
OR Spectrum (2008) 30:579–609
DOI 10.1007/s00291-006-0070-3

R E G U L A R A RT I C L E

The sequence-dependent assembly line balancing
problem

Armin Scholl · Nils Boysen · Malte Fliedner

Published online: 17 November 2006
© Springer-Verlag 2006

Abstract Assembly line balancing problems (ALBP) arise whenever an assem-
bly line is configured, redesigned or adjusted. An ALBP consists of distributing
the total workload for manufacturing any unit of the products to be assembled
among the work stations along the line. The sequence-dependent assembly line
balancing problem (SDALBP) is an extension of the standard simple assembly
line balancing problem (SALBP) which has significant relevance in real-world
assembly line settings. SDALBP extends the basic problem by considering
sequence-dependent task times. In this paper, we define this new problem, for-
mulate several versions of a mixed-integer program, adapt solution approaches
for SALBP to SDALBP, generate test data and perform some preliminary com-
putational experiments. As a main result, we find that applying SALBP-based
search procedures is very effective, whereas modelling and solving the problem
with MIP standard software is not recommendable.

Keywords Assembly line balancing · Mass-production · Combinatorial
optimization · Sequencing

A. Scholl (B)
Fakultät für Wirtschaftswissenschaften, Lehrstuhl für Betriebswirtschaftliche
Entscheidungsanalyse, Friedrich-Schiller-Universität Jena, Carl-Zeiß-Straße 3,
07743 Jena, Germany
e-mail: a.scholl@wiwi.uni-jena.de

N. Boysen · M. Fliedner
Fakultät Wirtschafts- und Sozialwissenschaften, Institut für Industrielles Management,
Universität Hamburg, Von-Melle-Park 5, 20146 Hamburg, Germany
e-mail: boysen@econ.uni-hamburg.de

M. Fliedner
e-mail: fliedner@econ.uni-hamburg.de

580 A. Scholl et al.

Fig. 1 Precedence graph

1
6

2
6

7
4

6
5

5
4

4
5

3
5

10
2

9
5

8
2

1 Introduction

Assembly lines are flow-oriented production systems which are typical in the
industrial production of high quantity standardized commodities and even gain
importance in low volume production of customized products. Among the deci-
sion problems which arise in managing such systems, assembly line balancing
problems are important tasks in medium-term production planning (cf., e.g.,
Baybars 1986; Becker and Scholl 2006; Boysen et al. 2006).

An assembly line consists of (work) stations k = 1, . . . , m arranged along a
conveyor belt or a similar mechanical material-handling equipment. The work-
pieces (jobs) are consecutively launched down the line and are moved from
station to station. At each station, certain operations are repeatedly performed
regarding the cycle time (maximum or average time available for each work-
cycle). The decision problem of optimally partitioning (balancing) the assembly
work among the stations with respect to some objective is known as the assembly
line balancing problem (ALBP).

Manufacturing a product on an assembly line requires partitioning the total
amount of work into a set of elementary operations named tasks V = {1, . . . , n}
which constitute the nodes of a precedence graph. Performing a task i takes a
task time (node weight) ti and requires certain equipment of machines and/or
skills of workers. Due to technological and organizational conditions, prece-
dence relations between the tasks have to be observed. A precedence relation
(i, j) means that task i must be finished before task j can be started and is rep-
resented as a directed edge (arc) in the precedence graph. Within the arc set E
of the graph any arc is removed, which is redundant because it connects nodes
that are also connected by a path with more than one arc. Furthermore, we
assume that the graph G = (V, E, t) is acyclical and numbered topologically.
An example of a precedence graph is given in Fig. 1.

The following sets are useful to describe the precedence relations:
Pi = {h|(h, i) ∈ E} set of direct predecessors of task i ∈ V
Fi = {j|(i, j) ∈ E} set of direct successors (followers) of task i ∈ V

Assuming E∗ to be the transitive closure of E, which contains an arc for each
path in the precedence graph, we further define:

Pi
∗ = {h|(h, i) ∈ E∗} set of all predecessors of task i ∈ V

Fi
∗ = {j|(i, j) ∈ E∗} set of all successors of task i ∈ V

Any type of ALBP consists in finding a feasible line balance, i.e., an assign-
ment of each task to a station such that the precedence constraints and possible
further restrictions are fulfilled. The set Sk of tasks assigned to a station k (=
1, . . . , m) constitutes its station load, the cumulated task time t(Sk) = ∑

j∈Sk
tj is

The sequence-dependent ALBP 581

Table 1 Versions of simple assembly line balancing problem (SALBP)

cycle time c

Given Minimize
No. (m) of stations
Given SALBP-F [| |] SALBP-2 [| | c]
Minimize SALBP-1 [| | m] SALBP-E [| | E]

called station time. When a fixed common cycle time c is given, a line balance is
feasible only if the station time of neither station exceeds c. In case of t(Sk) < c,
the station k has an idle time of c − t(Sk) time units in each cycle, i.e., it is
repeatedly unproductive for this time span.

The most popular ALBP is called simple assembly line balancing problem
(SALBP). It has the following characteristics (cf. Baybars 1986; Scholl 1999,
chap. 2.2; Boysen et al. 2006):

• mass-production of one homogeneous product; given production process
• paced line with fixed cycle time c
• deterministic (and integral) operation times tj
• no assignment restrictions besides the precedence constraints
• serial line layout with m stations
• all stations are equally equipped with respect to machines and workers
• maximize the line efficiency Eff = tsum/(m × c) with total task time tsum =∑n

j=1 tj

Several problem versions arise from varying the objective as shown in Table 1.
The tuple-notations specify the characterizations of the problem versions within
the recent classification scheme of Boysen et al. (2006).

Since SALBP-F is an NP-complete feasibility problem, the optimization ver-
sions of SALBP, which may be solved by iteratively examining several instances
of SALBP-F, are NP-hard (cf. Wee and Magazine 1982; Scholl 1999, chap.
2.2.1.5).

Recent surveys covering SALBP models and procedures are given by Erel
and Sarin (1998), Scholl (1999, chap. 2, 4, 5), Rekiek et al. (2002) as well as
Scholl and Becker (2006).

2 The sequence-dependent problem extension

In practice, there is usually a greater flexibility in task times and/or precedence
relations than postulated by the traditional precedence graph and assumed by
SALBP (and all established extensions of SALBP). Usually, not every prece-
dence relation specified in order to construct a precedence graph is due to a
strict technological requirement. Instead, such a relation (i, j) might be specified
only because it is assumed to be the more efficient order of performing these
tasks.

582 A. Scholl et al.

This becomes relevant whenever the tasks i and j interact in such a manner
that their task times are influenced. For example, consider the assembly of a car,
where several components have to be installed at the same mounting place or
at neighbouring ones (e.g., seat and seat belt, head lights and buffer-bar, motor
and cooling system, radio and ventilation device). Installing a seat before the
appendant seat belt may prolong the latter task, because the seat is an obstacle
which requires additional movements and/or prevents from using the most effi-
cient installation procedure. The other way round, mounting the seat may be
restricted by the already installed seat belt resulting in an enlarged task time.

On the one hand, examining apparent precedence relations with respect to
this aspect will usually reveal that a considerable number of these constraints
are not as hard as considered to be, because they represent a favourable order
of performing tasks but not the only possible one. On the other hand, consid-
ering the correctness of measured task times will often make evident that they
are only valid if the unhindered standard procedure can be used to perform
the respective task, i.e., they depend on implicit precedence relations. As this
discussion shows, interacting tasks can be modelled neither by specifying strict
precedence relations nor by omitting these constraints while the task times are
fixed.

In order to model this very typical situation adequately, we introduce the
concept of sequence-dependent task time increments. Whenever a task j is per-
formed after another task i has been finished, its standard time tj is incremented
by a value sdij. This sequence-dependent increment measures the prolongation
of task j forced by the interference with the status of already having processed
task i.

With respect to the direction of interaction, we distinguish two cases:

• Unidirectional interaction. If sdji > 0 and sdij = 0, then only task j influences
the execution of task i, while task i has no influence on performing task j.

• Bidirectional interaction. sdji > 0 and sdij > 0 hold, either task restricts the
other.

Example In case of the precedence graph given in Fig. 1, we assume that the
task times t5 and t6 have been measured without regarding that performing task
2 before would prolong the execution time of task 5 by sd25 = 2 and that of
task 6 by sd26 = 1 time units due to an interference (unidirectional). Though
the precedence relation (6,7) represents the preferable order of performing the
tasks 6 and 7, the reverse order is assumed to be possible and connected with
an increase sd76 = 1 of t6 (unidirectional). Finally, we assume that the tasks 8
and 9 interact bidirectionally such that sd89 = 3 and sd98 = 1 have to be added
to the standard task times, respectively.

Figure 2 includes this additional aspects by introducing disjunctive arcs
(dashed) for all pairs (i, j) of interacting tasks using sdij and sdji as arc weights.

Obviously, the tasks i and j only can interact in the described manner
if they are not related by precedence, i.e., there is no path in the prece-
dence graph connecting i and j. The set of interacting pairs is called SD, i.e.,

The sequence-dependent ALBP 583

Fig. 2 Precedence graph plus
disjunctive arcs 9

5

8
2

1
6

2
6

7
4

6
5

5
4

4
5

3
5

10
21

0
2

0
1 3

0
1

Table 2 Versions of sequence dependent assembly line balancing problem (SDALBP)

Cycle time c

Given Minimize
No. (m) of stations
Given SDALBP-F [�tind | |] SDALBP-2 [�tind | | c]
Minimize SDALBP-1 [�tind | | m] SDALBP-E [�tind | | E]

SD = {(i, j) ∈ (V × V) − E∗|i < j ∧ sdij + sdji > 0}. The tasks i interacting with
a given task j are collected in the set SDj = {i|(i, j) ∈ SD ∨ (j, i) ∈ SD}. If sev-
eral time increments are to be considered for a task their sum is added to the
standard task time (additive time increments).

Whenever there are bidirectional task interactions, the total task time neces-
sarily exceeds the sum of standard times tsum. As a simple lower bound on the
modified total task time we get

t′sum = tsum +
∑

(i,j)∈SD

min{sdij, sdji} (1)

Example For the instance of Fig. 2, we get t′sum = 44 + min{1, 3} = 45.
Introducing the sequence-dependent task time increments (SD �= Ø) into

SALBP leads to a modified problem which we call the sequence-dependent
assembly line balancing problem (SDALBP). As in case of SALBP, different
problem versions can be defined, the names and classification tuples (cf. Boysen
et al. 2006) of which are given in Table 2.

In contrast to SALBP-E, there is no obvious way to define the line efficiency,
because the total task time depends on the line balance considered. In order
to get a solution-independent and realistic measure, we define the line effici-
ency as Eff′ = t′sum/(m × c), because t′sum represents the most efficient way of
performing the tasks with respect to their total time requirement.

In order to avoid misunderstandings, some remarks seem to be helpful:

• A solution-dependent definition of the line efficiency using the realized
total task time is meaningless, because task orderings which lead to line
balances with the same combination of m and c as other orderings but cause
unnecessary time increments would increase the line efficiency in an absurd
manner.

• The ordering of all interacting task pairs as implied by t′sum need not lead to
the most efficient line balance as is shown in the example below.

584 A. Scholl et al.

Fig. 3 Difference between
simple assembly line
balancing problem (SALBP)
and sequence-dependent
assembly line balancing
problem (SDALBP)

1
7

2
4

4
5

3
3

0 1

• Furthermore, this ordering need not be feasible due to cycles in the induced
precedence graph.

Example Taking c = 11 and m = 5 as parameters of SDALBP-F, a feasible line
balance is given by (S1 = {3, 4}, S2 = {1, 5}, S3 = {6, 2}, S4 = {7, 9}, S5 = {8, 10}).1
In contrast to the SALBP-F solution (cf. Sect. 1), the load S4 = {7, 8, 9} is
not feasible, because the station time is increased to t(S4) = t7 + t9 + t8 +
min{sd89, sd98} = 12, even if we take the preferred order (7, 9, 8) which con-
stitutes the minimum. Given c = 11, the optimal SDALBP-1 solution requires
m∗ = 5 stations (one of the optimal line balances is given above), while SALBP-
1 gets by with four stations (because it does not attend that it is not possible to
realize both t8 and t9 simultaneously). The optimal cycle time for the SDALBP-
2 instance given by m = 5 is c∗ = 10. One of the optimal balances is ({1}, {3,4},
{5,2}, {6,7}, {9,8,10}). Given a SDALBP-E instance with the number of stations
restricted to 4 or 5, the maximal line efficiency Eff

′∗ = 45/(5 × 10) = 0.9 is
achieved by the SDALBP-2 solution given above, because the minimal cycle
time for m = 4 stations is c∗ = 14 with the lower efficiency 45/(4 × 14) = 0.804.

In order to make clear the fundamental difference between SALBP and
SDALBP unambiguously, we consider only a single pair (i, j) of a unidirectional
task interaction (sdji > 0 and sdij = 0). Then, the most intuitive idea consists
in introducing the precedence relation (i, j), because this is the preferred task-
ordering without incrementing task times at all. However, this may prevent from
finding the optimal solution as can be seen by considering the instance defined
by Fig. 3 and c = 10. If we introduce the arc (2,3), the optimal SDALBP-1 solu-
tion ({1, 3}, {2, 4}) with two stations is not found anymore, because the resulting
SALBP-1 instance requires 3 stations ({1}, {2, 3}, {4}). In this case, it is profitable
to accept the time increase sd32 = 1 in order to allow for combining the tasks 1
and 3.

Since SDALBP is a generalization of SALBP (setting all sdij to 0 reduces
SDALBP to SALBP), its feasibility version SDALBP-F is NP-complete and its
optimization versions are NP-hard, too.

In the above description and throughout the whole paper, we assume an
additive linear influence of increments on the task time, i.e., the actual time of
a task j is computed by summing up its original time tj and all increments sdij
of tasks i which precede j. Sometimes, this might be unrealistic, because the
joint influence of several tasks on the time of j might differ from the sum of

1 Notice that performing task 6 before task 2 in station 2 leads to the feasible station time 11,
whereas the reverse order would constitute the infeasible station time 12.

The sequence-dependent ALBP 585

individual influences. In this case, the models and solution procedures have to
consider task time increments sdSj of subsets S ⊆ V − {j} − F∗

j − P∗
j instead of

sdij with tasks i ∈ V − {j} − F∗
j − P∗

j only. Because this would complicate the
further analysis considerably, we restrict our presentation to the additive linear
case. However, notice that incorporating general time increments is possible,
albeit rather complex, in the models presented in Sect. 3 and easy in case of the
search procedures presented in Sect. 4.

3 Mathematical models for SDALBP

For SALBP, there is a number of integer linear programs available (cf. Scholl
1999, chap. 2.2; Ugurdag et al. 1997; Pinnoi and Wilhelm 1997; Bockmayr and
Pisaruk 2001; Peeters and Degraeve 2006). In the following, we develop mixed-
integer programs (MIP) which are restricted to the problem version SDALBP-1,
because adapting this model to the other problem versions is straightforward
(cf. Scholl 1999, chap. 2.2).

3.1 Definitions

The models are developed by extending the standard formulation for
SALBP-1 (cf. Bowman 1960; White 1961; Thangavelu and Shetty 1971; Patter-
son and Albracht 1975; Scholl 1999, p. 29) which is based on binary assignment
variables xjk defined as follows (m̄ is a valid upper bound on the number of sta-
tions; a very simple bound is m̄ = n, for further bounds see Scholl 1999, chap.
2.2.2.2):

xjk =
{

1 if task j is assigned to station k
0 otherwise

for j ∈ V and k = 1, ..., m̄

The number of variables can be reduced by computing earliest and latest
stations based on the relative task times τj = tj/c of the tasks j = 1, . . . , n, i.e.,
the portion of the cycle time required by the tasks. In case of SALBP-1, the
earliest station Ej and the latest station Lj, respectively, to which a task j can be
assigned feasibly is computed as follows (cf. Saltzman and Baybars 1987):

Ej =
⎡

⎢
⎢
⎢
⎢

τj +
∑

h∈P∗
j

τh

⎤

⎥
⎥
⎥
⎥

, Lj = m̄ + 1 −
⎡

⎢
⎢
⎢
⎢

τj +
∑

h∈F∗
j

τh

⎤

⎥
⎥
⎥
⎥

for j ∈ V (2)

Thus, task j can only be assigned to one of the stations in the station interval
SIj = [Ej, Lj]. The other way round, only a subset Bk = {j ∈ V | k ∈ SIj} of the
tasks are potentially assignable to the stations k = 1, . . . , m̄.

Since the station intervals are valid for SDALBP-1, too, we can use them to
reduce the number of variables such that xjk has only to be defined for j ∈ V and

586 A. Scholl et al.

k ∈ SIj. However, the definitions of Ej and Lj do not consider the sequence-
dependent task time increments and might be strengthened accordingly.

The order in which the interacting tasks are executed is represented by binary
ordering variables yij :

yij =
{

1 if task i is executed prior to task j
0 if task i is executed after task j

for (i, j) ∈ SD

In order to improve the readability and the comprehensiveness of the model,
we additionally introduce auxiliary variables zj replacing a more complex term
that determines the index of the station to which task j is assigned:

zj :=
∑

k∈SIj

k × xjk for j ∈ V

The assumption that n is a single sink node of the precedence graph allows for
a simple determination of the number of stations actually required (m = zn). If
there are several sink nodes, a fictitious sink node with task time 0 is defined as
successor of all original sink nodes and given the (increased) label n.

3.2 Nonlinear model

A nonlinear mixed-binary program (model NL) is given by the objective func-
tion (3), which minimizes the number of stations m, and the constraint set
(4)–(16).

Minimize m(x, y, z) = zn (3)

s.t.
∑

k∈SIj

xjk = 1 for all j ∈ V (4)

∑

j∈Bk

⎛

⎜
⎜
⎜
⎝

tj+
∑

i∈SDj

i<j

sdij × yij+
∑

i∈SDj

i>j

sdij × (1 − yji)

⎞

⎟
⎟
⎟
⎠

× xjk ≤c for k=1, . . . , m̄

(5)

zi − zj ≤ 0 for all (i, j) ∈ E with Li ≥ Ej (6)

zi − zj ≤ M × (1 − yij) for all (i, j) ∈ SD (7)

zj − zi ≤ M × yij for all (i, j) ∈ SD (8)

yik ≤yij+yjk ≤yik+1 for all {i, j, k}⊂V with (i, j), (j, k), (i, k)∈SD (9)

yjk ≤yik for all {i, j, k}⊂V with

(i, j) ∈ E∗, (j, k), (i, k) ∈ SD (10)

The sequence-dependent ALBP 587

i

k

j

i

k

j

i

k

j

i

k

j

(12)(11)(10)(9)

Fig. 4 Triplets of interacting tasks

yij ≤ yik for all {i, j, k}⊂Vwith(i, j), (i, k) ∈ SD, (j, k) ∈ E∗ (11)

yij + yjk ≥1 for all {i, j, k}⊂V with(i, j), (j, k)∈SD, (i, k)∈E∗ (12)

zj =
∑

k∈SIj

k × xjk for all j ∈ V (13)

yij ∈ {0, 1} for all (i, j) ∈ SD (14)

xjk ∈ {0, 1} for j ∈ V and k ∈ SIj (15)

zj ≥ 0 for j ∈ V (16)

The constraints (4) assure that each task i is assigned to exactly one station. The
nonlinear constraints (5) represent the cycle time restrictions. The left-hand
side computes the station time t(Sk) by summing up the actual task times tj
of all tasks j assigned to station k (indicated by xjk = 1). The actual task time
of a task j is given by the standard task time tj which is increased by the time
increment sdij whenever a task i ∈ SDj is performed prior to j (indicated by
yij = 1 in case of i < j and yji = 0 in case of i > j). The resulting station time
must be no larger than the cycle time c.

The precedence relations are expressed by the constraint set (6) which en-
sures that no task is assigned to an earlier (lower-labelled) station than any of
its predecessors. This must only be taken into account if the station intervals
overlap.

The constraints (7) and (8) determine the order of performing the interacting
task pairs. Given a task pair (i, j) ∈ SD, the corresponding constraint pair (7)
and (8) is disjunctive due to a sufficiently large number M (e.g., M = m̄) at the
right-hand sides which makes one of both constraints redundant (cf. Williams
1999, chap. 9). The constraint (7) is nonredundant only if the task i is performed
prior to j (yij = 1 ⇒ zi ≤ zj), whereas the constraint (8) is relevant only when j
is executed first (yij = 0 ⇒ zi ≥ zj).

Constraints (9)–(12) ensure that the ordering defined for the subset of inter-
acting tasks is unique. This is achieved by transitivity (anti-cycle) conditions for
all subsets with three tasks that are subject to two interaction pairs and one
(direct or indirect) precedence constraint or three interaction pairs. Figure 4
shows the four types of task triplets to be considered. The interactions are
symbolized by dashed lines, the direct or indirect precedence relations by solid
arcs.

The constraint type (9) applies for three tasks i < j < k each pair of which is
interacting. In order to get a unique ordering, it is necessary to avoid yij = yjk =
yki = 1 and yji = yik = ykj = 1, because this would imply a cycle (intransitiv-
ity). The first case is avoided by yij + yjk + yki ≤ 2 which must be rearranged

588 A. Scholl et al.

to yij + yjk ≤ yik + 1 using the trivial relation yik = 1 − yki, because yki is not
defined in the model. The second case is avoided by imposing yji + yik + ykj ≤ 2
which is transformed into (1 − yij) + yik + (1 − yjk) ≤ 2 ⇒ yik ≤ yij + yjk.

The constraint types (10)–(12) are simplified versions of (9), because yij = 1,
yjk = 1, and yik = 1 are induced by the precedence relations, respectively.

Further conditions with four or more tasks are redundant, because each
(sub)graph containing more than three tasks covers several subgraphs with
three tasks each of which has a feasible ordering and is feasibly connected to
another such subgraph by joint task pairs.

The constraints (13)–(16) define and constrain the variables as explained
above.

3.3 Linearized model

In order to transform the nonlinear constraints (5) into linear ones, we intro-
duce additional binary variables wijk defined for all j ∈ V, i ∈ SDj, and k ∈ SIj
as follows:

wijk =
{

1 if task j is assigned to station k and exectued after task i
0 otherwise

The constraints (5) and (14) are replaced by the following set of constraints
to define a linear mixed-binary program for SDALBP-1 [model L1 = (3)–(24)
except for (5) and (14)]:

∑

j∈Bk

⎛

⎝tj × xjk +
∑

i∈SDj

sdij × wijk

⎞

⎠ ≤ c for k = 1, . . . , m̄ (17)

xjk + yij ≤ wijk + 1 for (i, j) ∈ SD and k ∈ SIj (18)

xjk ≤ wijk + yji for (j, i) ∈ SD and k ∈ SIj (19)

wijk ≤ xjk for j ∈ V, i ∈ SDj, and k ∈ SIj (20)
∑

k∈SIj

wijk +
∑

k∈SIi

wjik = 1 for (i, j) ∈ SD (21)

yij =
∑

k∈SIj

wijk for (i, j) ∈ SD (22)

wijk ∈ {0, 1} for j ∈ V, i ∈ SDj, and k ∈ SIj (23)

yij ≥ 0 for (i, j) ∈ SD (24)

The constraints (17) increase the standard time of the stations k by the incre-
ment sdij, whenever wijk = 1 signals that task j is assigned to k and the task
i ∈ SDj is performed prior to j (in the same or an earlier station). The con-
straints (18)–(20) enforce wijk = 1 in case of xjk = 1 and yij = 1. The conditions

The sequence-dependent ALBP 589

(21) ensure that there is a unique ordering for each interaction pair (i, j). By
the Eqs. (22), the ordering variables yij are set to 1 iff there is a station k ∈ SIj
with wijk = 1. Due to (21) this automatically leads to yji = 1 − yij such that
the ordering variables have still to be defined only for i < j . Because the wijk
are binary variables (23), we can relax the integrality condition for yij in (24).
Moreover, the variables yij could be removed from the model completely by
replacing them in all constraints using (22).

Because this is true for the station number variables zj , too, the only vari-
ables required are the assignment variables xjk and the combined ordering and
assignment variables wijk. That is, we have up to n2 + 2 × |SD| × n binary vari-
ables. However, this upper limit is reached only if the weak bound m̄ = n is
used.

The number of constraints is bounded from above by 2n + |E| + |SD| ×
(3+4n) for all constraints except the transitivity conditions (9)–(12), the max-
imum number of which is given by the number of triplets 1

6 × n3 − 1
2 × n2 +

1
3 × n of n tasks in case that all task pairs are interacting.2

3.4 Alternative modelling of transitivity constraints

The potentially large number of transitivity constraints can be replaced by
only 2n constraints by slightly redefining the variables zj, which then become
necessary.

Using a sufficiently small constant ε ∈ (0, 1), the conditions (6)–(13) are
substituted by the following constraints such that we get model L2 defined
by (3), (4), and (15)–(29):

zi − zj ≤ −ε for all (i, j) ∈ E with Li ≥ Ej (25)

zi − zj ≤ M × (1 − yij) − ε × yij for all (i, j) ∈ SD (26)

zj − zi ≤ M × yij − ε × (1 − yij) for all (i, j) ∈ SD (27)

zj ≥
∑

k∈SIj

k × xjk for all j ∈ V (28)

zj ≤
∑

k∈SIj

(k × xjk) + 1 − ε for all j ∈ V (29)

The effect is as follows: the integral part of zj still identifies the number of the
station, the task j is assigned to. The real-valued part enforces a unique ordering
of the subset of tasks within the station load which are related to each other
by precedence or interaction pairs. As a sufficiently small constant, we may use
ε = 1/n.

2 See Lübke (2006). Due to the relation |E| + |SD| ≤ n×(n−1)
2 , the number of constraints is of

order O(n3).

590 A. Scholl et al.

4 Solution approaches to SDALBP

We present and discuss approaches to solve SDALBP-1 without developing
highly specialized procedures. Instead, we show how to use standard software
and existing solution procedures for SALBP-1 in an effective manner.

4.1 Application of MIP standard software

Modelling is an important milestone in understanding a problem’s structure
and complexity. Furthermore, it always holds some capability for solving the
problem directly.

In Sect. 3, we have formulated a nonlinear and two linear MIP. Because
standard software for MIP (like, e.g., CPLEX and Xpress-MP) is not able to
solve general nonlinear models in a direct and efficient manner, we focus on
the linearized models.

Though relevant improvements have been obtained in accelerating such soft-
ware packages, it has to be regarded that SDALBP is an NP-hard optimization
problem. In case of SALBP, it has been shown that only rather small problem
instances can be solved to optimality in a reasonable amount of time (cf., e.g.,
de Reyck and Herroelen 1997; Ugurdag et al. 1997; Pinnoi and Wilhelm 1997;
Bockmayr and Pisaruk 2001). Because SDALBP is even more complex, the
same is true for SDALBP and has been confirmed by preliminary computa-
tional tests. In order to improve the solution process, it is useful to include
additional procedures to compute initial lower and upper bounds on the value
of the objective function (number of stations m). This leads to great reductions
in the number of variables and constraints thereby decreasing the size of the
solution space to be examined.

Furthermore, bound computations can be based on solving relaxations even
of a very complex model. Peeters and Degraeve (2006) present a Dantzig–
Wolfe type formulation of SALBP-1, the LP-relaxation of which is solved using
column generation combined with subgradient optimization. Computational
experiments show that the resulting bound values are close to optimality. This
approach could be transferred to our SDALBP-model.

4.2 Connections between SDALBP and SALBP

In order to solve SDALBP more efficiently, we describe an indirect approach
which allows for applying the versatile arsenal of solution procedures available
for SALBP. This approach is based on two interrelationships between SALBP
and SDALBP, relaxation and transformation. In order to keep the presenta-
tion simple, we again focus on the type-1 problem versions. Transferring the
approaches to the other versions is straightforward, because they are usually
solved by search procedures based on SALBP-1 (cf. Scholl 1999, chaps. 4.2, 4.3).

Relaxation: generation of lower bounds on the number of stations

The sequence-dependent ALBP 591

By completely ignoring sequence-dependent time increments (setting all sdij
and sdji to zero), SDALBP reduces to a pure SALBP, i.e., SALBP is a relaxa-
tion of SDALBP. Therefore, any lower bound for SALBP is also a valid lower
bound for SDALBP and can be used to judge the quality of heuristic solutions
and to fathom nodes within a branch-and-bound tree. If the optimal solution
to the relaxed instance is even feasible for the SDALBP-instance, i.e., the time
increments can be realized within the idle times of the station loads built, this
solution is also optimal for the SDALBP-instance. In order to examine feasibil-
ity, a scheduling problem has to be solved for each station load Sk that contains
tasks which interact with each other. This problem is usually small and can be
solved by enumeration easily.

Another relaxation of SDALBP is obtained by considering time increments
while arbitrary task splitting among the stations is allowed. Then, the well-
known capacity bound of SALBP (cf. Baybars 1986), i.e., LM1 = �tsum/c, is
improved to LM1′ = �t′sum/c.

Transformation: generation of upper bounds on the number of stations

By transforming each pair (i, j) ∈ SD of task interactions into the directed
precedence relation (i, j) or (j, i), the SDALBP-instance passes into a SALBP-
instance. If the resulting precedence graph is acyclical and the (increased) time
of neither task exceeds the cycle time, the corresponding SALBP-instance is
solvable. Each feasible or even optimal solution to this SALBP-instance is also
a feasible (but not necessarily optimal) solution to SDALBP. This feasibility is
guaranteed because the task times contain the necessary time increments which
is not true within the relaxed SALBP-instance. Thus, we get an upper bound
for SDALBP.

To solve SDALBP to optimality, we have to construct all solvable trans-
formed SALBP-instances systematically. The union of their feasible solution
sets is equal to the feasible solution set of the original SDALBP-instance. There-
fore, the optimal SDALBP-solution is obtained by taking from all optimal
SALBP-solutions (the) one which requires a minimal number of stations. This
implies that the SDALBP-instance is solvable if and only if there is at least one
solvable transformed SALBP-instance.

The transformation of SDALBP to SALBP needs some further technical
explanation: any SALBP-instance q is constructed by defining an individual
precedence graph G(q). Initially, it is set equal to the original precedence graph
G ignoring the disjunctive arcs (i, j) ∈ SD. Each transformation of an interaction
pair (i, j) ∈ SD into a precedence relation (i, j) or (j, i) modifies G(q). Without
loss of generality, we consider the case of introducing the arc (i, j), because the
reverse arc (j, i) can be handled identically by exchanging i and j in the following
descriptions:

• The time of task j is increased to tj(q) := tj(q) + sdij. If j is part of several
interaction pairs, its time is increased by each additional arc pointing to j
independently such that the task time has to be modified more than once.
Finally, we get the modified total work content tsum(q) = ∑n

j=1 tj(q).

592 A. Scholl et al.

• Task i and its predecessors become predecessors of j, i.e., P∗
j (q) :=P∗

j (q)

∪{i} ∪ P∗
i (q). Direct predecessors of j that are also predecessors of i are

transformed into indirect predecessors of j, i.e., Pj(q) :=Pj(q)∪{i} − P∗
i (q).

Analogously, task j and its successors become successors of i, i.e., F∗
i (q) :=

F∗
i (q)∪{j} ∪ F∗

j (q). Direct successors of i that are also followers of j become

indirect successors of i, i.e., Fi(q) := Fi(q) ∪ {j} − F∗
j (q).3

• If there is another task interaction (h, k) ∈ SD or (k, h) ∈ SD with h ∈ P∗
i (q)

∪{i} and k ∈ F∗
j (q) ∪ {j}, it is necessary to introduce the (then redundant) arc

(h, k) instead of (k, h) in order to avoid an infeasible (cyclical) precedence
graph.

• In case of adding arcs (j, i) with j > i, the task numbering is not topological
anymore and has to be modified if required by the solution procedure.

Because each interaction pair can be transformed into two reverse arcs, we get
up to 2|SD| feasible combinations of arc orientations, i.e., Q ≤ 2|SD| solvable
SALBP-instances q = 1, . . . , Q. In at least one of those instances the direc-
tions of the interaction pairs coincide with the order in which the tasks are
assigned to the stations in an optimal solution for SDALBP. Therefore, the
minimum number m∗ of stations for the SDALBP-instance is equal to the min-
imum of the numbers of stations m∗(q) required by all SALBP-instances, i.e.,
m∗ = min{m∗(q)|q = 1, Q} .

Figure 5 shows and relates the solution spaces of SDALBP, the relaxed
SALBP, and the transformed SALBPs. By ignoring all disjunctive precedence
constraints in the relaxed SALBP, the solution space is enlarged because it
additionally contains SDALBP-infeasible SALBP-solutions caused by cycles in
the precedence constraints and/or violated cycle time constraints. The trans-
formed SALBP-instances SIq obtained by systematically combining directed
disjunctive arcs are solvable (instances SI1 to SIQ) or not (SIQ+1 to SIQ′ with
Q′ = 2|SD|). The solution spaces of the solvable instances completely cover the
solution space of SDALBP, the unsolvable ones only fall into the solution space
of the relaxed SALBP but do not cover it completely.

Example We consider the SDALBP-instance with the precedence graph and
interaction pairs of Fig. 2 as well as cycle time c = 10. The relaxed SALBP-
instance is obtained by removing all disjunctive arcs. When constructing all
solvable transformed SALBP-instances, we find 24 = 16 combinations of direct-
ing all interaction pairs. From this set of possible instances, only Q = 10 turn out
to be solvable, whereas the remaining have cycles in their precedence graphs.
Figure 6 shows the solvable instances. The arcs resulting from orientating the
pairs are drawn as bold lines, redundant (original or additional) arcs are drawn
as dashed lines. The task times are modified according to the rules given above.

In the literature, there exist a lot of bounding arguments and exact solution
procedures for SALBP-1. In order not to overload the paper and not to repeat

3 Notice that this implies indirect precedence relations between the predecessors of i and the
successors of j.

The sequence-dependent ALBP 593

Fig. 5 Relaxation and
transformation

relaxed SALBP

SDALBP

j1 i1→i1 j1→

i2 j2→ j2 i2→ i2 j2→ j2 i2→

SI1
SI2

. . .

SIq

SIQ
. . .

SIQ’

SIQ+1

. . .

transformation

cycle

9
5

8
3

SALBP-instance 1

1
6

2
6

7
4

6
7

5
6

4
5

3
5

10
2

9
8

8
2

SALBP-instance 2

1
6

2
6

7
4

6
7

5
6

4
5

3
5

10
2

9
5

8
3

SALBP-instance 3

1
6

2
6

7
4

6
6

5
6

4
5

3
5

10
2

9
8

8
2

SALBP-instance 4

1
6

2
6

7
4

6
6

5
6

4
5

3
5

10
2

9
5

8
3

SALBP-instance 5

1
6

2
6

7
4

6
7

5
4

4
5

3
5

9
8

8
2

SALBP-instance 6

1
6

2
6

7
4

6
7

5
4

4
5

3
5

10
2

10
2

9
5

8
3

SALBP-instance 7

1
6

2
6

7
4

6
6

5
4

4
5

3
5

9
8

8
2

SALBP-instance 8

1
6

2
6

7
4

6
6

5
4

4
5

3
5

10
2

10
2

9
5

8
3

SALBP-instance 9

1
6

2
6

7
4

6
5

5
4

4
5

3
5

9
8

8
2

SALBP-instance 10

1
6

2
6

7
4

6
5

5
4

4
5

3
5

10
2

10
2

Fig. 6 Set of SALBP-instances representing the SDALBP-instance of Fig. 2

594 A. Scholl et al.

well-known facts, we do without explaining such procedures but refer to the
surveys of Baybars (1986), Ghosh and Gagnon (1989), Scholl (1999, chap. 2.2.2,
4.1) as well as Scholl and Becker (2006). Computational experiments show that
the branch-and-bound procedure SALOME of Scholl and Klein (1997) is sup-
posably the best exact solution method which is available for SALBP-1 [cf. the
computational experiments in Scholl and Klein (1997, 1999), Sprecher (1999)].
Therefore, we propose to apply SALOME (including its arsenal of bound-
ing, reduction and dominance rules) within the framework defined above. For
detailed descriptions of SALOME, see Scholl and Klein (1997) as well as Scholl
(1999, chap. 4.1.4).

4.3 Basic search procedure for SDALBP

A basic procedure for SDALBP utilizes the above-mentioned approaches intui-
tively:

1. Solving the relaxed SALBP-instance, which we denominate as instance 0,
results in a minimal number of stations m∗(0). If this solution is feasible
for SDALBP, i.e., if there exists a sequence of tasks such that the cycle
time is not exceeded for each station, the optimal solution is found and the
procedure stops with m∗ := m∗(0).
Otherwise, we get a global lower bound LB = max{m∗(0), LM1′}, for the
number of stations required for SDALBP. As initial global upper bound, we
use UB := n + 1 in order not to exclude the optimal solution which might
have up to n stations when all tasks require an individual one.

2. The transformed SALBP-instances q = 1, . . . , Q are generated and solved
one after the other. Each time, m∗(q) < UB is true, the optimal solution for
instance q is better than the incumbent solution to SDALBP. Then, we set
UB := m∗(q) and store the new solution as incumbent one. If UB = LB or
q = Q, the procedure stops with m∗ := UB.

When applying SALOME to an instance q in step 2, the upper bound UB(q)

is initialized to the value of the global upper bound UB. Thus, SALOME
fathoms any node of the branch-and-bound tree which cannot lead to an im-
proved SDALBP-solution even if the optimal SALBP-solution of the instance
q is missed. This avoids unnecessary computations and takes place whenever
m∗(q) ≥ UB holds.

Example By solving the instance 0 with SALOME in step 1, we may get the opti-
mal solution ({3, 4}, {1, 5}, {2, 7}, {6, 9}, {8, 10}) with m∗(0) = 5 stations. Adapting
this solution to SDALBP shows that it is not feasible, because the fourth station
gets overloaded with t(S4) = (t6+sd26+sd76)+t9 =12. Instead, we get the lower
bound LB = max{5, �45/10} = 5. In step 2, the instances q = 1,…, 10 are succes-
sively solved by SALOME until the termination condition UB = LB is fulfilled
or all instances have been examined. Table 3 shows the minimal numbers of
stations m*(q) which would be obtained by SALOME if necessary.

The sequence-dependent ALBP 595

Table 3 Optima for solvable SALBP-instances

q 1 2 3 4 5 6 7 8 9 10

m∗(q) 6 6 6 7 5 5 5 5 5 5

In iteration q = 1, we get UB := m∗(1) = 6. The next improvement to
UB := m∗(5) = 5 is attained in iteration q = 5. Then, the procedures stops
due to LB = UB = 5. The (unique) optimal solution to instance 5 which
is ({3, 4}, {1, 5}, {2, 7}, {6}, {9, 8, 10}) constitutes (one of) the optimal SDALBP-
solution(s) with m∗ = 5 stations. In total, we must solve only six SALBP-
instances to optimality in order to solve the SDALBP-instance.

Notice that the procedure would have stopped with the optimal SDALBP-
solution immediately, if we had found the alternative optimal solution ({3, 4},
{1, 5}, {2, 7}, {6, 8}, {9, 10}) to instance 0 in step 1.

Remark If the computation time required is available, the basic procedure finds
an optimal solution to SDALBP with m∗ stations. However, if the procedure
has stopped due to a time limit, it has only found a feasible (incumbent) solution
with UB stations provided that a solvable instance has been generated within
the time limit. Furthermore, a lower bound LB is known such that the solution
quality can be judged.

4.4 Advanced search procedure for SDALBP

Obviously, the basic procedure described above potentially requires excessive
computations, because it is not always possible to find an optimal solution in
step 1 and the number of instances to be solved in step 2 grows with increasing
number of interaction pairs exponentially. This is particularly relevant, because
each of those instances is NP-hard by itself.

In order to reduce the number of SALBP-instances to be solved, we enhance
the solution procedure by computing and utilizing lower and upper bounds for
each SALBP-instance q = 1, . . . , Q (prior to solving any NP-hard instance to
optimality) and using some sorting mechanism such that promising instances
are considered first.

A lower bound LB(q) ≤ m∗(q) is defined by the maximal value obtained for
any lower bound argument applied to the SALBP-instance q. An upper bound
UB(q) ≥ m∗(q) is given by the number of stations required in the best feasible
solution for the SALBP-instance q that is obtained by any heuristic procedure
applied to q.

An global lower bound LB for the original SDALBP-instance is given by
the minimum of the lower bounds on all transformed SALBP-instances, i.e.,
LB = min {LB(q)|q = 1, . . . , Q}. In each instance q, we have tsum(q) ≥ t′sum and,
thus, LB ≥ LM1(q) ≥ LM1′.

596 A. Scholl et al.

As global upper bound for SDALBP, we use the smallest upper bound for
any transformed SALBP-instance, i.e., UB := min {UB(q) | q = 1, . . . , Q}. If
such an upper bound is not (yet) available for any instance q, we may set
UB(q) := n + 1.

The advanced procedure utilizes the above-mentioned principles consequently
and consists of the following steps (‘STOP’ immediately terminates the whole
procedure):
1. Initialize the search by performing the operations (a) to (c):

(a) Compute a lower bound LB(0) for the relaxed instance 0 and initialize
the global lower bound by setting LB := max {LB(0), LM1′}.

(b) Initialize the global upper bound by setting UB := n+1. Additionally,
apply a computationally inexpensive heuristic to find a feasible SAL-
BP-solution for instance 0 with upper bound UB(0). If this solution is
also feasible for SDALBP, set UB := UB(0) and store the solution as
incumbent solution. If UB = LB, then STOP.

(c) Apply a computationally inexpensive heuristic to find a feasible
SDALBP-solution, which provides a (global) upper bound UB, and
store it as incumbent solution. If UB = LB, then STOP.

(d) Initialize the list L of unsolved instances to be an empty list.
2. Generate the solvable instances q = 1, . . . , Q in a systematic (lexicographic)

manner. For each interaction pair (i, j) ∈ SD the orientation with shorter
time increment is considered first such that instance 1 includes the arc (i, j)
if sdij ≤ sdji and the reverse arc (j, i) else. As a consequence, the total task
time of instance 1 is equal to t′sum and the lower bound LM1′ is minimal.
For each instance q, the following operations are performed in the given
order such that only necessary computations are made and the list is kept
as small as possible:
(a) Compute a lower bound LB(q) by applying any promising bound

argument for SALBP (cf. Scholl and Klein 1997, 1999) and taking the
maximum of the resulting values.

(b) If LB(q) ≥ UB, the instance q cannot contribute to improving the
incumbent solution and is discarded (fathomed). Thus, skip the remain-
ing operations (c) to (e).

(c) Apply some computationally inexpensive heuristic to compute a fea-
sible solution that provides an upper bound UB(q).

(d) If UB(q) < UB, we have found an improved SDALBP-solution. Set
UB := UB(q) and store the corresponding solution as the incumbent
one. If UB = LB, then STOP.

(e) If UB(q) = LB(q), the instance q is solved, i.e. m∗(q) = UB(q), and,
thus, discarded. Otherwise, the instance q is stored in L, together with
the interval [LB(q), UB(q)].

3. At the end of step 2, the list L contains a number of still unsolved SALBP-
instances. Perform the following operations to adjust and order the list:
(a) According to step 2b, discard all instances q from L for which LB(q)

≥ UB is now fulfilled. A number R ≤ Q of promising instances re-
mains. If R = 0, then STOP.

The sequence-dependent ALBP 597

(b) Consider L as a list of the remaining instance numbers, i.e. L =
< h1, . . . , hr, . . . , hR], and sort its entries such that LB(hr) ≤ LB(hr+1)

holds for all r = 1, . . . , R−1. If several instances have the same bound
value, sort them according to nondecreasing values of the total work
content tsum(hr) with second-level ties broken in the order of initial
instance numbers. Set LB := LB(h1) = min{LB(hr) | r = 1, . . . , R}.

4. Consider the instances hr in their sorting order r = 1, . . . , R and perform
the following operations, respectively:
(a) Solve the instance hr by applying SALOME starting from the lower

bound LB(hr) and the upper bound UB(hr) := UB. This avoids
unnecessary computations and takes place whenever m∗(hr) ≥ UB
holds. Otherwise, SALOME finds an improved incumbent solution
to SDALBP with UB := m∗(hr) stations which has to be stored. If
UB = LB, then STOP.

(b) If the last instance r = R has been solved, then STOP. If LB(hr+1) >

LB, then set LB := LB(hr+1), because all instances which might have
a solution with a smaller number of stations have already been exam-
ined. If UB = LB, then STOP.

Result If the procedure has terminated by the command ‘STOP’, it has found an
optimal solution to SDALBP with m∗ := UB and the task assignments stored
as incumbent solution. If the procedure has stopped due to a time limit, it has
only found a feasible (incumbent) solution with UB stations and a lower bound
LB.

Explanations and details:

• The advanced search procedure follows the principle of a lower bound search
which is successfully used to solve SALBP-2 by iteratively solving instances
of SALBP-1 in order of increasing cycle times (cf. Hackman et al. 1989;
Scholl 1999, chap. 4.2.2).

• For determining an initial upper bound in the steps 1b, 1c and 2b, sim-
ple heuristic approaches such as priority rule based procedures (see, e.g.,
Talbot et al. 1986; Hackman et al. 1989; Scholl and Voß 1996) are primarily
recommendable because they find solutions very quickly.
In step 1c, we apply a station-oriented procedure in forward direction using
the priority list built by sorting the tasks in nondecreasing order of task
times with ties being broken in favour of tasks with most direct succes-
sors (cf. Johnson 1988). In order to find a feasible solution, each task i
which would lead to tj + sdij > c for an unassigned interacting task j ∈ SDi
is delayed until j has been assigned.
In steps 1b and 2b, we utilize the ability of SALOME to find good feasible
solutions quickly. SALOME is applied to the respective SALBP-instance
and immediately stopped when a first feasible solution is retrieved. In fact,
this is a combination of the above-mentioned priority rule with the local
lower bound method which directs the search of SALOME to promising
parts of the search tree first (cf. Scholl and Klein 1997, 1999).

598 A. Scholl et al.

Table 4 Lower bounds of solvable SALBP-instances

q 0 1 2 3 4 5 6 7 8 9 10

tsum(q) 44 49 51 48 50 47 49 46 48 45 47
LM1(q) 5 5 6 5 5 5 5 5 5 5 5
LM2(q) 4 6 6 6 6 5 5 5 5 4 5
LB(q) 5 6 6 6 6 5 5 5 5 5 5
UB(q) 5 6 6 6 7 5 5 5 6 5 5

• If computer memory is a very scarce resource, the step 3a might be per-
formed always after finding an improved incumbent in step 2d
alternatively.

• When setting LB at the end of step 3b, we need not take into account its old
value determined in step 1a provided that the same set of bound arguments
is computed for each SALBP-instance considered. Since instance 0 relaxes
any transformed instance q = 1, . . . , Q by ignoring the additional prece-
dence relations and the induced time increments, LB(q) ≥ LB(0) holds for
each q. Furthermore, LB(q) ≥ LM1′ is true for each q, because no instance
realizes smaller time increments than are considered when computing LM1′.
Thus, the new value of LB is at least as great as the old one.

Example To keep our computations simple, we assume that only the most
elementary lower bound arguments are applied (cf. Johnson 1988). Besides
LM1(q), only the counting bound LM2(q) which ignores all tasks with tj(q) < c/2
is used. Because only one task tj(q) > c/2 and at most two tasks with tj(q) = c/2
can be assigned to each station, LM2 counts (and rounds up) those tasks (given
a weight of 1 to the first and 1/2 to the second group of tasks).

Table 4 shows the lower bound values with LB(q) being the maximum of
LM1(q) and LM2(q) including those which need not be computed by the search
procedure. Furthermore, Table 4 contains the upper bounds UB(q) obtained
by stopping SALOME immediately after finding the first feasible solution as
described above.

The instances have to be sorted (and renumbered) in the order < 9, 7, 5, 10, 8,
6|3, 1, 4, 2] and we get LB = LB(9) = 5. The first six instances have a lower
bound of five and the remaining ones a lower bound of six stations. Pro-
vided that the solution found for instance 0 is not feasible (see Sect. 4.3),
the procedure starts with heuristically solving the instance 9. As the first solu-
tion ({3, 4}, {1}, {5, 6}, {2, 7}, {9, 8, 10}) found within SALOME fulfils UB(9) =
LB(9) = 5, it is an optimal solution to instance 9. Furthermore, it is an
optimal solution to the original SDALBP-instance due to UB := UB(9) =
5 = LB.

Note that it is not necessary to compute any other value UB(q) provided in
Table 4, because the search stops immediately after determining UB(9).

The sequence-dependent ALBP 599

5 Computational experiments

In order to examine the performance of the solution procedures described in
Sect. 4, we perform computational experiments based on systematically var-
ied benchmark test instances. In particular, the following questions should be
answered:

• How do the number and extents of task interactions influence the problem’s
complexity?

• Up to which problem size is it sufficient to use standard MIP-software to
solve SDALBP-instances? Is the obvious expectation justified that solving
the (simplified) model L2 is easier than solving L1?

• How do the search procedures perform when applied to different problem
classes. Are the refinements contained in the advanced procedure success-
ful in reducing the computing times? Is it necessary to develop specialized
procedures for SDALBP or is it sufficient to apply SALBP-based search
procedures?

• As a model base for a real-world line balancing problem, it is possible to use
either SALBP or SDALBP. In this context, we are interested in the negative
influence of ignoring possible task time increments and/or modeling them
as unique precedence relations. In which cases is it necessary to explicitly
model those interactions (use SDALBP) and how should these interactions
be handled if SALBP is chosen to be the model base?

5.1 Test data generation

As a basis for generating test instances for SDALBP-1 we use the well-known
data sets for SALBP-1. We combine the three original data sets from Tal-
bot et al. (1986), Hoffmann (1992) and Scholl (1993) to a single set with
269 instances. The instances are based on 25 precedence graphs having 8–
297 nodes each connected to several cycle times. For a detailed description of
the data sets and the characteristics of the underlying precedence graphs see
Scholl (1999, chap. 7.1) and the “assembly line balancing research homepage”
http://www.assembly-line-balancing.de, where the corresponding data files can
be downloaded from.

Two parameters are used to systematically complement the SALBP-instances
with sequence-dependent task time increments:

sr defines the number of interacting task pairs as a portion of the
number of tasks, i.e., |SD| = �sr × n

ir maximal relative increment of the task time tj by a task interaction,
i.e., sdij ≤ ir × tj

In Sect. 2, we have explained that actual interactions between tasks i and
j are considered in two ways when the real problem is to be modelled as a
SALBP-instance:

600 A. Scholl et al.

(a) A precedence relation (i, j) is introduced which represents the (locally)
favourable ordering of i and j. The task time tj, thus, includes the time
increment sdij.

(b) The task interaction is ignored thereby assuming that the task times rely
on unhindered standard procedures. As a consequence, the task time of
the later task is underestimated.

We generate SDALBP-instances which reflect these reductions possibly
made when modelling the real problem as an SALBP-instance by perform-
ing the following steps based on the original topological task numbering:

1. Determine the set SD by randomly selecting a total number of |SD| =
�sr × n task pairs such that (i, j) ∈ E (case a) or (i, j) �∈ E∗ with i < j (case
b) is fulfilled. The selection probability is identical for each such pair irre-
spective of its type (a or b).

2. Determine task time increments (and adapted task times) for all pairs of
SD corresponding to the cases explained above:
(a) For all task pairs (i, j) ∈ SD ∩ E : Because the original task time tj

already includes the time increment sdij, the pure task time is given
by t′j = tj − sdij . Therefore, sdij is randomly chosen from the interval
[
0, ir

1+ir × tj
]

and t′j is set to tj − sdij.

The increment sdji is randomly chosen from [0, ir × t] and ti needs no
modification, because the original ti was not affected by the task j.
Due to the assumption that the relation (i, j) was introduced as the
favourable ordering, i.e., sdij ≤ sdji, we finally set sdji :=max{sdij, sdji}.

(b) For all task pairs (i, j) ∈ SD − E: Neither task time already includes a
time increment. Therefore, we randomly choose sdij from [0, ir × tj]
and sdji from [0, ir × ti], while the task times ti and tj do not need a
modification.

In order to avoid that some ordering (i, j) or (j, i) is infeasible at the outset, it is
additionally ensured that tj + sdij ≤ c and ti + sdji ≤ c are fulfilled by restricting
the used intervals correspondingly.

By independently setting the parameters (sr and ir) to four values each, we
get 16 SDALBP-data sets with a total of 4,304 instances):

• sr = 0.02, 0.05, 0.10, 0.15 (a few to a considerable number of interaction
pairs)

• ir = 0.25, 0.50, 0.75, 1.0 (small to considerable task time increments; notice
that the average increment is smaller than ir ×tj/2 due to the construction
rules).

5.2 Solving the model by standard software

The linear models L1 and L2 developed in Sect. 3 were implemented using the
XPress-MP software of Dash Associates (http://www.dashoptimization.com).

The sequence-dependent ALBP 601

Table 5 Results for solving the models L1 and L2 by XPress-MP

Model L1 Model L2

sr ir # Opt. # Found Rel. dev.(%) Total time # Opt. # Found Rel. dev.(%) Total time

0.02 0.25 110 158 2.51 322.04 100 158 2.55 335.15
0.50 109 158 2.52 322.82 97 158 2.56 338.26
0.75 109 157 2.57 322.80 96 157 2.61 341.05
1.00 109 156 2.61 323.63 101 158 2.55 332.79

0.05 0.25 115 166 2.35 315.53 94 165 2.40 344.40
0.50 113 165 2.35 318.83 100 165 2.39 330.49
0.75 114 163 2.42 315.19 99 163 2.46 333.49
1.00 112 163 2.45 317.49 102 165 2.40 327.28

0.10 0.25 110 162 2.40 312.99 94 164 2.32 345.12
0.50 105 163 2.41 320.58 90 165 2.29 350.28
0.75 108 155 2.58 317.10 93 156 2.52 347.32
1.00 109 155 2.63 317.25 94 156 2.59 339.22

0.15 0.25 111 171 2.11 318.62 88 168 2.24 354.54
0.50 110 158 2.42 335.70 81 156 2.52 369.59
0.75 112 157 2.55 330.93 85 153 2.75 360.85
1.00 106 149 2.81 336.84 82 149 2.84 366.61

Total 1,762 2,556 2.48 321.77 1,496 2,556 2.50 344.78

In order to reduce the number of variables and to accelerate the solution pro-
cess, the global lower bound on the number of stations is set to LM1′.

To compute an initial upper bound, we use the same simple priority rule-
based procedure as applied in step 1b of the advanced search procedure (for-
ward pass, station-oriented assignment, first-level priority: maximum task time,
second-level priority: maximum number of immediate followers; cf. Sect. 4.4).
All computations and the model itself were coded by means of the Mosel pro-
gramming language. The experiments were run on a personal computer with
an Intel Pentium IV processor of 3 GHz clock speed and 512 MB of RAM. For
each instance a time limit of 500 s was imposed. The difference in overall perfor-
mance, measured in relative deviations from optimality, was further tested for
statistical significance using the Wilcoxon Signed Rank Test (see Appendix).

Table 5 summarizes the results based on the following measures:

• # Opt.: number of proven optima found (out of 269 instances)
• # Found: number of optima found (the optimal solution is retrieved, i.e., the

final UB is equal to m∗, but could not necessarily be proven within the given
time span)

• Rel. dev.: average relative deviation from minimal number of stations (or
best known lower bound if the optimum is still unknown)

• Total time: average computation time (contains a value of 500 s for time out
cases)

The last row contains aggregate information on all data sets.
Table 5 reveals that model L1 is able to solve about 40% of the instances to

optimality, for about further 20% of the instances the optimal solution is found
but cannot be proven within the time span available. The model L2 solves only

602 A. Scholl et al.

Table 6 Results of both search procedure with regard to problem size

Model L1 Model L2

Tasks # Inst. # Opt. # Found Rel.dev.(%) Total time # Opt. # Found Rel. dev.(%) Total time

≤ 30 880 826 858 0.29 43.97 820 853 0.40 51.35
31–74 960 518 574 3.44 259.14 517 578 3.45 275.87
75–110 1,216 373 675 2.56 399.59 353 676 2.55 455.09
> 110 1,248 449 449 3.21 490.01 449 449 3.20 497.20

about 35% of the instances to optimality but finds (by chance) the same number
of optimal solutions. Therefore, the difference in relative deviations is rather
small and statistically insignificant (see Appendix).

The similar behaviour with respect to “# Found” is primarily due to the ini-
tial heuristic which finds the optimal number of stations m∗ for 2,148 instances
(the heuristic by itself produces an average relative deviation from optimal-
ity of 4.02%). Then, the models have only to determine an assignment of the
tasks to this (or a lower) number of stations. Nevertheless, both models fail for
many instances as documented by the difference of “# Found” and “# Opt.”
with L2 still being slightly worse than L1. Thus, we find the unexpected result,
that avoiding the large number of transitivity constraints in model L2 does
not have a positive effect on the model’s solution capabilities. By the way of
contrast, the polytope defined by those constraints obviously provides stronger
LP-relaxations which are solved to compute lower bounds within the branch
and bound procedure of XPress-MP such that L1 is able to prove more instances
to optimality, especially when the number of interaction pairs is high (sr=0.10,
0.15).

In order to find out, up to which problem size it is recommendable to apply
either model, we aggregate the 4,304 problem instances into four groups with
regard to the number of tasks considered. Table 6 displays the results using the
following additional notation:

• # Tasks: range of the number of tasks in the respective group
• # Inst.: total number of problem instances in this group

Generally, the application of either model can only be recommended to solve
problem instances with up to 30 tasks. Larger instances can be solved to opti-
mality only in rather simple cases where the initial heuristic succeeds in finding
the optimal number of stations.

5.3 Applying the search procedures

The search procedures developed in Sect. 4 have been implemented using
Borland Delphi 7.0 based on the code of SALOME already used in Scholl and
Klein (1997, 1999).

The sequence-dependent ALBP 603

Table 7 Results for basic procedure

sr ir # Opt. # Found Rel. Total Time for # Generated # Solvable # Stored # Solved
dev.(%) time incumb.

0.02 0.25 256 256 0.12 28.30 16.55 1.5 1.5 1.0 1.2
0.50 255 255 0.13 28.45 15.03 1.4 1.4 1.0 1.3
0.75 254 254 0.15 29.02 15.58 1.4 1.4 1.0 1.3
1.00 255 255 0.12 28.33 16.58 1.4 1.4 1.0 1.3

0.05 0.25 255 255 0.14 27.20 14.62 4.3 3.2 1.0 1.8
0.50 256 257 0.11 27.73 18.43 4.3 2.9 1.0 1.9
0.75 254 254 0.15 29.55 15.75 26.7 19.7 1.0 1.8
1.00 255 255 0.14 26.98 16.85 6.2 3.7 1.0 1.8

0.10 0.25 257 257 0.12 24.66 17.68 227.5 93.0 1.0 4.0
0.50 257 257 0.13 24.95 13.96 220.3 79.9 1.0 4.5
0.75 260 260 0.10 18.98 11.12 206.7 91.9 1.0 4.0
1.00 258 258 0.13 22.93 14.34 279.1 139.9 1.0 3.9

0.15 0.25 252 252 1.25 29.73 11.89 3,600.8 582.5 1.0 26.9
0.50 253 253 0.88 29.96 16.03 2,402.3 251.7 1.0 15.6
0.75 254 254 0.50 28.35 18.62 2,356.3 318.0 1.0 14.4
1.00 255 255 0.84 27.07 16.40 1,739.4 382.5 1.0 17.0

Total 4,086 4,087 0.31 27.01 15.59 692.5 123.4 1.0 6.4

Table 8 Results for advanced procedure

sr ir # Opt. # Found Rel. Total Time for # Generated # Solvable # Stored # Solved
dev.(%) time incumb.

0.02 0.25 257 257 0.11 25.28 1.94 3.3 3.0 1.6 1.4
0.50 257 257 0.11 24.88 1.56 3.4 3.0 1.6 1.4
0.75 257 257 0.11 24.57 1.24 3.1 2.8 1.6 1.4
1.00 257 257 0.11 24.61 1.27 3.2 2.9 1.6 1.4

0.05 0.25 257 257 0.13 23.97 0.84 33.9 28.1 7.4 2.0
0.50 260 260 0.08 18.16 0.61 10.3 8.2 5.6 1.8
0.75 260 260 0.10 18.13 0.60 10.1 8.2 5.3 1.8
1.00 260 260 0.10 18.10 0.57 9.8 7.7 4.9 1.7

0.10 0.25 263 263 0.06 15.54 1.94 336.3 71.4 52.3 7.1
0.50 261 261 0.08 19.72 3.23 567.0 139.1 59.2 6.6
0.75 260 260 0.09 20.45 2.32 687.1 189.0 60.4 5.7
1.00 261 261 0.08 19.34 3.00 698.5 195.2 56.6 5.6

0.15 0.25 260 260 0.08 22.39 1.72 2,546.4 262.7 49.3 36.1
0.50 258 258 0.11 25.88 1.70 3,098.5 409.0 54.9 24.8
0.75 261 261 0.07 18.99 1.79 2,184.8 238.1 43.0 23.0
1.00 262 262 0.06 17.00 1.54 2,009.0 265.2 48.4 25.0

Total 4,151 4,151 0.09 21.06 1.62 762.8 114.6 28.3 9.2

Again, a time limit of 500 s was imposed for each instance. Additionally, the
computation time was restricted to at most 50 s for step 1 of the basic procedure
in order not to get stuck in a useless optimization of a relaxed problem.

Tables 7 and Table 8 show the results obtained for the basic and the advanced
search procedure, respectively. The following measures have been used addi-
tionally:

604 A. Scholl et al.

• Time for incumb.: average time to find the best solution (or optimum, if no
time out occurs)

• # Generated: average number of SALBP-instances generated
• # Solvable: average number of solvable SALBP-instances generated
• # Stored: average number of SALBP-instances stored
• # Solved: average number of SALBP-instances solved to optimality.

The average results (contained in the last rows of the tables) can be summarized
as follows:

• The basic procedure solves 4,086 of the 4,304 instances to optimality (94.9%),
whereas the advanced procedure finds 4,151 proven optima (96.4%). The
average relative deviation from optimality is 0.31 and 0.09%, respectively,
so that it can be stated that the advanced procedure performs better than the
basic procedure which in turn outperforms XPress-MP (with all differences
being statistically significant, see Appendix).

• The average computation times are 27.01 and 21.06 s per instance. A part of
the time reduction by the advanced procedure is due to the larger number
of solved instances. Another part is due to finding useful SALBP-instances,
which are easily solved and provide good bounds for SDALBP, earlier (pre-
processing in step 2 and sorting in step 3).

• Considering the time to find the optimal or best-known solution shows a
much greater time reduction. While the basic procedure requires an average
time of 15.59 s, the advanced procedure finds this solution already after 1.62 s
on average. This is particularly useful in solving large real-world instances,
where a good heuristic solution is searched for in a small time span.

• Both procedures have to generate about 700 SALBP-instances per
SDALBP-instance. In both cases less than 20% of them are solvable. Be-
cause the basic procedure solves each instance immediately after generating
it, no further instances must be stored in a candidate list. The advanced pro-
cedure is able to eliminate about 75% of the solvable instances by the bound
computations in step 2, only the remaining ones need to be stored.
In both cases, only a small part of the solvable instances (5.2 vs. 8.0%) have
actually to be solved completely, because mostly it is possible to terminate
SALOME before the SALBP-optimum has been found due to the upper
bound already known. The smaller number obtained by the basic procedure
is due to the fact that it finds a solution of the relaxed SALBP-instance 0 in
step 1 which is optimal for SDALBP for 1,844 (42.8%) instances.

Considering the variation of the problem parameters sr and ir, the following
can be stated:

• As expected, the number of instances to be solved significantly increases
with the relative number sr of interaction pairs. Nevertheless, the compu-
tation times do not increase considerably. By the way of contrast, they are
even reduced in some cases. It can be assumed that this is due to the reduc-
tion of the order strength by transforming more precedence relations into
interaction pairs thereby allowing for better utilization of the station time.

The sequence-dependent ALBP 605

Table 9 Results of both search procedures with regard to problem size

Basic procedure Advanced procedure

Tasks # Inst. # Opt. # Found Rel. dev.(%) Total time # Opt. # Found Rel. dev.(%) Total time

≤ 30 880 880 880 0.00 0.02 880 880 0.00 0.01
31-74 960 960 960 0.00 1.14 960 960 0.00 5.51
75-110 1,216 1,160 1,161 0.16 24.99 1,169 1,169 0.13 21.58
> 110 1,248 1,086 1,086 0.92 68.16 1,142 1,142 0.19 47.37

• In the case of many interaction pairs (sr = 0.15), the basic procedure is
unable to find a good feasible solution in some cases, because most instances
are not solvable. Thus, the average relative deviation from optimality is much
greater than with fewer interaction pairs. This disadvantage is overcome by
the heuristic applied in step 1b of the advanced procedure.

• The maximal increment factor ir has no remarkable influence on solution
quality and computation times.

In order to investigate the influence of the problem size on the performance of
both search procedures, we consider the respectively classified results in Table 9.

The results reveal that both procedures solve all smaller instances with less
than 75 tasks to optimality very quickly, with the basic procedure being slightly
superior with regard to solution times. For larger instances, the effort of inten-
sified pruning results in an improved performance and the advanced procedure
clearly outperforms the basic search. It is further remarkable that the advanced
procedure is able to solve and prove to optimality 96% of the larger instances
(75–110 tasks) and 92% of the largest instances in the test bed including prob-
lems up to 297 tasks.

5.4 Comparing SALBP- and SDALBP-solutions

We have generated the SDALBP-instances in such a manner that the corre-
sponding SALBP-instances could have been derived from the more realistic
SDALBP-instances by ignoring all task interactions (cf. the two ways of trans-
formation described in Sect. 5.1). Thus, we are able to simulate the loss in
precision by using SALBP instead of SDALBP for our test data set. If it is
assumed that practitioners will need to approximate in a similar fashion in order
to comply with the standard SALBP-formulation, our results might provide fur-
ther indications on how real-world problems might be affected by modelling
decisions.

We distinguish three cases in order to assess the differences between optimal
SALBP- and their corresponding SDALBP-solutions:

1. The optimal SALBP-solution can be SDALBP-infeasible. This will be the
case whenever the total time increment of ignored interactions of the tasks
assigned to a station exceeds the station’s idle time. In practice this will

606 A. Scholl et al.

Table 10 SALBP versus SDALBP

sr ir Infeas(%) Under(%) Over(%)

0.02 0.25 20.45 3.72 2.60
0.50 39.03 4.83 2.23
0.75 55.39 5.58 1.86
1.00 68.40 5.20 1.86

0.05 0.25 23.05 10.41 3.35
0.50 43.12 11.52 3.72
0.75 57.99 11.90 3.35
1.00 69.89 11.90 2.97

0.10 0.25 23.42 16.73 4.83
0.50 44.24 17.10 3.72
0.75 58.36 17.84 3.35
1.00 72.86 17.84 3.35

0.15 0.25 23.79 21.56 3.35
0.50 44.61 21.93 3.35
0.75 59.11 22.30 2.60
1.00 73.61 22.30 2.60

Total 48.58 13.92 3.07

result to overloads at stations which will need to be compensated by costly
counteractions or a reassignment of tasks.

2. The optimal number of stations of a SALBP-instance is lower than in
the optimal SDALBP-solution. As a consequence the whole assembly line
will be dimensioned inappropriately, so that even a reassignment of tasks
will not yield a feasible solution. Obviously, all SALBP-solutions in this
category are also SDALBP-infeasible.

3. The optimal number of stations of a SALBP-instance is greater than in
the optimal SDALBP-solution. In this case, the capacity requirements are
overestimated, so that investment costs could have been saved. Note, that
SALBP-solutions in this category can nevertheless be SDALBP-infeasible.

The results summarized in Table 10 show that almost half of all SALBP-
solutions are in fact SDALBP-infeasible (column “Infeas”). The portion of
infeasible solutions drastically increases from about 20 to 70% when the max-
imal relative time increment ir is increased from 0.25 to 1.0. That is, in case of
considerable task time increments, it is not meaningful to ignore these incre-
ments by modeling and solving the problem as a SALBP.

A comparatively high portion additionally underestimates the total number
of stations (column “Under”), which would lead to even more critical adjust-
ments in practice. The number of underestimations significantly increases the
more interaction pairs are considered.

Opposed to that, comparatively few overestimations can be observed (col-
umn “Over”). The number of overestimations appears to be rather stable and
independent of the two parameters.

In general, the underestimation of capacity requirements is caused by using
standard task times instead of considering time increments (case b), whereas

The sequence-dependent ALBP 607

overestimations are due to fixing task interaction pairs as precedence relations
(case a). We can thus conclude that completely ignoring task interactions bears
a considerable risk that the resulting solution will be infeasible in practice. It
seems to be generally more advisable, to model interaction pairs as precedence
relationships, because less overestimations have occured. However, as can be
seen, this approach holds a chance that capacity requirements are overestimated
and resources are wasted.

6 Conclusions and future research

In this paper, we have introduced the concept of sequence-dependent time
increments, a phenomenon which occurs in real-life assembly line balancing
situations, but has not been considered in the literature thus far. Innovative
mathematical formulations of this problem were discussed and presented.

Furthermore, two efficient search procedures were developed which make
use of the extensive prior research in the field of ALB. Even problem instances
of real-world size could be solved to optimality or at least near optimal solutions
were found by using the effective solution procedures available for SALBP, like
SALOME, while standard MIP solvers proved to be inefficient.

We believe that a lot of practice-relevant ALB extensions can be tackled by
flexible search procedures based on the repeated solution of SALBP-instances.
In the light of the high performance of existing solution procedures for SALBP,
an identification of further ALB extensions with similar characteristics promises
to be fruitful.

It is very likely that the solution quality of such approaches will easily sur-
pass standard MIP solvers, while the effort of implementation is reduced in
comparison to more specialized solution procedures.

Appendix

To examine the statistical significance of the performance differences of the
solution procedures within the experiments documented in Section 5.2 and 5.3,
we employ the non-parametrical Wilcoxon Signed Rank Test (WSRT). It is used
instead of the more popular Paired Student’s t Test, because the differences in
relative deviations obtained by any two procedures A and B compared are not
normally distributed as has been analysed prior to choosing the test method.

In a first step, the WSRT computes and ranks the absolute differences of
two related samples (each sample consists of the relative deviations obtained
by either method for all instances of the data set). A negative (positive) differ-
ence indicates that A produces a smaller (larger) deviation than B. In a second
step, the sum of ranks assigned to the negative differences and the sum of
ranks assigned to the positive differences are computed. Ties, i.e., instances
where both methods obtain the same objective function value, are ignored.
Table 11 displays all comparisons of two procedures A and B made (with the
pairs derived from the overall ranking of the procedures based on the average

608 A. Scholl et al.

Table 11 Wilcoxon Signed Rank Test statistic

A = basic, B = advanced A = L1, B = basic A = L2, B = L1

n sum of ranks n sum of ranks n sum of ranks

A better 15 637.00 8 13,620.00 42 1,255.50
(negative difference)
B better 91 5,034.00 1,698 1,442,451.00 36 1,825.50
(positive difference)
A and B equal 4,198 – 2,598 – 4,226 –
(zero difference)
z|p − value −6.935 0.000 −35.109 0.000 −1.423 0.155

relative deviations). The columns “n” specify the numbers of instances where
A is better (negative difference), B is better (positive difference) and both are
equal (tie). The other columns display the sums of the corresponding ranks.

Under the null-hypothesis H0 that the median of the differences is zero, the
distribution of the differences is expected to be symmetric around zero with
randomly distributed positive and negative differences. Hence, the probability
of observing a certain sum of positive or negative ranks (or a higher value) for
a given sample size can be used to test H0.

The last row lists the empirical z-values based on negative ranks and the
two-tailed significance (p-value) which is for large sample sizes asymptotically
estimated by a normal distribution. A p-value smaller than 0.05 suggests a rejec-
tion of the null-hypothesis. So, we can state that the advanced search procedure
outperforms the basic one and both search procedures outperform the model
L1 significantly. The overall performance of the two IP-models L1 and L2 is not
found to be significantly different.

References

Baybars I (1986) A survey of exact algorithms for the simple assembly line balancing problem.
Manage Sci 32:909–932

Becker C, Scholl A (2006) A survey on problems and methods in generalized assembly line balanc-
ing. Eur J Oper Res 168:694–715

Bockmayr A, Pisaruk N (2001) Solving assembly line balancing problems by combining IP and CP.
In: Proceedings of the 6th Annual Workshop of the ERCIM Working Group on Constraints,
Prague, Czech Republic

Bowman EH (1960) Assembly-line balancing by linear programming. Oper Res 8:385–389
Boysen N, Fliedner M, Scholl A (2006) A classification of assembly line balancing problems. Eur J

Oper Res (in press)
Erel E, Sarin SC (1998) A survey of the assembly line balancing procedures. Prod Plan Control

9:414–434
Ghosh S, Gagnon RJ (1989) A comprehensive literature review and analysis of the design, balancing

and scheduling of assembly systems. Int J Prod Res 27:637–670
Hackman ST, Magazine MJ, Wee TS (1989) Fast, effective algorithms for simple assembly line

balancing problems. Oper Res 37:916–924
Hoffmann TR (1992) EUREKA: a hybrid system for assembly line balancing. Manage Sci 38:39–47

The sequence-dependent ALBP 609

Johnson RV (1988) Optimally balancing large assembly lines with “FABLE”. Manage Sci 34:240–
253

Lübke M (2006) Methoden der Präferenzmessung: Formale Analyse, Vergleich und Weiterent-
wicklung. Diploma Thesis, University of Jena

Patterson JH, Albracht JJ (1975) Assembly-line balancing: Zero-one programming with Fibonacci
search. Oper Res 23:166–172

Peeters M, Degraeve Z (2006) An linear programming based lower bound for the simple assembly
line balancing problem. Eur J Oper Res 168:716–731

Pinnoi A, Wilhelm WE (1997) A family of hierarchical models for assembly system design. Int J
Prod Res 35:253–280

Rekiek B, Dolgui A, Delchambre A, Bratcu A (2002) State of art of optimization methods for
assembly line design. Annu Rev Control 26:163–174

de Reyck B, Herroelen W (1997) Assembly line balancing by resource-constrained project sched-
uling—A critical appraisal. Found Comput Control Eng 22:143–167

Saltzman MJ, Baybars I (1987) A two-process implicit enumeration algorithm for the simple assem-
bly line balancing problem. Eur J Oper Res 32:118–129

Scholl A (1993) Data of assembly line balancing problems. Schriften zur Quantitativen
Betriebswirtschaftslehre 16/93, TU Darmstadt

Scholl A (1999) Balancing and sequencing assembly lines, 2nd edn. Physica, Heidelberg
Scholl A, Becker C (2006) State-of-the-art exact and heuristic solution procedures for simple

assembly line balancing. Eur J Oper Res 168:666–693
Scholl A, Klein R (1997) SALOME: A bidirectional branch and bound procedure for assembly

line balancing. Inf J Comput 9:319–334
Scholl A, Klein R (1999) Balancing assembly lines effectively—a computational comparison. Eur

J Oper Res 114:50–58
Scholl A, Voß S (1996) Simple assembly line balancing—Heuristic approaches. J Heuristics 2:217–

244
Sprecher A (1999) A competitive branch-and-bound algorithm for the simple assembly line bal-

ancing problem, Int J Prod Res 37:1787–1816
Talbot FB, Patterson JH, Gehrlein WV (1986) A comparative evaluation of heuristic line balancing

techniques. Manage Sci 32:430–454
Thangavelu SR, Shetty CM (1971) Assembly line balancing by zero-one integer programming.

AIIE Trans 3:61–68
Ugurdag HF, Rachamadugu R, Papachristou CA (1997) Designing paced assembly lines with fixed

number of stations. Eur J Oper Res 102:488–501
Wee TS, Magazine MJ (1982) Assembly line balancing as generalized bin packing. Oper Res Lett

1:56–58
White WW (1961) Comments on a paper by Bowman. Oper Res 9:274–276
Williams HP (1999) Model building in mathematical programming, 4th edn. Wiley, New York

	The sequence-dependent assembly line balancing problem
	Abstract
	Introduction
	The sequence-dependent problem extension
	Mathematical models for SDALBP
	Definitions
	Nonlinear model
	Linearized model
	Alternative modelling of transitivity constraints
	Solution approaches to SDALBP
	Application of MIP standard software
	Connections between SDALBP and SALBP
	Basic search procedure for SDALBP
	Advanced search procedure for SDALBP
	Computational experiments
	Test data generation
	Solving the model by standard software
	 Applying the search procedures
	Comparing SALBP- and SDALBP-solutions
	Conclusions and future research
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

