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Abstract Modern advanced planning systems offer the technical prerequisites for
an allocation of “available-to-promise” (ATP) quantities—i.e. not yet reserved stock
and planned production quantities—to different customer segments and for a real
time promising of incoming customer orders (ATP consumption) respecting allocated
quota. The basic idea of ATP allocation is to increase revenues by means of customer
segmentation, as it has successfully been practiced in the airline industry. However,
as far as manufacturing industries and make-to-stock production are concerned, it is
unclear, whether, when, why and how much benefits actually arise. Using practical data
of the lighting industry as an example, this paper reveals such potential benefits. Fur-
thermore, it shows how the current practice of rule-based allocation and consumption
can be improved by means of up-to-date demand information and changed customer
segmentation. Deterministic linear programming models for ATP allocation and ATP
consumption are proposed. Their application is tested in simulation runs using the
lighting data. The results are compared with conventional real time order promising
with(out) customer segmentation and with batch assignment of customer orders. This
research shows that—also in make-to-stock manufacturing industries—customer seg-
mentation can indeed improve profits substantially if customer heterogeneity is high
enough and reliable information about ATP supply and customer demand is available.
Surprisingly, the choice of an appropriate number of priority classes appears more
important than the selection of the ATP consumption policy or the clustering method
to be applied.
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1 Introduction

One of the biggest challenges in airline industry is to avoid that a hasty, high margin
business class customer cannot get a seat because a low price economy customer
has booked the last one a few minutes ago. Revenue management has developed
techniques to treat such problems adequately, e.g. to establish and fence off customer
segments in form of booking classes and to determine booking limits. The situation is
different in make-to-stock (MTS) supply chains of consumer goods industries where
final item stocks are built up on basis of forecasts and customer requests are served from
this stock. But not too different. Here, too, exist more important and less important
customers yielding higher and lower profit margins. Here, too, occur shortages. And
a service level of 98 percent also implies that two percent of the customers have not
been served as desired. This may concern several dozens of orders per day, for a single
item only. “Not as desired” not necessarily means that the customers are not supplied
at all. However, late deliveries lead to customer annoyance and customer migration in
the long term. Thus here, too, it is important to consider carefully who gets its goods
on time and—even more crucially—who does not.

Actually “order promising”, i.e. communicating the customer a reliable and
hopefully soon delivery date, is the planning task to be considered. However, in
MTS situations order promising also means deciding about— and for short-term
orders simultaneously releasing—delivery (see Fleischmann and Meyr 2003a). Thus,
these decisions about actual deployment can hardly be re-thought. In order to promise
reliable delivery dates, modern enterprise resources planning (ERP) systems or advan-
ced planning systems (APS) build on up-to-date information about stock on hand and
planned supply of the distribution centers that both not yet have been assigned to
customers. Such unreserved quantities are called “available-to-promise”(ATP). Since
production has to be planned on basis of forecasts (push concept implied by MTS),
unused production capacity, sometimes called “capable–to–promise”, and stock re–
filling are no more concern at this point in time. The information about the planned
supply of the distribution centers either stems from the short–term master production
schedule of a single, corresponding production plant or—for a longer preview—even
from a mid–term production and delivery plan (“master plan”) of the overall supply
chain (see e.g. Kilger and Meyr 2008).

Usually two different modes of promising ATP to incoming customer orders are
distinguished, “batch order processing” and real time “single order processing” (see
e.g. Ball et al. 2004; Fleischmann and Meyr 2003a; Pibernik 2005). In batch mode,
an order is not promised immediately upon request, but held back. It is then assigned
to ATP inventories together with several other orders in a “batch”. Thus, there must
be enough time to gather these orders and a customer must be willing to wait for an
answer. Often, this “batching horizon” comprises several hours or a whole day.

Sometimes customers expect an immediate answer for their order query. In this
case batching of orders is not possible. Thus, each single order has to be processed in
real time and ATP is consumed in a first-come-first-served (FCFS) manner.
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Customer segmentation, allocation planning 231

As addressed in the airline example above, in shortage situations, where demand
is higher than capacities—i.e. in this case than ATP inventories—single order proces-
sing entails the danger of promising scarce inventory to the wrong customers, e.g. to
less important customers or to customers showing smaller profit margins. Allocation
planning, as propagated by APS vendors like i2 and SAP (see Kilger and Meyr 2008),
promises to be a way to improve real time single order processing by reserving shares
of the ATP, the so-called “quotas” or “allocated ATP”, for important customers in the
medium term and afterward promising orders with respect to these allocated quotas
in the short term. That means ATP is held back in anticipation of later arriving, more
profitable orders even if a less profitable order already requests this stock. Such an
allocation of quotas shall take advantage of a customer segmentation into low and
high priority customers as it has shown to be successful in airline industries. This
leads to a two step ATP allocation and ATP consumption process, in the following
called “allocation planning and ATP consumption” (AP&C).

It is important to note that such a segmentation already appears useful if the same
product is sold for different profits or with different priorities. For example, various
sales channels might generate different profit margins because sales prices vary due to
country-specific tax levels or due to differing transport costs. Or in-house customers
might show other strategic importance for a company than external customers. All in
all, the AP&C approach promises to be useful for companies which produce storable
standard products in high volume on an MTS basis and whose multitude of customers
are heterogeneous in the above sense. Then, there is the hope that the same or even
better profits as in batch mode can be achieved, even though a customer gets his answer
immediately.

The intention of this paper is to structure the AP&C process and to reveal the
potential benefits of allocation planning as compared to the common practices of FCFS
single order processing or batch order processing. However, before the contribution
of the paper can be specified in some more detail, a brief review of current practices
and existing literature is necessary.

1.1 Literature review

For a literature review we will concentrate on ATP support for commercial (ERP and)
advanced planning systems and especially discuss papers which tackle ATP allocation
or consumption in more detail. Note that we focus on MTS situations, i.e. the ATP
supply of finished items is assumed to be fixed because it bases on the stock on hand
and on the production quantities that have already been planned in the short-term
production scheduling module of the APS and/or a mid–term master planning module
(see e.g. Meyr et al. 2008). This rules out literature on make–to–order (MTO) and
assemble–to–order (ATO) supply chains, which most of the due date setting (see e.g.
Keskinocak and Tayur 2004) and batch order promising models (see e.g. Chen et al.
2001, 2002) have been developed for. In these situations customers are usually willing
to wait longer for an order promise than in MTS supply chains. This also rules out
inventory rationing (see e.g. de Vericourt et al. 2002), which explicitly allocates stocks
on hand to several customer classes, but assumes that the refilling of the stock can still
be influenced by means of orders. Finally, it also excludes revenue management (see
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e.g. Talluri and Van Ryzin 2004), where “capacities” are assumed to be perishable
and thus stocks cannot be held at all. A deeper discussion of the relationship between
these various, but similar types of models and their applications in industry would
go beyond the scope of this paper. Instead, the reader who is interested is referred to
Quante et al. (2008).

Demand fulfillment and order promising on the basis of ATP information is one
of the most popular planning tasks (see Kilger and Wetterauer 2008, Table 16.1)
covered by commercial APS. A general overview regarding APS and the role of ATP
therein is given by Fleischmann and Meyr (2003b) and Stadtler and Kilger (2008).
Fleischmann and Meyr (2003a) classify different situations of demand fulfillment with
respect to the three order penetration points MTO, ATO and MTS. They also point
out that—as opposite to MTO and ATO — in MTS situations it often is sufficient
to consider each product separately. Pibernik (2005) also characterizes different ATP
applications and models. He implicitly uses a similar categorization by distinguishing
the operating mode (real time/batch), the availability level of goods and the interaction
with manufacturing planning, where the two latter ones are usually used to characterize
the different order penetration points. ATP software modules of several APS vendors
are presented by Meyr et al. (2008). Dickersbach (2004, Sect. 11) and Knolmayer
et al. (2002, Sect. 3.1.5), however, put a special emphasis on the Global ATP module
of SAP’s advanced planner and optimizer (APO).

The paper of Kilger and Meyr (2008) is basic for the following sections because it
presents the implementation of demand fulfillment in APS in a sufficiently high detail.
Kilger and Meyr (2008) especially describe the simple rules that are usually applied
in APS for both allocation planning (Sect. 9.4) and ATP consumption (Sect. 9.5).
Whereas their argumentation mainly bases on experiences with software of the APS
vendor i2, Dickersbach (2004, Sects. 11.2 and 11.3) shows that a similar approach
has also been favored by SAP/APO. Allocation planning rules, for example, quote
an overall ATP quantity to different customer classes on basis of priority rankings,
with respect to some pre-defined fixed shares or proportional to the original forecasts
of different customers or markets. ATP consumption rules, for instance, allow access
to allocated ATP of an order’s corresponding class or to ATP of classes showing
lower priority. If customers have not been segmented—and thus the above allocation
planning is useless—ATP that has been assigned to other time buckets, to substitute
products or to other locations (e.g. distribution centers or regional warehouses) is
searched for in an user–defined sequence.

Fischer (2001) compares such ATP consumption rules for single order processing
with a linear programming (LP) based batch order processing for a practical case
of the lighting industry and shows advantages of the batch mode. It is interesting to
note that this lighting company originally distinguished eight classes of customers
showing different importance, which have—for sake of simplicity — been reduced to
three by Fischer. In a similar MTS environment Pibernik (2006) compares different
ATP consumption rules for managing the stock outs of a pharmaceutical company.
He suggests to change from a single order to a batch order processing mode only if
shortage is foreseeable. Even though this company also segments their customers into
five priority groups, allocation planning is tested only rudimentarily by Pibernik, using
a “naive” allocation scheme reserving stock for the two most important groups only.
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Customer segmentation, allocation planning 233

As mentioned above, the APS allocation rules either make no assumptions about
demand (for example priority rankings) or use short–term demand forecasts in a rather
doubtful manner, e.g. by allocating production quantities and ATP proportionally to
the demand forecasts, which has been shown to increase the bullwhip effect within
supply chains (see Lee et al. 1997). Instead, Ball et al. (2004, Chap. 15.4.2) propose an
LP based deterministic allocation model. Basically, it summarizes linear and mixed
integer programming models of hierarchical production planning that are used to
allocate aggregate inventory of product families and/or limited production capacity to
various items within a family. Obviously, this general idea can be transferred to allocate
ATP to different customer classes. Although the model proposed by Ball et al. ought
to be applied in an MTS environment, it rather fits ATO supply chains because it also
decides about raw material and capacity usage. A more convenient MTS application
of this type of models is presented below in Sect. 2.3.

Summing up, modern APS offer the technical prerequisites for ATP allocation and
ATP consumption, thus hoping to gain similar advantages in manufacturing industries
as have been achieved by revenue management principles in airline or hotel indus-
tries. However, they only provide very simple allocation and consumption rules, and
furthermore do not give advices how and when to apply them. Thus, overall benefits
are doubtful. Looking through scientific literature is hardly helpful in this specific
situation because either the model assumptions do not fit (e.g. stochastic inventory
rationing) or the overall performance of both allocation and consumption policies
has not been tested for potential alternatives of customer segmentation (for example,
(Fischer 2001; Pibernik 2005) take the segmentation for granted).

1.2 Contribution and organization of the paper

The basic idea of this paper is to improve demand fulfillment in MTS supply chains
by making use of the heterogeneity of different customers through AP&C order pro-
mising. The fundamental steps are:

• To segment customers with respect to their importance and profitability into several
priority classes,

• to allocate ATP to these classes on basis of a deterministic profit maximization
process taking advantage of short–term demand information, and

• to promise customer orders, i.e. to consume ATP, in real time with respect to these
customer hierarchies.

In order to demonstrate the usefulness, all steps will be executed in a holistic simulation
experiment exploiting practical data of the lighting industry. To our knowledge, such
a comprehensive test, including customer segmentation and allocation, is missing so
far. The aim is to structure the planning tasks concerned with AP&C and to gain
ideas whether and how a preceding allocation process—making use of the short–term
information provided by APS—may be advantageous compared to the traditional
first-come-first-served single order processing.

The next section introduces appropriate LP models for demand fulfillment in MTS
supply chains. Numerical experiments with data of the lighting industry are run in
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Sect. 3. A summary of the methodology proposed and of the managerial insights
gained concludes the paper.

2 Model formulations

The following section describes the modeling environment that allows to compare the
different ways of order promising and ATP assignment. LP models for single and batch
order processing without customer segmentation are proposed in Sect. 2.2, whereas
Sect. 2.3 introduces the allocation planning model making use of segmentation. All
models aim at profit maximization. Their outcome can be compared directly with
the optimal profit that would result from a simultaneous ex–post assignment of all
orders arriving within the planning horizon, which is called “global optimization” in
the following.

2.1 Modeling environment

The different order promising alternatives verbally described in the introduction will
now be represented by mathematical models. Figure 1 shows the modeling environment

a-c without customer segmentation:

supply planning
(e.g. production

planning)

ATP consumption
(“order promising”)

“customer”

ATP

order(s) commit-
ment(s)

a) GO: once for all orders of the 
planning horizon T

b) BOP: several times for all orders
of a batching horizon B<<T

c) SOP: in real-time for each single order

supply planning

ATP allocation
(“allocation planning”, AP)

“customer”

ATP

single
order

single
commitment

demand planning

forecasts

ATP consumption (SOPA)

allocated ATP
(= quotas

for customer
classes k)

d) with customer segmentation:

once

once

real-
time

real-
time

once for
planning
horizon T

real-
time

a-c

Fig. 1 Modeling environment for the models “Global Optimization” (GO), “Batch Order Processing”
(BOP) and “Single Order Processing” (SOP) without customer segmentation and “Allocation Planning”
(AP) and “SOP after allocation planning” (SOPA) with customer segmentation
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that was chosen to do this. The models (a–c) that do not distinguish customer segments
shall be compared with the AP&C models (d) which put the revenue management idea
of the introductory example into practice by differentiating different customer classes
k, allocating ATP to these customer classes and satisfying customer demand only if
enough allocated ATP of the customer’s corresponding class is available.

For this, the finite, overall planning horizon T is subdivided into discrete time
buckets t = 1, . . . , T . Once, at the beginning of planning (t = 0), on the basis of
supply information—e.g. from the master production schedule or master plan—it is
calculated how much ATP becomes available in each period t (for this calculation see
e.g. Fleischmann and Meyr 2003a,b). Customer orders i arrive one after each other
at different arrival dates ai . For each order i it is known, how much the customer
wants to get (“requested delivery quantity” qi ) and when he wants to get this quantity
(“requested delivery date” di , i.e. the time bucket t , for which the customer requests
his order i to be delivered). The limited availability of ATP necessitates that not all
orders can be served on time. The “order promising” or “ATP consumption” problem
is to decide whether, when and to which degree each order will be served from the
ATP. Not fulfilling an order on time or not filling an order at all will be punished by
penalty costs diminishing the original profit the order would leave. ATP is assumed to
be known deterministically at t = 0, for the whole planning horizon T . Thus it needs
only to be updated when orders are accepted but not because its supply has changed
unexpectedly.

The models (a–c) without customer segmentation differ according to the number of
orders that are gathered before the orders are processed, i.e. assigned to the different
periods’ ATP by means of an LP model maximizing the profit of all incoming orders.
The “Single Order Processing” model SOP processes each order immediately in real
time and thus is trivial to be solved. The “Batch Order Processing” model BOP gathers
all orders arriving within a batching horizon B � T . The “Global optimization” model
GO gathers all orders of the whole planning horizon T . Of course, since T is a quite
long time span (e.g. a month) it is not realistic that customers will wait so long until
getting a promise. However, because all orders of the whole planning horizon are
covered and optimized simultaneously, this model can serve as a benchmark to judge
the performance of an iterative application of the other models.

Situation (d) is modeled by a sequence of an “Allocation Planning” model AP that
is executed once at t = 0 and several single order processing models—now denoted as
“Single Order Processing After allocation planning” (SOPA)—which are executed in
real time when each new customer order arrives. The AP model once allocates ATP to
the different, a priori known customer classes k by means of linear programming. For
this, up-to-date forecasts of customer demand within each customer class are necessary.
Like in (c) each single order is processed in real time, but it is only allocated to the
desired delivery date if enough allocated ATP (aATP) of its respective customer class
is available and can be consumed. This corresponds to the revenue management and
inventory rationing idea that some portion of scarce stock should be held back for
more important orders which might arrive later on.

The motivation for this kind of deterministic, mathematical modeling originates
from current practice of APS usage (see e.g. Kilger and Meyr 2008). ATP and demand
forecasts are calculated in APS anyway and can be aggregated for different customer
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classes. Also basic allocation and consumption rules are used. Thus, the fundamen-
tal technical framework for its application already exists. Furthermore, LP as a more
sophisticated allocation method could probably easily be implemented because it is
used for mid–term master planning and strategic network design, anyway (Fleisch-
mann and Meyr 2003b).

Of course, very simplifying assumptions are made in this modeling environment as
compared to practice. For example partial delivery of orders is assumed to be possible,
no bargaining about delivery dates is allowed, customer service can only be expressed
in terms of money and uncertainties of demand and supply are excluded. The latter
problem, for instance, could be tackled by introducing a rolling horizon planning on
at least two planning levels: a mid-term (e.g. weekly rolling) level for updating supply
information and executing allocation planning and a short-term (e.g. daily rolling for
BOP or real-time for SOP/SOPA) level for ATP consumption. In this case ATP updates
would be necessary weekly after each update of supply information, but also daily
or for each order (see e.g. Fleischmann and Meyr 2003a, for ATP re-calculation).
AP runs would also be necessary weekly, after each supply and subsequent ATP
update, and would base on the latest forecasts on customer demand. However, a more
detailed discussion of these application issues would go beyond the scope of this
paper because, first, structural insights on the negative impacts of the decomposition
of the GO problem into subsequent BOP, SOP or AP/SOPA models should be gained.
Thus, the restrictive assumptions are necessary to exclude side effects, e.g. due to bad
forecasting of supply and demand. Of course, in a next step, these assumptions should
be weakened (see Sect. 4).

In the following, the situation (a–c) without customer segmentation is described in
more detail by introducing a single, “basic” order promising model that is applied in
different ways to gain the models GO, BOP and SOP.

2.2 Models without customer segmentation

The basic order promising model is a simple network flow problem where the requested
quantities qi —in the following also called “demand”—of certain customer orders
i = 1, . . . , I have to be satisfied by ATP inventories AT Pt that become available
in discrete periods t = 1, . . . , T , e.g. days or weeks. In order to ensure feasibility
even if demand is higher than ATP inventory, a fictitious period T + 1 has been
introduced being able to serve the surplus demand by setting AT PT +1 := ∑I

i=1 qi −
∑T

t=1 AT Pt . The goal is to find the part oit of order i that has to be satisfied by
ATP of period t so that the overall profit is maximized for a given per unit profit
pit . This per unit profit can, for example, be computed by subtracting the per unit
costs ci from the per unit revenues ei of the order i and by punishing the use of ATP
from periods earlier (necessitating storage) or later (backlogging) than the customer’s
requested delivery date di . ATP of the fictitious period T +1 models non-delivery and
thus cannot generate any profit (pi, T +1 = 0). It may even cause a loss of goodwill
being punished by negative profits pi, T +1 < 0. Note that costs and revenues of
different customers/orders may vary individually, e.g. due to different transportation
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Table 1 Indices, data and variables of the basic order promising model

Indices

s = 1, . . . , S Iterations

i, j = 1, . . . , I Orders

t = 1, . . . , T Periods

t = T + 1 Dummy period with “infinite” supply

I s Set of orders that are promised in iteration s

Data

ai Arrival date of order i (i.e. when customer requests a promise)

di Date, the customer requests order i to be delivered

qi Quantity, the customer requests to get delivered by order i [SKU]

ei Per unit revenue of order i [$/SKU]

ci Per unit supply costs of order i (e.g. transportation costs) [$/SKU]

AT Ps
t Not yet assigned supply that becomes available in period t and

can still be promised to customers during iteration s
[SKU]

pit Per unit profit of order i if satisfied by ATP of period t [$/SKU]

= ei − ci

- “low holding costs” if t < di , and

- backlogging costs if di < t ≤ T , respectively

= 0 if t = T + 1

(or -penalty costs for loss of goodwill)

Variables

os
it ≥ 0 Part of order i which is served by ATP of period t and promised

during iteration s (only defined for i ∈ I s )
[SKU]

costs and customized sales prices, which have already been negotiated in the medium
term.

In practice, orders arrive successively with a continuous arrival date/time ai . This
dynamic situation will later on be modeled by a simulation run with successive itera-
tions s = 1, . . . , S. At a certain point in time, i.e. in a certain iteration s, only a limited
subset I s of all orders i = 1, . . . , I is usually known and has not yet been promised,
e.g. a single order in the SOP case or a batch of all orders of a single day in the BOP
case. Thus, the LP formulation of the basic order promising model shown below is
restricted to this subset I s of orders for a given iteration s. For ease of readability,
Table 1 summarizes the indices, data and variables of the LP model. The superscripts
s of the data AT Pt indicate that—after consumption in iteration (s − 1)—the ATP
remaining for iteration s had to be reduced, accordingly. Whereas, the superscripts s
of the variables oit indicate in which iteration s the corresponding order i has been
promised.
Basic order promising model of iteration s:

maximize
T +1∑

i∈I s ,t=1

pit o
s
it (1)
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subject to

T +1∑

t=1

os
it = qi ∀ i ∈ I s (2)

∑

i∈I s

os
i t ≤ ATPs

t ∀ t = 1, . . . , T (3)

The overall profits of satisfying the orders i ∈ I s from ATP inventory are maximized
by the objective function (1). The requested quantity qi of each order i has to be met
exactly, either by “real” supply of a regular period t = 1, . . . , T or by the “fictitious
supply” modeling non–delivery (2). Constraints (3) ensure that the supply capacity
cannot be exceeded, i.e. that only the still available ATP of period t can be assigned
to yet unpromised orders i ∈ I s .

This basic order promising model will be applied for simulating the three scenarios
(a), (b) and (c) of Fig. 1. With î(s) := argmini {ai : i ∈ I s} denoting the order i ∈ I s

having the earliest arrival date during iteration s, the following three situations—just
differing by the cardinality |I s | of the subsets I s—can be distinguished:

(a) GO: all orders of the planning horizon T are known in advance and are considered
in a single optimization run, i.e. I s := {1, . . . , I } and S := 1.

(b) BOP: only subsets of orders within a “batching horizon” of B periods are consi-

dered, i.e. I s :=
{

i :
⌊

aî(s)

⌋
≤ ai <

⌊
aî(s)

⌋
+ B

}
and S := T/B with

⌊
aî(s)

⌋

denoting the period t the arrival of order aî(s) is assigned to (assuming that T is
an integer multiple of B).

(c) SOP: only a single order is considered during an iteration s, i.e. I s := {î(s)} and
S := I . This is the case for real time due date assignment on an FCFS basis.

Since the degree of freedom decreases, it is expected that the overall objective function
values of these models decrease, too, i.e. GO� ≥ ∑T/B

s=1 BOP�
s ≥ ∑I

s=1 SOP�
s with

a � denoting the optimal solution of a model. As already mentioned, GO� can serve
as a benchmark (“first best solution”), showing what profit would be optimal if there
were perfect knowledge of customer demand for the whole planning horizon T . The
values SOP� := ∑I

s=1 SOP�
s and BOP� := ∑T/B

s=1 BOP�
s are directly comparable to

GO�. They show the loss of profit that has to be accepted if, for the sake of customer
service, real time order promising or a short batching horizon B have to be realized.

To compute SOP� and BOP� in a simulation experiment, the remaining ATP has to
be updated according to ATPs+1

t := ATPs
t − ∑

i∈I s os�
i t ∀t = 1, . . . , T in-between

the iterations s and s+1. This corresponds to the inventory netting and ATP calculation
procedure, more generally described by Fleischmann and Meyr (2003a), for the special
case that supply is assumed to be deterministically known in advance. AT P1

t can
be initialized by inventory on hand (t = 0) and the projected supply (according
to the master production schedule or master plan of the supply chain) of periods
t = 1, . . . , T . Without loss of generality, AT Ps

0 = 0 ∀s is assumed in the following.
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2.3 Models with customer segmentation

The above formulas give rise to the suspicion that BOP� can be brought closer to G O�

by simply increasing the batching horizon B. This behavior has already been confirmed
by the experiments of Chen et al. (2002, 2001). However, customer expectations of
short order promising response times set a natural limit to an increase of B. Thus
modern APS follow another approach to close the gap to G O� while simultaneously
offering the real time single order response times of SOP. As described by Kilger
and Meyr (2008), they adapt ideas of revenue management for industrial purposes:
scarce capacity (in this case ATP) is allocated to certain customer classes with different
priorities (or profits). Incoming customer orders are allowed to consume capacity of
their own or a lower priority class only. By doing this, it shall be prevented that a
lower priority customer order can consume capacity that would later on be needed for
a higher priority order gaining higher profits.

Thus, single order promising can still be applied, but it is preceded by an earlier
allocation (sometimes called “quoting”) process, reserving ATP for distinct priority
classes. It is the aim of this paper to model the planning problems arising in such a
context and to demonstrate and quantify the potential benefits of such a procedure.
Therefore, the ATP allocation and ATP consumption processes of situation (d) in Fig. 1
have been put into the same modeling and simulation environment as GO, BOP and
SOP in a–c of Fig. 1 and the LP models AP and SOPA have been designed to represent
both partial problems: The allocation planning model AP first assigns ATP to a pre-
defined number K of customer (or more generally: priority) classes k = 1, . . . , K . The
subsequent single order consumption SOPA of the class-specific ATP is also modeled
and solved by LP, even if APS usually apply simpler and faster rule-based algorithms
for the ATP consumption. Section 2.4 finally demonstrates how orders can be assigned
to priority classes.

Table 2 shows the indices, data and variables of the AP model. As can be seen,
agreements on how much has to be sold at a minimum (lower bound on sales quantity)
to a respective priority class k in a certain period t and forecasts on how much can at
most be sold (upper bound on sales quantity) are needed in order to quote ATP with
respect to the expected profits of the respective classes. The lower bounds usually
represent strategic sales targets or mid-term commitments which ensure that certain
customer groups get a minimum level of service. The upper bounds are estimates of
the aggregate customer demand of the respective class in a certain period, i.e. forecasts
on what all customers of this class will buy at a maximum. The degree to which the
demand of a certain class should (in terms of overall profits) actually be satisfied will
be determined by the model. Thus, with respect to the limited ATP capacity, the model
further restricts potential sales to certain customer classes by allocating ATP to the
most profitable ones.

In detail, the AP problem can be formalized as follows:
Allocation planning problem (AP):

maximize
T +1∑

k,t=1

T∑

τ=1

p̄ktτ · zktτ (4)
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Table 2 Indices, data and variables of the allocation planning problem (AP)

Indices

k = 1, . . . , K Priority (or profit) classes of orders/customer groups

(The number of classes K has to be pre–defined in advance).

�k Set of orders i belonging to priority class k

Data

dmin
kt (≥ 0) Lower bound on sales to priority class k in period t [SKU]

dmax
kt (≥ dmin

kt ) Estimated (maximum) customer demand of class k in period t [SKU]

(= upper bound on sales quantity to priority class k in period t)

p̄ktτ Per unit profit if ATP of period t (= 1, . . . , T + 1) satisfies
demand of priority class k in period τ (= 1, . . . , T ), e.g.

[$/SKU]

= Per unit revenue ēk in priority class k

-supply costs c

-“low holding costs” if t < τ , and

-backlogging costs if τ < t ≤ T , respectively

= 0 if t = T + 1

(or -penalty costs for loss of goodwill)

Variables

zktτ ≥ 0 Part of demand of priority class k in period τ (= 1, . . . , T )

which is satisfied by ATP in period t (= 1, . . . , T + 1)

[SKU]

ft ≥ 0 Still unallocated part of ATP in period t [SKU]

subject to

dmin
kτ ≤

T +1∑

t=1

zktτ ≤ dmax
kτ ∀ k, τ = 1, . . . , T (5)

T∑

k,τ=1

zktτ + ft = ATP1
t ∀ t = 1, . . . , T (6)

ATP is allocated to the priority classes k so that the overall profit is maximized (4).
The per unit profits p̄ktτ of a class k can, for example, be computed as the average
profits pit of the orders i ∈ �k that have been assigned to class k. The totally reserved
ATP has to be within the upper and lower sales bounds of the respective priority
class (5). If, due to the upper bounds dmax

kτ , ATP cannot be assigned to one of the
classes, it remains unallocated (6) and thus can be used by any class in the later SOPA
consumption.

As already explained in Sect. 2.1, when facing supply and demand uncertainty, AP
should be done on a rolling horizon basis. However, since supply uncertainty should
not matter in the simulation experiments of Sect. 3, AP only needs to be executed
once at the beginning of planning in t = 0. Further, to exclude forecast errors (demand
uncertainty), the aggregate demand forecast dmax

kτ of class k is initialized with the (later
on) actually requested quantities, i.e. dmax

kτ := ∑
i∈�k :di =τ qi ∀k, τ with �k denoting
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Table 3 Indices, data and variables of the SOPA problem in iteration s

Indices

classi Priority class order i belongs to

�i Set of priority classes which can be consumed by order i

Data (ATP that can be consumed by order î(s) in iteration s)

aATPs
ktτ ATP that becomes available in period t and has been allocated to orders

in priority class k with a requested delivery date in period τ

[SKU]

uATPs
t ATP that becomes available in period t but has not yet been allocated to

any priority class or planned delivery date
[SKU]

Variables

ōs
kt ≥ 0 Part of allocated ATP of priority class k in period t (= 1, . . . , T + 1)

which is in iteration s assigned to order î(s) showing a requested delivery
date dî(s)

[SKU]

xs
t ≥ 0 Part of unallocated ATP of period t , which is in iteration s assigned to

order î(s) showing a requested delivery date dî(s)

[SKU]

the priority class which order i belongs to and di denoting the requested delivery
period of order i . For ease of simplicity, the lower bounds on sales are set to zero,
i.e. dmin

kτ := 0 ∀k, τ .
The optimal solution z�

ktτ of AP allows a very detailed allocation of ATP, not only
specifying the period t , the ATP becomes available, but also specifying which priority
class k it should be reserved for and in which period τ it should be consumed. Let
aATPs

ktτ denote allocated ATP that has been defined on the same level of granularity
and remains available for consumption in iteration s. Then, the allocated ATP of the
first period after the allocation procedure AP can be defined according to

aATP1
ktτ := z�

ktτ ∀k, t, τ, (7)

thus allowing a very restrictive reservation for important classes. This appears useful
if the forecasts of customer demand are very reliable. Of course, if forecast accuracy
is low, also a more aggregate allocation could be applied, e.g. by

aATP1
kt :=

T∑

τ=1

z�
ktτ ∀k, t. (8)

The quantities uATP1
t := f �

t ∀t remain unallocated in case the expected ATP inven-
tories are higher than estimated demand. If, on the other hand, estimated demand is
expected to be higher than total ATP inventories, the portion of demand of period t in
class k that has been allocated to z�

kt,T +1 > 0 by (5) cannot be served later on.
The LP model (9)–(12) uses these allocated and unallocated ATP quantities as an

input for real time single order processing after allocation planning. The variables of
this SOPA model are explained in Table 3. Since the SOPA models of the subsequent
simulation iterations consider a single order, each, the only order of iteration s is
denoted by î(s) in the following:
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“SOP after allocation planning” model of iteration s (SOPAs):

maximize
∑

k∈�î(s)

T +1∑

t=1

pî(s),t ō
s
kt +

T∑

t=1

pî(s),t x
s
t (9)

subject to

∑

k∈�î(s)

T +1∑

t=1

ōs
kt +

T∑

t=1

xs
t = qî(s) (10)

ōs
kt ≤ aATPs

ktdî(s)
∀ k ∈ �î(s), t = 1, . . . , T (11)

xs
t ≤ uATPs

t ∀ t = 1, . . . , T (12)

In (9) the original profits pit of Table 1 are maximized. Thus, the simulation result
SOPA� := ∑S

s=1 SOPA�
s of a preceding AP optimization, followed by S := I ite-

rations of SOPA (with an optimal objective function value SOPA�
s of iteration s), is

directly comparable to GO�, BOP� and SOP� as computed in Sect. 2.2. The Eqs. (10)
ensure that the requested quantity of order î(s) is either met by (un)allocated ATP
or assigned to the fictitious period T + 1 and thus denied, however generating no
profit or even incurring penalty costs. The capacity constraints (11) and (12) limit
the use of allocated and unallocated ATP to their predefined values. An order î(s)
can only consume ATP in some dedicated classes �î(s). For example, by setting

�î(s) := {k : classî(s) ≥ k ≥ K } it can be ensured that an order î(s) ∈ �l can
only consume ATP of its own priority class l := classî(s) or other classes k > l sho-
wing lower priorities. Thus, also for the AP problem, it is assumed that the classes
k = 1, . . . , K have been sorted according to decreasing priorities, e.g. defining k > l
if the average profits fulfill

∑
t, i∈�k

pit

|�k | ≤
∑

t, i∈�l
pi t

|�l | . (13)

Such a strategy of allowing access to lower priority ATP has, for example, been applied
by Fischer (2001)—there called “hierarchical cumulated quoting”—or by Kilger and
Meyr (2008) using customer hierarchies.

Analogously to the SOP procedure described in Sect. 2.2, in the following simula-
tion experiments the (un)allocated ATP remaining after iteration s for use in iteration
s + 1 can easily be calculated by (14) and (15):

a AT Ps+1
ktdî(s)

:= a AT Ps
ktdî(s)

− ōs�
kt ∀ k, t = 1, . . . , T, (14)

u AT Ps+1
t := u AT Ps

t − x�
t ∀ t = 1, . . . , T . (15)

As already mentioned in Sect. 2.1, this is possible because demand and supply are
assumed to be known in advance. Such a data update is more complicated if demand
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and supply are uncertain and if AP is executed on a rolling horizon basis. In this case
inventory netting and ATP calculation as described by Fleischmann and Meyr (2003a)
are necessary. Note that in MTS situations late delivery or cancellation of orders is only
possible for newly arriving orders but not for orders that have already been promised
(and thus delivered!). This is opposite to order promising in ATO or MTO situations.

Applying AP/SOPA instead of GO can be seen as a kind of problem decomposition
because the single problem GO has to be decomposed into the two subproblems
allocation planning and SOPA, which have to be solved subsequently and iteratively.
Due to this decomposition, a gap between the GO� and SOPA� may result, even if
all orders were known with certainty. This gap is generated by aggregating individual
orders to priority classes. However, if demand was known in advance and each order
i was assigned to its own priority class (�classi = {i}, K = I ), the final objective
function values GO� and SOPA� would be identical. Thus, the overall problem is to
find a decomposition that brings the result of AP/SOPA as close as possible to the (in
reality only ex post known) result of GO.

Summarizing these structural insights, the following conclusions can be drawn: In
practice, the result of GO (“first best solution”) cannot be realized because of two
reasons:

• There are demand and supply uncertainties, i.e. orders and supplies cannot be
known in advance. Schneeweiss (2003) denotes a problem decomposition, which
is caused by such a missing information, “time decomposition”.

• For real time order promising, an aggregation of individual orders to priority
classes is necessary. The impacts of this will further be analyzed in Sect. 3.

However, before, the still open problem of determining priority classes has to be
discussed.

2.4 Identification of customer classes

In the above sequence of AP and SOPA an assignment of orders i to priority classes
k was assumed to be predefined, which is expressed by the order sets �k and class
indices classi . Usually, such an assignment of orders to classes is not obvious, it may
even be hard to define a useful number K of classes k. This assignment task is a
mid-term planning task because the allocation planning AP has also to be done in the
medium term. It may sound confusing that an order i can be assigned to a class before
it actually arrives at date ai . But usually there are quite stable relationships between
vendors and their customers so that an order can directly be linked to the customer
sending it and thus the problem reduces to assigning customers to priority classes k in
the medium term. For ease of simplicity, the notation will not further be complicated
by distinguishing between customers and their orders. The reader should just keep this
1:n-relationship in mind.

The profits pit as introduced in the above tables usually originate from a time-
independent indicator vali of the “value” of order i (or its corresponding customer)
and a time-dependent, discrete function p·t that punishes non-delivery or earliness and
lateness with respect to di . A piecewise-linear example for such a function, which will

123



244 H. Meyr

be applied in the following experiments, is given by (16):

pit := vali ·
[

1 − help

(T − 1) · late

]

(16)

with

help :=

⎧
⎪⎨

⎪⎩

(di − t) · early if t < di

(t − di ) · late if di ≤ t ≤ T

(T − 1) · late if t = T + 1

and with penalty costs early for being early and late for being late (usually early <<

late). In the experiments of Sect. 3 early := 1 and late := 10 are used.
One should be aware that usually vali is only an artificial measure describing the

overall importance of order i . Besides the per unit profit ei − ci other non-monetary
factors may contribute to vali as well, for instance, the strategic power of the cus-
tomer ordering i . An example for such a procedure is given by Fischer (2001) and
in Sect. 3.1. Thus, quantifying the measure vali is a crucial task, depending on the
practical application under consideration.

Knowing the vali , for the assignment of a given set of orders to a predefined number
of classes standard clustering methods can be used. They group all such orders i and j
into the same class which are “similar” according to a certain distance measure disti j ,
for example,

disti j := dist ji := ∣
∣vali − val j

∣
∣ . (17)

Thereby, “similarity” can be expressed by different types of objectives. For example
Meyr (2007) introduces two alternative clustering models, CS and CM, minimizing
the sum of the distances between any pair of orders within the same class and the sum
of the maximum distances of each class, respectively. To solve the CS problem, he
proposes three alternative local search heuristics basing on steepest descent (called
Sum-DE), threshold accepting (Sum–TA) and tabu search (Sum–TS). For the CM model
a simple rule–based heuristic is applied (called MinMax).

Clustering models, including CS and CM, usually assume that the number of classes
K is known in advance (see Meyr 2007). This was also the case for the AP and SOPA
models of the previous section. Obviously, the optimal objective function values of
CS and CM both will decrease to 0 if K is increased to I . This is because, assuming
complete demand information, in the extreme case K = I the allocation problem
AP reserves the necessary ATP for each single order i , separately. Thus it seems to
be useful to choose the number of classes as large as possible. However, one has to
be aware that increasing the number of classes is not only advantageous. First, also
the complexity of AP and of the clustering problem is increased. Second, and more
crucially, in practice demand information is uncertain. Thus, missing information
about not yet known orders has to be substituted by demand forecasts. Following
the law of large numbers, forecast accuracy is the better, the higher the number of
orders per class is, i.e. the lower the number of classes is. Altogether, a trade off
between better allocation/reservation capabilities and lower forecast accuracy has to
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be balanced, which can hardly be formalized. Section 3.5 will give some hints how a
hopefully good compromise can be found.

3 Experiments

The described models are tested with a practical example of the lighting industry. The
case itself and the corresponding data are described in Sect. 3.1. Then, a first overview
of the benefits of allocation planning is given. Different ways of defining the ATP
search space �î(s) and ATP consumption rules are discussed in Sect. 3.3. The effects
of varying K are tested in Sect. 3.4. The final subsection of Sect. 3 evaluates the overall
impact of clustering on the finally decisive SOPA outcome.

The allocation and ATP assignment problems GO, BOP, SOP, AP and SOPA can
all be interpreted as classical transportation problems. Thus, standard LP software or
specialized network flow solvers (see e.g. Ahuja et al. 1993) can be applied without
any problems. SOP and SOPA show an even simpler structure because of considering
a single order i only. Thus, they can be solved to optimality with fast backward and
forward-oriented, rule-based algorithms, which start in period di and class classi and
proceed in sequence of descending per unit profits. Similar real time ATP search rules
are usually implemented in APS (as heuristics for more complicated variants of SOP
and SOPA). However, for ease of simulation in the following experiments, which have
been coded with Microsoft Visual C++ 6.0, the standard linear programming solver
CPLEX 9.0, the modeling language ILOG OPL Studio 3.7 and its C++ component
libraries interface (ILOG 2007) have been used for all ATP models, including the
simpler SOP and SOPA problems. The computational tests have been executed on a
personal computer with an Intel Pentium M 1.3 GHz processor and 512 MB RAM,
operated by the Microsoft Windows XP Professional system.

3.1 Problem data

The experiments of the following sections use practical data that have been introduced
by Fischer (2001) in a case study of lighting production. This business is a classical
MTS-environment where customer orders arrive at the distribution centers and have to
be served from the stock which is already available or at least projected to arrive soon.
Six different problems, denoted as P1, …, P6 in the following, have been considered
by Fischer. These problems reflect the demand for six different final items—also called
P1, …, P6 in the following—during one month, i.e. a period of T = 30 days. Note,
even if 30 days are simulated by Fischer and in the experiments of Sects. 3.2–3.5,
orders usually arrive between day 1 and day 26. The only exceptions are P3, where
the last order arrives at day 23, and P5, where the first order arrives at day 6.

The characteristics of the problems P1,…, P6 are shown in Table 4. The four
problems P1, P2, P3 and P5, with less than 40 orders arriving, are rather small. Due to
the infrequent arrival of orders and the resulting low average number of orders per day
between 0.9 and 2.1, a BOP-horizon of a single day is expected to show only weak
impacts. This might be different for the two larger problems P4 and P6 with 1,305 and
509 orders, respectively, and with 72.5 or 28.3 orders per day, on the average.
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Table 4 Data used by Fischer (2001)

P1 P2 P3 P4 P5 P6

Total no. of orders 37 29 25 1305 17 509

Orders per class 8/14/15 29// 24//1 725/440/140 //17 500/7/2

No. of supplies 19 13 12 19 19 19

Lost sales (percent) 11.3 17.9 17.3 19.9 4.5 22.6

Orders per day 2.1 1.6 1.4 72.5 0.9 28.3

Aver. distance disti j 4.7 0.7 0.0 4.3 0.0 0.9

The number of supplies, i.e. refillings of ATP inventory, within the planning horizon
varies between 12 and 18. The four products P1, P4, P5 and P6 start with positive initial
inventory that has been modeled as an additional 19th ATP supply at day t = 0 (see
row “no. of supplies” in Table 4).

The total order quantity within the planning horizon exceeds the total supply signi-
ficantly by 4.5–22.6%. The respective shares have been denoted as “lost sales” in
Table 4. This indicates that there are indeed shortage situations in this kind of busi-
ness. However, usually not all of these sales are really “lost” because some of the
orders might be satisfied by supply arriving after the planning horizon of T = 30
days. Nevertheless, it seems that the customer service level has been poor for these
six products.

Table 4 also shows the average distance disti j between all pairs of orders i and
j for a certain product. Note that this is not the original distance measure used by
Fischer. Fischer used up to three priority classes, as indicated in the row “orders per
class” of Table 4, to differentiate customers/orders showing various importance when
computing order–specific costs. The original data have been normalized in order to
allow the application of general clustering models, like CS and CM, also for K �= 3.
The distances disti j have been calculated as follows:

Two major attributes contribute to the value indicator vali of a certain customer
order i :

• The normalized per unit profit prof i tnorm
i of order i has been calculated by means

of

prof i tnorm
i := (prof i ti − prof i tmin)

prof i tmax − prof i tmin

with prof i ti := ei − ci denoting the per unit profit of order i and prof i tmin :=
mini {prof i ti } and prof i tmax := maxi {prof i ti } denoting the minimum and
maximum profit of any order i . The resulting normalized profits are in a range
0 ≤ prof i tnorm

i ≤ 1.
• According to the varying importance of different customers, Fischer assigned all

customers and their respective orders to the three priority groups mentioned above.
Therefore, each customer order has a priority index priori t yi ∈ {1; 2; 3}. These
priority indices have also been normalized to a range between 0 and 1 by using
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priori t ynorm
i := (priori t yi − 1)

3 − 1
.

Both attributes have been aggregated into the single value indicator vali of order i by
weighing them with weights w1 and w2 according to

vali := w1 · prof i tnorm
i + w2 · priori t ynorm

i . (18)

For the experiments in the following sections identical weights w1 := w2 := 10 have
been used, resulting in an indicator range 0 ≤ vali ≤ 20.

The profits pit of GO, SOP, BOP, and SOPA and the distance measure disti j of CS
and CM (see Meyr 2007) have then finally been calculated by (16) and (17) with penalty
costs early := 1 for being early and late := 10 for being late. Since early ≤ late
and |t − di | ≤ (T − 1), the profits pit also range between 0 and 20. Note that the
customers’ and orders’ priorities of the problems P2, P3, P5 and P6 seem to be quite
similar because their average distance is small. In P2 and P5 all orders even have the
same priority values priori t ynorm

i , but the average distance disti j = 0.7 of P2 is
caused by varying per unit profits. However, P3 contains a single order with lower
priority, but the higher profit prof i tnorm

i of this order causes all value indicators vali
of P3 to be equal. Altogether, no real advantage of the allocation process underlying
SOPA can be expected for P3 and P5.

3.2 Benefits of allocation planning

Using the notation of Sects. 2.2 and 2.3, GO�, SOP�, BOP� and SOPA� denote the
overall objective function value of a complete, raw-data driven simulation run over
T time periods. The SOPA run is preceded by the allocation planning problem AP
as described in Sect. 2.3 and uses the original priority classes of Fischer.

Table 5 shows the percentage deterioration of SOP�, BOP� and SOPA� as com-

pared to GO�, e.g. GO�−SOP�

GO� · 100. It can be interpreted as the percentage profit

loss of a short–range order acceptance compared to the ex–post optimal solution. The
BOP� results are varied over a batching horizon of B = 1, . . . , 5 days (and T mod B
for the last periods, respectively). SOPA� results are shown in two different variants:
SOPA�a aggregates allocated ATP according to (8). SOPA�d uses disaggregate aATP
as defined by (7), thus also allowing a reservation of ATP becoming available in
period t for use in another period τ �= t . Therefore, SO P A�a demonstrates the
“pure” effect of allocating ATP to the three customer classes pre–defined by Fischer
(2001), whereas SO P A�d combines this effect with an additional “temporal” reser-
vation of ATP quantities for the periods of their expected use, thus assuming a high
forecast quality. The computation times of a single run are negligible, e.g. solving
GO for the biggest problem P4 takes just a few seconds. However, since only the
standard C++ libraries and data conversion routines of the LP software OPL (ILOG
2007) are used, a complete SOP- or SOPA-simulation run of P4 may last several
hours.
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Table 5 Percentage profit loss of SO P�, B O P� (B = 1, . . . , 5) and SO P A� (disaggregate, aggregate)
as compared to G O�

P1 P2 P3 P4 P5 P6 Average

SOP* 15.0 21.1 0.0 12.4 1.2 6.9 9.4

BOP*1 14.8 21.0 0.0 11.6 1.2 6.8 9.2

BOP*2 14.1 21.0 0.0 11.0 1.2 6.8 9.0

BOP*3 14.1 13.3 0.0 10.7 0.6 6.7 7.6

BOP*4 13.6 20.8 0.0 6.3 1.2 6.7 8.1

BOP*5 12.1 11.2 0.0 10.0 0.3 6.7 6.7

SOPA*a 5.5 21.1 0.0 1.5 1.2 0.3 4.9

SOPA*d 0.5 0.1 0.0 0.2 0.0 0.3 0.2

As expected, batching orders and increasing the batching horizon B is advantageous
when compared to the FCFS single order processing SOP. But even for a batch horizon
of a whole week, the overall improvement is rather disappointing. Astonishingly, this
holds especially true for the problems P4 and P6, which show a high degree of freedom
because of their large number of orders per day. Of course, a simulation horizon of 30
days is actually too short for such experiments. However, studying Table 5 it seems
likely that increasing the simulation horizon would stabilize the results, but not really
change the overall picture.

SOPA�a shows a significant improvement for problems P1, P4 and P6. The diffe-
rence to SO P� is only caused by the allocation planning on basis of the three priority
classes used by Fischer (see Sect. 3.1, Table 4). These results can further be improved
by SO P A�d, which allows a temporal reservation of ATP, too. In this case, near–
optimal profits can be gained for all six scenarios. Thus, if companies are able to
realize a high forecasting accuracy, defining disaggregate ATP seems reasonable.

SOP solves P3 and P5 almost to optimality because of their corresponding custo-
mers’ homogeneity and the distances disti j = 0 between every two orders i and j . The
profit loss of 1.2% for P5 is caused by inventory or backlogging costs as a consequence
of an unfavorable temporal assignment of ATP and can thus additionally be avoided
by SO P A�d. As opposite to P3 and P5, P2 not only shows a small number of orders,
but also a non–zero heterogeneity. This might be the reason for the exorbitant advan-
tage of temporal reservation for P2. On the other hand, temporal reservation seems to
have no impact on P6 (0.3 for both SOPA�a and SOPA�d). Summing up both SOPA
variants clearly profit from clustering effects.

3.3 Variation of the ATP search space and consumption rules

Both SOPA variants of the last section assumed that ATP can only be consumed in the
priority class classî(s), the order î(s) belongs to. The subsequent experiments allow
a more flexible consumption of ATP by varying the ATP search space �î(s) in the
following way:
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cc ⇔ ATP can only be consumed in the class classî(s), order î(s) has been assigned
to, i.e. �î(s) := {classî(s)} (as done in Sect. 3.2).

cK ⇔ ATP can be consumed in the order’s original class or in classes with lower
priority, i.e. �î(s) := {classî(s), . . . , K } (see Sect. 2.3 regarding the sorting of
classes).

1K ⇔ ATP can be consumed in all classes, i.e. �î(s) := {1, . . . , K }.
1c ⇔ ATP can be consumed in the order’s original class or in classes with higher

priority, i.e. �î(s) := {1, . . . , classî(s)}.
Intuitively, the last variant does not seem to make much sense, but has been imple-
mented for ease of validation and comparison.

Note that the constraints above do not specify a sequence for searching this space. By
solving the SOPA model (9) – (12) using linear programming, ATP can be consumed
freely within the search space �î(s) because—for a given period t—the order’s original
profit pî(s),t remains the same independently of the class, the ATP quantities actually
come from. In order to guide the search through various priority classes in an intended
manner (while still applying LP methods), fictitious gains and losses have been defined
the following way: The objective function (9) is extended by

∑

t,k≥classî(s)

(K − k) · 0.01 · pî(s),t ō
s
kt (19)

for the search space cK and by (19) plus

∑

t,k<classî(s)

(k − classî(s)) · 0.01 · pî(s),t ō
s
kt (20)

for the search space 1K. Thus, the allowed classes are searched in an order of descen-
ding priorities first, starting with the original class classî(s). If no such ATP has been
found for a search space 1K, higher priority classes are then searched in a sequence
of ascending priorities, starting with classî(s) − 1. Of course, the loss of profit shown
in Table 6 has been calculated on basis of the regular profits (9), only. This way, ATP
search rules, as proposed by Kilger and Meyr (2008) and Fischer (2001) and used in
most APS, can also be simulated within the LP framework of this paper.

Table 6 shows the percentage profit losses for a variation of aATP aggregation
(aggregate, disaggregate), of the search space (cc, cK, 1K, 1c) and of the search
sequence (free allocation, search sequence predefined). The two rows marked in bold
correspond to the respective SOPA� results of Table 5.

When comparing the four a/·/f scenarios among themselves, the best results are
achieved for the cc search space, i.e. when staying within an order’s original priority
class. Access to lower class ATP is only reasonable if search rules are used (a/cK/s).
In this case, the a/cc/f results can be equalized but not improved. Free access to higher
priority ATP (a/1K/· and a/1c/f) is indeed proven to be nonsense. A variation of the
search space or the introduction of search rules (a/·/·) do not show any effects on P2 and
P5. For these products a profit increase can only be achieved by temporal reservation
(d/·/·). The situation is actually the same for P3. Its anomalies for a/cK/· only occur
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Table 6 Percentage profit loss of SOPA� as compared to GO� for varying temporal reservation (aggregate,
disaggregate), ATP search space (cc = original class, cK = lower priority, 1K = all classes, 1c = higher
priority) and ATP search rules (f = free allocation, s = search sequence predefined)

P1 P2 P3 P4 P5 P6 Averagea

a/cc/f 5.5 21.1 0.0 1.5 1.2 0.3 5.9

a/cK/f 5.5 21.1 (24.4) 4.3 1.2 0.3 6.5

a/1K/f 15.0 21.1 0.0 12.5 1.2 6.9 11.3

a/1c/f 18.0 21.1 0.0 18.9 1.2 6.9 13.2

a/cK/s 5.5 21.1 (17.7) 1.5 1.2 0.3 5.9

a/1K/s 15.0 21.1 0.0 12.4 1.2 6.9 11.3

d/cc/f 0.5 0.1 0.0 0.2 0.0 0.3 0.2

d/cK/f 0.5 0.1 0.0 0.2 0.0 0.3 0.2

d/1K/f 0.6 0.1 0.0 6.8 0.0 0.8 1.7

d/1c/f 12.8 0.1 0.0 13.8 0.0 0.8 5.5

d/cK/s 0.5 0.1 0.0 0.2 0.0 0.3 0.2

d/1K/s 0.6 0.1 0.0 6.8 0.0 0.8 1.7

a Without P3

because the penalty holding costs “early = 1” have turned out to be too low for this
product. Thus, the average values in the corresponding column of Table 6 have been
calculated without considering P3.

The comparison of the a/·/· with their respective d/·/· scenarios emphasizes the
advantages of a temporal reservation, again. Altogether the picture is similar for the
disaggregate scenarios. The search spaces cc and cK show equal quality, whereas 1K
and 1c compare badly. A positive effect of search rules cannot be recognized, here.

3.4 Variation of the number of classes

All SO P A� results presented so far are based on Fischer’s original assignment of
customers to three priority classes (see Sect. 3.1). It will now be investigated whether
a variation of the number of priority classes might be advantageous. At the same
time the various ATP consumption alternatives will be compared again. The following
experiments will be limited to P1. Product P1 has been chosen because

• it comprises only 37 orders and thus can be simulated in short computation times,
• Fischer’s assignment of orders to classes showed balanced proportions for P1 (8/14/

15, see Table 4), and because
• the SOPA allocation achieved significant and non–identical profit increases for both

variants—those with (0.5% loss) and those without (5.5%) temporal reservation—
as compared to the standard SOP (15%) procedure (see Table 5).

Up to 20 priority classes have been generated using the clustering models and heuristics
of Meyr (2007). Table 7 shows the average of the corresponding percentage SOPA�

profit losses.
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Table 7 Percentage profit loss of SOPA� as compared to G O� for P1 with respect to different ATP
consumption rules (see Table 6) and a varying number of priority classes K (missing entry = 0.0)

Reser.: Aggregate Disaggregate

Space: cc cK 1K 1c cK 1K cc cK 1K 1c cK 1K

Search: Free Sequ. Free Sequ.

K = 1 15.0 15.0 15.0 15.0 15.0 15.0 0.9 0.9 0.9 0.9 0.9 0.9

2 10.1 10.1 15.0 15.1 10.1 15.0 0.6 0.6 0.6 1.6 0.6 0.6

3 6.4 6.7 15.0 17.2 6.4 15.0 0.5 0.5 0.5 10.5 0.5 0.5

4 5.7 5.7 15.0 18.0 5.7 15.0 0.4 0.4 0.5 10.6 0.4 0.5

5 4.5 5.2 15.0 20.8 4.5 15.0 0.4 0.4 0.5 10.6 0.4 0.5

6 3.6 4.3 15.0 23.8 3.6 15.0 0.1 12.0 0.1

7 2.7 3.2 15.0 24.7 2.7 15.0 0.2 0.2 0.3 12.1 0.2 0.3

8 2.9 3.5 15.0 26.1 2.9 15.0 0.1 12.0 0.1

9 2.4 2.7 15.0 26.7 2.4 14.9 0.1 12.0 0.1

10 2.4 2.7 15.0 26.2 2.4 14.9 0.1 12.0 0.1

11 2.4 2.7 15.0 26.2 2.4 14.9 0.1 12.0 0.1

12 2.4 2.6 15.0 26.6 2.4 14.9 0.1 12.0 0.1

13 2.4 2.6 15.0 26.6 2.4 14.9 0.1 12.0 0.1

14 2.5 2.6 15.0 26.7 2.5 14.9 0.1 12.0 0.1

15 2.8 3.0 15.0 26.8 2.8 14.9 0.1 12.2 0.1

16 3.0 3.2 15.0 26.7 3.0 14.9 0.1 11.9

17 3.0 3.3 15.0 26.8 3.0 14.8 0.1 12.1

18 2.2 2.7 15.0 26.8 2.2 14.8 0.1 12.1

19 2.2 2.7 15.0 26.9 2.2 14.8 0.1 12.3

20 2.2 2.9 15.0 26.8 2.2 14.7 0.1 12.1

Average 4.05 4.38 15.0 24.0 4.05 14.9 0.16 0.16 0.24 10.7 0.16 0.20

Fischer 5.5 5.5 15.0 18.0 5.5 15.0 0.5 0.5 0.6 12.8 0.5 0.6

The row “average” of Table 7, containing average results of all 20 classes for each
ATP search alternative, confirms the findings of the last section. Within the aggregate
aATP scenarios (left part of Table 7) the search spaces cc and cK perform best again,
also for a varying number of classes K . If access to lower priority classes is allowed
(a/cK/·), sequential search rules should be applied instead of a free ATP consumption.
The results of the disaggregate aATP (right part of Table 7) show a similar structure.
However, the overall solution quality is better. Due to the limited degree of freedom
left after the temporal reservation, the d/1K/· scenarios also behave well. All in all,
the a/cK/s–rules for ATP consumption, as proposed by most APS, seem justified by
these experiments. However, simply staying within the original class (a/cc/·) would
perform equally.

The number of classes K appears more important than the search space and search
rule. This can be seen when studying the profit improvement resulting from increasing
K for all ·/cc/· and ·/cK/· scenarios. The absurdity of an 1c search space becomes
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particularly clear in Table 7 where the profit loss even increases for a higher number
of customer classes. The row K = 1 shows the results for a single class only, i.e. the
SOP performance without allocation planning. The a/·/· values coincide with the SOP�

value of P1 in Table 5. The d/·/· values for K = 1 illustrate the improvement possible
by solely introducing temporal reservation, without additionally building customer
classes. A profit loss of 0.9% still remains because all orders of the same period are
considered as being equal. However, for P1 this affects only 2.1 orders on the average
(see Table 4).

The two lines marked in italics allow a comparison of the clustering methods (K =3)
of Meyr (2007) with the original customer segmentation of Fischer. There seems
to be a small advantage for the automatic methods. Nevertheless, in general both
segmentations lead to similar results.

Note that the results are based on a single product only and thus can hardly be gene-
ralized. Nevertheless, the example shows that profit can be increased by introducing
priority classes. Even if there is no obvious, natural customer segmentation, a cluste-
ring into several price classes is valuable, as long as different customer orders show
various per unit profits. Thus, it seems more important whether a clustering is done
than how it is done. To what extent this assumption is true will be further investigated
in the next section.

3.5 Effects of clustering on SOPA

Table 8 shows the percentage profit loss of single order processing after allocation
planning, as compared to the global optimization result G O�, for each of the clustering
alternatives MinMax, Sum-DE, Sum-TA and Sum-TS of Meyr (2007), individually (see
Sect. 2.4). The results are presented for the products P1, P4 and P6 comprising the
largest number of orders (37, 1,305 and 509, respectively) and showing the largest
inhomogeneity of distances disti j (see Table 3). For ease of clarity, the simulation
has been restricted to the single d/cK/s scenario, one of the best-performing scenarios
of Sect. 3.4. Missing entries in the table indicate a profit loss of 0.00, i.e. that G O�

has been reached. Note that the MinMax results and the results of the CS heuristics
Sum-DE, Sum-TA and Sum-TS would not have been directly comparable because they
solve the two different problems CM and CS. However, each product’s profit losses of
Table 8 can immediately be compared with each other, since the clustering heuristics
influence SOPA only indirectly by the different ways of cluster building.

Looking at row “aver.”, containing the results averaged over all 20 classes, gives
a quick overview of the overall performance of the four heuristics. However, results
appear nonuniform. While P1 and P6 are dominated by MinMax, the CS heuristics out-
perform the CM algorithm clearly for P4. Thus there does not seem to be a significant
correlation between the clustering objectives, the solution quality of different heuristics
and the profits generated by the respective clusters.

Interestingly, the profit losses of Sum-DE (for P6) and Sum-TA (for P4 and P6)
decrease first, but then increase again. A reason for this might be found in a bad overall
solution quality of the CS heuristics, particularly for large problems with many orders
and classes (Meyr 2007). This is, besides forecast accuracy, a second argument for
choosing a not too large class number K .
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Table 8 Percentage profit loss of the SOPA clustering alternatives MinMax (MM), Sum-DE, Sum-TA and
Sum-TS as compared to GO� for P1, P4 and P6 in the d/cK/s scenario (missing entry = 0.00)

K P1 P4 P6

MM DE TA TS MM DE TA TS MM DE TA TS

1 0.89 0.89 0.89 0.89 11.03 11.03 11.03 11.03 11.39 11.39 11.39 11.39

2 0.49 0.66 0.66 0.66 11.00 10.12 10.12 10.12 0.30 4.13 4.13 4.13

3 0.25 0.52 0.52 0.52 10.10 3.50 3.45 3.50 0.30 2.71 2.71 2.71

4 0.25 0.50 0.50 0.50 0.15 0.15 0.15 0.15 0.29 2.72 2.72 2.72

5 0.20 0.52 0.44 0.50 0.15 0.15 0.15 0.15 0.29 1.77 1.77 1.77

6 0.09 0.03 0.03 0.03 0.15 0.34 0.10 0.34 0.29

7 0.03 0.03 0.03 0.69 0.15 0.10 0.10 0.10 0.29

8 0.03 0.03 0.03 0.03 0.15 0.10 0.07 0.10 0.29

9 0.03 0.03 0.03 0.03 0.15 0.07 0.07 0.07 0.28

10 0.03 0.03 0.03 0.03 0.15 0.07 0.07 0.07 0.03

11 0.03 0.03 0.03 0.03 0.13 0.07 0.04 0.07 0.03

12 0.03 0.03 0.03 0.03 0.12 0.08 0.03 0.08 0.01 0.39

13 0.03 0.03 0.03 0.03 0.12 0.04 0.03 0.04 1.64

14 0.03 0.03 0.03 0.12 0.03 0.03 0.03 1.35

15 0.03 0.14 0.03 0.03 0.03 2.65

16 0.08 0.03 0.03 0.03 0.97 0.67

17 0.08 0.03 0.03 0.03

18 0.08 0.03 0.02 0.03 1.39 0.49

19 0.08 0.03 0.06 0.03 0.91

20 0.06 0.03 0.06 0.03 0.58 1.96

Aver. 0.12 0.17 0.16 0.20 1.71 1.30 1.28 1.30 0.69 1.58 1.34 1.14

The clustering of Fischer often shows better results (0.51 for P1, 0.21 for P4 and
0.33 for P6) than the automatic clustering methods for K = 3. However, for K = 4
already the MinMax clustering outperforms Fischer’s profits for all three products.
Starting with K = 7 the same holds true for all CS heuristics as well. On the whole,
all four heuristics show promising results when four or more classes are used.

Summing up this section, SOPA� indeed seems not to be very sensitive with respect
to the clustering method used. An increase of the number of classes K leads to higher
profits if orders of the same product are inhomogeneous enough. Considering the
examples of this section at least 4, but better 6–7 classes should be used. However, the
number of classes should not be chosen too large in order to reduce forecasting errors
and a bad performance of clustering heuristics, especially for CS.

4 Summary, managerial insights and outlook

The exemplary tests of the paper have shown that a first-come–first-served processing
of arriving customer orders is hardly the best way of demand fulfillment in shortage
situations if reliable forecasts are available. Gathering data for a certain period of time
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and processing them in a batch can improve the situation. However, often customer
service sets a natural limit to such a procedure because customers increasingly expect
short order confirmation lead times. Another way of improvement can be to precede
the FCFS single order processing by a further allocation planning step. Here, priority
classes for customer orders are built, available inventory (ATP quantities) is “allocated”
to these classes and reserved for later consumption by their respective customers. Such
a customer segmentation has proven its potentials when introducing booking classes in
airline yield management. Thus, the basic idea is not new and has also been supported
by advanced planning systems where simple ATP allocation and consumption rules are
offered. However, until now it was largely unclear—in science and practice—whether,
when, why and to what extent such a proceeding might be useful in manufacturing
industries, too.

First answers to these questions have been given using an example from the lighting
industry where bulbs, fluorescent lamps etc. are made to stock on the basis of forecasts,
first, and then sold from stock as soon as customer orders arrive. In order to demonstrate
its potentials the following planning tasks had to be structured, discussed and solved
first:

1. Determination of a reasonable number of priority classes,
2. clustering, i.e. assignment of customers and customer orders, respectively, to these

classes,
3. allocation planning, i.e. allocation of available inventory on hand and planned

production quantities (ATP) to the priority classes, and
4. ATP search, i.e. successively consuming this allocated ATP for each incoming

order. In this case both the search space (classes allowed) and the search sequence
have to be specified.

(1) has been tackled by means of simulation by varying the number of classes in a
reasonable range and (2) by applying standard clustering methods. For (3) and (4)
linear programming models have been proposed and solved to optimality. All in all, it
was not intended to discuss each of these planning tasks in all detail and to solve it in
the best possible manner (even though this has not satisfactorily been done in science
up to now). The primary goal was to bring all four tasks together in a single simulation
experiment to give an impression of the overall potential of allocation planning in
make–to–stock industries of this or similar types.

Since practical data have been used and the test bed was limited one has to be aware
that the results are only exemplary and more general statements would need further
experiments. Nevertheless, some interesting insights have been gained by the lighting
example and also common views have been confirmed: Introduction of priority classes
and allocation planning can indeed increase revenues and profits, substantially. The
more heterogeneous the customers and their orders, e.g. with respect to the revenues
made or to the strategic importance of the customers, the higher the advantages are.
The number of customer classes plays an important role. Too few classes cause a
loss of profits, too many classes make forecasting and clustering difficult. A temporal
reservation of stocks, for use in a specific period, would generally be advantageous,
but its practical application is only reasonable if customer demand can be forecast
reliably enough.
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At least in the lighting case, ATP consumption policies and the clustering method
itself are not as crucial as the choice of an appropriate number of classes. Although
LP methods have been applied for ATP consumption, simple ATP search rules would
perform equally for this example. Such rules should either stay within an order’s
original class or, as often claimed in Revenue Management and by APS, also allow
access to lower priority classes. In the latter case, lower classes should better be
searched for in order of descending priorities. However, note that LP methods or more
sophisticated rules are required in more complex supply chains, e.g. in make-to-stock
supply chains with several stocking points and/or product substitution or in assemble-
to-order supply chains with multi–stage bills of materials.

Thus, also in manufacturing industries managers should pay additional attention to
their customers’ varying nature and try to increase their overall customer service by
allocating their scarce resources—in make–to–stock environments more specifically:
their limited finished item stock—with higher priority to their more important cus-
tomers. As the example of the lighting industry has shown, for this, not even active
or for the customer visible measures of customer segmentation (like fencing strate-
gies or longer response times for order promises) are necessary. It is sufficient to take
advantage of the already existing customer heterogeneity by applying standard clus-
tering methods for identifying priority classes and by introducing well-coordinated
ATP allocation and consumption processes.

Of course, there are still a lot of research challenges. Each of the planning tasks
introduced above should be investigated in more detail for prerequisites of application
and fitting solution methods. First of all, the sensitivity of the results with respect to
less reliable supply information, e.g. concerning the viability of production plans, and
demand information, i.e. to lower forecast accuracy, has to be tested. Furthermore,
similar simulation experiments should be executed for more complex types of supply
chains with other order penetration points. On the one hand, APS support allocation
planning and ATP consumption in resource- and capacity-constrained manufacturing
industries by offering the deterministic rules mentioned above. On the other hand,
there is an obvious affinity to inventory rationing for several customer classes and
to quantity-based revenue management, as defined by Talluri and Van Ryzin (2004)
and practiced in many service industries like airline, hotel or car rental. Most of their
methods are of a stochastic nature. Thus the most challenging prospect for future
research is to find out whether and how these worlds can learn from each other.
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