig. 1 Different options to cover the demand of period t

As has been pointed out by Sox and Gao (1999), there exists an optimal solution
of problem SLULSP-Lk(u, v, w) such that each production lot consists of an integer
number of period demands. This means that in each period t it is either optimal to
cover the complete period demand by the preceding lot or to start a new lot in period t .

The difference between problem SLULSP-Lk(u, v, w) and the standard Wagner-
Whitin problem is that the setup state may be preserved across two adjacent periods.
Thus four alternative options to cover the demand in period t are available:

(1) Add the demand in period t to an existing production lot in a previous period
τ < t which has been installed with a new setup in period τ .

(2) Add the demand in period t to an existing production lot in a previous period
τ < t which has been installed based on a setup carryover from period τ − 1 to
period τ .

(3) Perform a setup in period t and produce the demand of period t .
(4) Perform a setup in the preceding period t − 1, carry over the setup state and

produce the demand of period t .

These alternatives are illustrated in Fig. 1, where the circles denote the period
demands, the black rectangles are setups and the white rectangles denote a production
lot without a setup.

Problem SLULSP-Lk(u, v, w) can be solved with a dynamic programming algo-
rithm similar to the Wagner–Whitin algorithm (Wagner and Whitin 1958; Sox and
Gao 1999; Briskorn 2006), whereby the demands of the first periods are adjusted by
the initial inventory. Let fkt be the optimal value for the t-period problem of item k.
Then the dynamic programming recursion reads as follows:

fkt = min

{

min
τ≤t ∧ ωkτ =0

{

ηkτ + θkτ ·
t∑

s=τ

Dks + fk,τ−1

}

,

min
τ≤t ∧ωkτ =1

{

ηk,τ−1 + θk,τ−1 · Dk,τ−1 + θkτ ·
t∑

s=τ

Dks + wm
τ + fk,τ−2

}}

(26)

with fk,−1 = fk0 = 0.
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With the solution of the single-item problems, the value of the lower bound is given
by Eq. (27).

L B =
M∑

m=1

∑

k∈Km

Zk − F (27)

3.2 Updating the Lagrangean multipliers

The Lagrangean multipliers are updated similar to Sox and Gao (1999). In any iteration
�, the subgradients for u, v and w are exponentially smoothed as follows:

ζ �
kt = α� ·

⎛

⎝
t∑

τ=1

(
dkτ − q�

kτ

)
+
∑

j∈Sk

t∑

τ=0

akj · q�
j,τ+1 − ŷk

⎞

⎠+ (1 − α�) · ζ �−1
kt

k = 1, 2, . . . , K ; t = 1, 2, . . . , T ; � = 1, 2, . . . , �max (28)

ξm�
t = α� ·

⎛

⎝
∑

k∈Km

(tbk · q�
kt + trk · γ �

kt ) − bm
t

⎞

⎠+ (1 − α�) · ξ
m,�−1
t

m = 1, 2, . . . , M; t = 1, 2, . . . , T ; � = 1, 2, . . . , �max (29)

ςm�
t = α� ·

⎛

⎝
∑

k∈Km

ω�
kt − 1

⎞

⎠+ (1 − α�) · ς
m,�−1
t

m = 1, 2, . . . , M; t = 1, 2, . . . , T ; � = 1, 2, . . . , lmax (30)

The exponential smoothing parameter is updated with α� = α�−1

α�−1+αred , where α1 =1

and αred = 0.25. Starting at 0, the multipliers ukt , vm
t and wm

t are updated at each
iteration using the respective subgradient and the current stepsize λ�:

u�
kt = max

{
0, u�−1

kt + λ�
u · ζ �

kt

}
k = 1, 2, . . . , K ; t = 1, 2, . . . , T (31)

vm�
t = max

{
0, v

m,�−1
t + λ�

v · ξm�
t

}
m = 1, 2, . . . , M; t = 1, 2, . . . , T (32)

wm�
t = max

{
0, w

m,�−1
t + λ�

w · ςm�
t

}
m = 1, 2, . . . , M; t = 1, 2, . . . , T (33)

As a result of initial computational tests we use the same stepsize λ�
u for the capacity

and inventory balance constraints but a different stepsize λ�
w for the setup carryover

constraints. Thus

λ�
u = λ�

v = δ� · U B�−1 − L B�

∑K
k=1
∑T

t=1(ζ̄
�
kt )

2 +∑M
m=1

∑T
t=1(ξ̄

m�
t )2

(34)
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and

λ�
w = δ� · U B�−1 − L B�−1

√∑M
m=1

∑T
t=1(ς̄

m�
t )2

(35)

with δ0 = 2 and δ� = δ�−1

2 , when the value of the lower bound has not been improved
for the last four iterations. The symbols ζ̄kt , ξ̄m�

t and ς̄m�
t denote the amounts of vio-

lations of the relaxed constraints which are equivalent to the big round brackets in
Eqs. (28), (29) and (30).

The upper bound of the previous iteration, U B�−1, is used as an estimate for the
unknown optimal value Z∗, while L B�−1 is the current lower bound computed with
the Lagrangean multipliers of the previous iteration. The procedure is terminated after
50 iterations, or alternatively, when the Lagrangean multipliers are sufficiently small.

3.3 Computation of the upper bound

In each iteration a feasible solution is generated based on the current solution of the
relaxed problem. Feasibility is established by considering the relaxed constraints one
by one.

Inventory balance constraints Compliance with the inventory balance constraints
can be ensured by processing the items according to their low level code, first comput-
ing the period-specific net demand and then solving the corresponding K problems of
the type SLULSP-Lk .

Setup carryover constraints The next step to reach a feasible solution to the original
problem is to ensure that there is not more than one setup carryover per resource and
period, i.e. that constraints (5) are met. For each resource m and in each period t ,
depending on the sum

∑
k∈Km

ωkt we proceed as follows.
If
∑

k∈Km
ωkt < 1, no setup carryover has been installed in t . Thus, if an item

k is produced both in period t − 1 and in period t and a setup is performed in both
periods, then the second setup is replaced by a setup carryover. This saves both setup
time and costs. Let Kγ = {k : k ∈ Km ∧ γk,t−1 + γkt = 2}. If Kγ �= ∅, then find
k∗ = argmaxk∈Kγ

{sk}. Set ωk∗t = 1 and γk∗t = 0, in order to maximize the setup cost
reduction.

If
∑

k∈Km
ωkt = 1, then exactly one setup carryover has been installed, because

ωkt is binary.
If
∑

k∈Km
ωkt > 1, more than one setup carryover has been installed on resource m.

In this case all but one setup carryover must be removed. This is done as follows. Let
Kω = {k : k ∈ Km ∧ ωkt = 1}, then find k∗ = argmaxk∈Kω

{sk}. For all k ∈ Kω\k∗
let ωkt = 0 and γkt = 1.

Capacity constraints From the current solution, it remains to remove the capacity
violations. To this end we interpret actual excess capacity demands of the lower bound
schedule as overtime. Further, we apply a smoothing procedure, which eliminates
overtime by iteratively shifting production across periods. Throughout this shifting
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procedure any violation of the setup carryover constraints and the inventory balance
constraints is avoided. The procedure terminates with the first feasible schedule or
when a maximum number of iterations has been reached.

The procedure works period by period, i.e. in each period all resources are considered
before moving on to the next period. Forward passes starting in period 1 and shift-
ing production quantities into future periods and backward passes starting in period
T shifting production into the past are applied alternately. During the first (forward)
pass, only cumulative overtime is eliminated. Like Tempelmeier and Derstroff (1996),
we found that the additional flexibility for the subsequent backward pass is beneficial.
At each move, the currently most beneficial item is selected. Single-item shifting is
applied first for all items. However, if this fails to eliminate all overtime, multi-item
shifts are applied. This results in four types of shifts: single-item forward, multi-item
forward, single-item backward and multi-item backward.

The single-item forward pass seeks to shift production quantities incurring over-
time in the current period into the future. The shiftable quantity is limited by the
respective lotsize, the available capacity in the target period and the restriction, that
no backorders may occur in any period. Note that more than the quantity needed to
eliminate overtime in the current period is shifted into the future, if possible, in order
to reduce holding costs and again to provide additional flexibility for the subsequent
backward pass. Capacity in the target period can be exceeded, if this leads to the
complete elimination of overtime in the current period. The single-item forward pass
ends when either all overtime has been eliminated or there are no shiftable production
quantities left.

The multi-item forward pass considers (complete) linear subsets of the corre-
sponding item’s successors. The maximum shiftable quantity is determined analo-
gously to the single-item shifts for the item furthest away in the bill of material and
then exploded to the item in the current period.

The single-item backward pass differs from the corresponding forward pass in sev-
eral aspects. First, backlogging does not have to be avoided for the item considered,
but instead for the predecessors, for which derived demand depends on the produc-
tion period of the selected item. Second, additional overtime in the target period is
accepted, if this leads to the elimination of a complete lot and hence to the reduction
of setup time and costs. Third, additional cumulated overtime can be incurred.

The multi-item backward pass shifts backwards the production quantities of all
predecessors along with the selected item, but only into the respectively previous
period. This is done by first computing the quantity of the selected item which has to
be shifted to eliminate overtime on the corresponding resource in the corresponding
period. Then the quantities that have to be shifted to avoid backorders are computed
along the bill of material structure.

In the MLCLSP without setup carryovers, there are only two possibilities with
respect to the setup state in the target period. Either a setup already exists or it has to
be installed, hence incurring setup costs. By contrast, with setup carryovers, four dif-
ferent cases must be considered when shifting production into period t . First, if there
is no setup, neither in the current nor in the preceding period (γk,t−1 = γkt = 0), a
new setup is installed in period t . Second, if there is a setup in t (γkt = 1), then nothing
is changed. Third, if there is a setup for item k in the preceding period (γk,t−1 = 1)
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and there is no setup carryover to period t for a different item i �= k, either there is
a setup carryover for item k to t or it can be installed. Finally, if a setup carryover
could be installed (γk,t−1 = 1) but there exists one for a different item i (ωi t = 1),
the carryover of i is replaced, if sk > si or else a new setup is installed for item k in
period t .

In the origin period, a setup can be eliminated in the MLCLSP, if the complete lot is
shifted, hence reducing setup costs. Again, there are more options in the MLCLSP-L.
First, if there is a setup in t and no carryover to t +1, the setup can be eliminated. Sec-
ond, if there is a setup in t and a setup carryover to period t +1 (γkt = 1, ωk,t+1 = 1),
then the setup cannot be eliminated, but only shifted to the next period t + 1, if the
remaining capacity in t + 1 suffices. We also search for an alternative setup carryover
for a different item i with (γi t = ωi,t+1 = 1 and ωi,t+2 = 0). Then the corresponding
setup costs are avoided. Again, this can only be done, if the remaining capacity in t +1
after removing the setup for i suffices to cover the setup time of k. Third, if there is no
setup in t , but a setup in t −1 and a carryover to t , the carryover to t is eliminated. The
setup in t − 1 can be eliminated, if qk,t−1 = 0 and an alternative carryover is installed
as explained above, if possible.

The resources are considered according to the production stage of the correspond-
ing items, such that multi-item shifts are favored. Hence, during forward passes first
machines producing items with many successors are selected while during backward
passes those producing items with few successors are prioritized. We also tested work-
ing resource by resource and in opposite ordering in all possible combinations. How-
ever, all of these combinations proved inferior. This corresponds to Tempelmeier and
Derstroff (1996) findings for the MLCLSP.

At each move, items are selected according to the corresponding incremental costs,
i.e. with the highest cost reduction or the lowest cost increase. The relevant costs are
those modified by the Lagrangean multipliers. The aim is to find a feasible solution
close to the solution of the relaxed problem. Additionally, cost savings are divided by
the total amount of overtime that is eliminated and cost increases multiplied likewise.

3.4 Postoptimization

Following Tempelmeier and Derstroff (1996), we apply several procedures for postop-
timization. First, partial or entire lots are shifted into a future period t in order to avoid
holding costs and possible setup costs. This is possible, if in period t a production is
scheduled (qkt > 0) and there is inventory at the end of period t − 1 (yk,t−1 > 0) and
there is unused capacity available in period t (bm

t −∑k∈Km
(trk · γkt + tbk · qkt ) > 0).

Second, complete lots are shifted to prior periods as to avoid setup costs, if this
is possible and beneficial. Both procedures are applied alternately until no further
improvement is achieved.

An additional postoptimization procedure seeks to improve setup decisions. Each
resource is considered in a period-by-period approach, starting with period 1. If no
setup carryover is installed, we search for a possible setup carryover in the same man-
ner as above. If γk,t−1 = γkt = 1 and ωk,t+1 = 0, a setup carryover can be installed
for k in t , hence eliminating the corresponding setup. Out of the possible candidates,
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item k is selected, which incurs the maximum setup costs (again with respect to the
modified costs of the Lagrangean relaxation).

4 Computational study

In order to test the quality of the proposed heuristic, we performed a computational
study using a large number of invented problem instances and one data set taken from
industrial practice.

Invented data. We first consider a subset of the test instances introduced by Temp-
elmeier and Derstroff (1996), namely the 600 problem instances of class B with a
non-cyclic resource graph, as depicted in Fig. 2. This is the only test set with setup
times for which the authors compared theirs results to the exact solutions.

All instances comprise ten items, three resources and six periods. The 600 instances
were generated combining:

1. One general and one assembly product structure
2. Three demand structures with varying coefficients of variation (CV)
3. Five setup cost structures resulting in different profiles of average times-between-

orders (TBO, average length of a production cycle)
4. Five capacity utilization profiles
5. Two setup time profiles
6. Two resource assignment profiles.

Unlike the original data specification, for each component item we assumed a lead
time of one period. Thus, end items can be produced earliest one period after their com-
ponents have been completed. To achieve feasibility, two production periods without
external demand have been added at the beginning of the planning horizon.

The exact solutions of these problems were computed using CPLEX on a Unix
workstation using eight UltraSPARC-III-processors in parallel with 0.9 GHz each.
The heuristic was run on a standard Pentium, 2.8 GHz, 1 GB RAM. The average com-
putation time per problem instance is about 0.018 seconds. In Table 1 the percentage
deviations of the heuristic solution values from the exact values are presented, broken
down according to utilization profile, TBO profile, and coefficient of variation of the
demand series.

New invented data. To further test our heuristic, we generated a test set of 1,920
problems instances with increased size similar to the way Tempelmeier and Derstroff

1

1098765

432

R1

R2

R3

1

1098

765

432

Fig. 2 General and Assembly Product Structure for class B
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Table 1 Average Percentage Deviations from Optimality

TBO profile Utilization profile

CV 90(%) 70(%) 50(%) 90/70/50(%) 50/70/90(%) Mean(%)

1 0.1 0.00 0.00 0.00 0.00 0.00 0.00

0.4 0.00 0.01 0.16 0.06 0.86 0.22

0.7 0.00 0.74 2.77 3.45 0.85 1.56

Mean 0.00 0.25 0.98 1.17 0.57 0.59

2 0.1 1.06 1.03 0.88 0.68 1.01 0.93

0.4 1.55 1.88 1.23 1.04 2.17 1.58

0.7 1.29 1.39 1.93 2.06 2.86 1.91

Mean 1.30 1.43 1.35 1.26 2.01 1.47

3 0.1 4.39 1.15 2.62 4.25 2.25 2.93

0.4 5.72 3.53 1.83 3.10 5.24 3.88

0.7 3.00 3.01 3.52 2.64 3.86 3.21

Mean 4.37 2.56 2.65 3.33 3.78 3.34

4 0.1 2.56 1.11 3.80 4.18 2.03 2.73

0.4 2.21 1.44 3.03 3.37 1.94 2.40

0.7 1.32 1.39 1.38 1.87 1.24 1.44

Mean 2.03 1.31 2.74 3.14 1.73 2.19

5 0.1 3.73 3.43 1.06 1.99 3.47 2.74

0.4 2.62 2.06 2.63 2.85 2.57 2.55

0.7 1.20 0.69 3.02 1.89 2.00 1.76

Mean 2.52 2.06 2.23 2.24 2.68 2.35

Overall mean (600 problem instances) 1.99

Table 2 Dimensions of the new
test problems

Class � Products � Resources � Periods � Instances

1 10 3 4 480

2 10 3 8 480

3 20 6 8 240

4 20 6 16 240

5 40 6 8 240

6 40 6 16 240

(1996) created the test set indicated above. This new test set is divided into six classes
with the dimensions given in Table 2.

Furthermore, for each class a general (G) and an assembly (A) product structure
is combined with respectively an non-cyclic (N) and a cyclic (C) process structure.
Three demand profiles were generated with coefficients of variation of 0.2, 0.5 and 0.8
respectively. Four TBO profiles were used for classes 1 and 2, and two TBO profiles
for classes 3 to 6. Furthermore, we considered two setup profiles and three capacity
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Table 3 Average deviation per
class Class UBheuristic−LBCPLEX

LBCPLEX (%)

1 1.39

2 4.75

3 13.76

4 21.90

5 11.29

6 16.61

Overall mean 9.47

Table 4 Average deviation per
setup time and capacity profile Capacity profile Setup time profile UBheuristic−LBCPLEX

LBCPLEX (%)

1 1 11.57

1 2 11.51

2 1 10.99

2 2 12.34

3 1 7.41

3 2 7.86

4 1 8.33

4 2 8.70

5 1 7.90

5 2 8.01

Overall mean 9.47

profiles. A detailed description of the test problems are available for download from
http://www.scmp.uni-koeln.de/publikationen/ORS2008MLCLSPL.zip.

Although the dimensions of these new problems have been only moderately
increased, in many cases we were not able to compute the exact solution within a
time limit of one hour on the above-mentioned workstation with eight parallel Ult-
raSPARC-III-processors. The average difference between upper and lower bound rel-
ative to the upper bound computed over all problem instances found with CPLEX was
0.1263%. The average deviation of the heuristic is given as the difference between the
upper bound found with the heuristic and the lower bound computed with CPLEX over
the lower bound computed with CPLEX. The average time required by the heuristic
was 0.15 CPU seconds.

For four instances in class 6, no feasible solution was found. In Tables 3 – 6, for
the remaining 1,914 instances the results are broken down with respect to setup time
and capacity profile, TBO profile, and product and process structure.

From the numerical results we draw the following conclusions. It appears that the
heuristic performs better for problem instances with less periods compared to the
number of products (see Table 3). In addition, the heuristic works better for problems
with higher utilizations than for problems with low utilized resources (see Table 4).
Note that capacity profiles 1 and 2 represent a target utilization of 50 and 70%, while
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Table 5 Average deviation per
TBO profile TBO profile UBheuristic−LBCPLEX

LBCPLEX (%)

1 18.65

2 3.50

3 7.85

4 1.45

Overall mean 9.47

Table 6 Average deviation per
product and process structure
and demand profile

Product/process structure CV UBheuristic−LBCPLEX

LBCPLEX (%)

Assembly/non-cyclic 0.2 2.71

Assembly/non-cyclic 0.5 7.42

Assembly/non-cyclic 0.8 4.68

Assembly/cyclic 0.2 2.66

Assembly/cyclic 0.5 7.59

Assembly/cyclic 0.8 5.73

General/non-cyclic 0.2 10.94

General/non-cyclic 0.5 9.51

General/non-cyclic 0.8 18.74

General/cyclic 0.2 12.65

General/cyclic 0.5 9.54

General/cyclic 0.8 21.69

Overall mean 9.47

the remaining capacity profiles include utilizations up to 90%. Table 5 shows that the
heuristic has a superior performance when the setup/holding cost ratio differs among
the products (TBO profiles 2 and 4) compared to identical TBOs for all products (TBO
profiles 1 and 3). Finally, its appears that the heuristic performs better for assembly
structures than for general product structures.

Industrial data. The second set of data was taken from a company producing hair
care products. There are two production stages. In a first processing step a fluid (gel,
creme) is mixed in large tanks. Then on the second stage it is filled into cans or bottles.
The end product is defined by the content and size of the can or bottle.

The product structure is shown in Fig. 3, where each node represents a fluid (F) or a
finished product (P). All fluids are produced on resource M (mixer). The finished prod-
ucts are produced on resource L (filling line). The problem data are outlined in Table 7.

A planning horizon of 70 periods was considered. For the given data, we tried to
solve model MLCLSP-L on the same Unix workstation as above. After 12 h of CPU
time, CPLEX found a solution within a MIPGAP (maximum allowed relative differ-
ence between upper and lower bound) of 6% (the originally targeted MIPGAP of 5%
was not reached within 72 h). Within 63.72 s, the proposed heuristic (run on the PC)
found a feasible solution, which is 0.58% below the solution found by CPLEX. Thus,
for the considered industrial case the heuristic provides a solution which is at most
5.42% above the optimum.
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P1 P11P10P9P8P7P6P5P4P3P2 P12 P20P19P18P17P16P15P14P13

P21 P30P29P28P27P26P25P24P23P22 P31 P40P39P38P37P36P35P34P33P32

P41 P50P49P48P47P46P45P44P43P42 P51

P60P59

P58P57P56P55P54P53P52

P61 P70P69P68P67P66P65P64P63P62 P71 P77P76P75P74P73P72

F1 F8F7F6F5F4F3F2

F11F10F9

F12

F20F19F18F17F16F15

F14F13

L

M

L

M

L

M

L

M

Fig. 3 Product structure for the industrial example

Table 7 Data for the industrial
example

Finished products Fluids

Number of items 77 20

Setup costs 37.51 225.06

Holding costs (per week and unit) 0.00595 − 0.02237 0.005

Production time (minutes per unit) 0.02082 − 0.02562 0

Setup time (min) 15 90

5 Conclusions and future work

We have formulated an extension of the well-known dynamic multi-level lotsizing
model (MLCLSP) that also accounts for setup carryovers. For the solution of this
model we proposed a Lagrangean heuristic. The quality of the heuristic has been
tested based on a data set with 600 small problem instances from the literature, a
new data set containing 1,920 problem instances with increased size, and with data
taken from industry. It appears that the heuristic is able to generate solutions with
good quality. However, it must be noted that due to the complexity of the problem the
computation of benchmark results is extremely time-consuming. Future works will be
devoted to broadening the computational basis of the numerical evaluation.

Appendix

We will follow Billington et al. (1983, 1986) and Tempelmeier and Derstroff (1996)
in eliminating the inventory variable ykt from the model. The inventory of item k at
the end of period t is equal to the initial inventory plus cumulative production less
cumulative demand:
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ykt =
t∑

τ=1
(qkτ −dkτ )− ∑

j∈Sk

t∑

τ=0
akj · q j,τ+1 + ŷk k = 1, 2, . . . , K ; t = 1, . . . , T

(36)
The total holding costs are then

K∑

k=1

T∑

t=1

hk ·
⎛

⎝
t∑

τ=1

(qkτ − dkτ ) −
∑

j∈Sk

t∑

τ=0

akj · q j,τ+1 + ŷk

⎞

⎠ ,

which can be rewritten as the sum of

K∑

k=1

T∑

t=1

hk ·
(

ŷk −
t∑

τ=1

dkτ

)

, (37)

which is a constant, and

K∑

k=1

T∑

t=1

hk ·
⎛

⎝
t∑

τ=1

qkτ −
∑

j∈Sk

t∑

τ=0

akj · q j,τ+1

⎞

⎠ (38)

Rearranging (38) leads to

K∑

k=1

T∑

t=1

hk ·
⎛

⎝
t∑

τ=1

qkτ −
∑

j∈Sk

t+1∑

τ=1

akj · q jτ

⎞

⎠

=
K∑

k=1

T∑

t=1

t∑

τ=1

⎛

⎝hk · qkτ −
∑

j∈Sk

hk · akj · q jτ

⎞

⎠−
K∑

k=1

∑

j∈Sk

T∑

t=1

(
hk · akj · q j,t+1

)

As qT +1 = 0, this is equal to

K∑

k=1

T∑

t=1

t∑

τ=1

⎛

⎝hk · qkτ −
∑

j∈Sk

hk · akj · q jτ

⎞

⎠−
K∑

k=1

∑

j∈Sk

T∑

t=2

(
hk · akj · q jt

)

Changing from the perspective of the predecessor to that of the successor results in

=
K∑

k=1

T∑

t=1

t∑

τ=1

qkτ ·
⎛

⎝hk −
∑

j∈Pk

h j · a jk

⎞

⎠−
K∑

k=1

T∑

t=2

⎛

⎝
∑

j∈Pk

h j · a jk

⎞

⎠ · qkt (39)

Let ek be the marginal holding cost coefficient for item k defined as

ek = hk −
∑

j∈Pk

a jk · h j .
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Then Eq. (39) dissolves to

K∑

k=1

T∑

t=1

t∑

τ=1

ek · qkτ −
K∑

k=1

T∑

t=2

(hk − ek) · qkt (40)

The second term (−∑K
k=1
∑T

t=2 (hk − ek) · qkt ) is subtracted, as the production of a
successor item reduces the inventory of its components one period earlier than it adds
to its own inventory. Throughout the lead time, which is one period, the respective
quantity of the components is thus regarded as work in process inventory and does not
incur holding costs.

Note that the only reason for the earlier production of predecessor items is that
derived demand arises before the end of a period. This does not only effect a reduction
of holding costs in Eq. (40), but also an increase in holding costs caused by initial
inventory (see Eq. (37)) and earlier production of predecessors.

Throughout the planning horizon, cumulative production equals cumulative total
(external and derived) demand. Thus, when there is no inventory at the end of the
planning horizon, we have

T∑

t=1

qkt =
T∑

t=1

Dkt , (41)

With positive initial inventory, cumulative total demand is computed as follows:

Dkt

= max

⎧
⎨

⎩
0, dkt +

∑

j∈Nk

ak j · D j,t+1−max

⎧
⎨

⎩
0, ŷk −

t−1∑

τ=0

⎛

⎝dkτ +
∑

j∈Nk

ak j · D j,τ+1

⎞

⎠

⎫
⎬

⎭

⎫
⎬

⎭

(42)

Using (41), the second (cost reduction) term in (40) can be rearranged to

K∑

k=1

T∑

t=2

(hk − ek) · qkt =
K∑

k=1

(hk − ek) ·
(

T∑

t=1

Dkt − qk1

)

=
K∑

k=1

T∑

t=1

(hk − ek) · Dkt −
K∑

k=1

(hk − ek) · qk1. (43)

Again, the first part of Eq. (43) is constant and the second variable. Adding the former
to (37) yields

K∑

k=1

T∑

t=1

hk ·
(

ŷk −
t∑

τ=1

dkτ

)

−
K∑

k=1

T∑

t=1

(hk − ek) · Dkt

= −
K∑

k=1

T∑

t=1

hk · ((T − t + 1) · dkt − ŷk) −
K∑

k=1

T∑

t=1

(hk − ek) · Dkt . (44)
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Replacing the cost reduction component in Eq. (39) by the variable part of Eq. (43)
yields

K∑

k=1

(
T∑

t=1

ek · (T − t + 1) · qkt + (hk − ek) · qk1

)

(45)

Using (44) and (45) to replace holding costs and Eq. (36) to replace the inventory
variable, the objective function is

Z =
K∑

k=1

T∑

t=1

(sk · γkt + ek · (T − t + 1) · qkt ) +
K∑

k=1

(hk − ek) · qk1 − C (46)

with

C =
K∑

k=1

T∑

t=1

hk · ((T − t + 1) · dkt − ŷk) +
K∑

k=1

T∑

t=1

(hk − ek) · Dkt . (47)
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