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Abstract This paper addresses the problem of operating room (OR) scheduling
at the tactical level of hospital planning and control. Hospitals repetitively con-
struct operating room schedules, which is a time-consuming, tedious, and com-
plex task. The stochasticity of the durations of surgical procedures complicates
the construction of operating room schedules. In addition, unbalanced schedul-
ing of the operating room department often causes demand fluctuation in other
departments such as surgical wards and intensive care units. We propose cyclic
operating room schedules, so-called master surgical schedules (MSSs) to deal
with this problem. In an MSS, frequently performed elective surgical procedure
types are planned in a cyclic manner. To deal with the uncertain duration of
procedures we use planned slack. The problem of constructing MSSs is mod-
eled as a mathematical program containing probabilistic constraints. Since the
resulting mathematical program is computationally intractable we propose a
column generation approach that maximizes the operation room utilization
and levels the requirements for subsequent hospital beds such as wards and
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intensive care units in two subsequent phases. We tested the solution approach
with data from the Erasmus Medical Center. Computational experiments show
that the proposed solution approach works well for both the OR utilization and
the leveling of requirements of subsequent hospital beds.

Keywords Scheduling · Master surgical schedules · Healthcare planning ·
Mathematical modeling

Mathematics Subject Classification (2000) 90B35

1 Introduction

Increasing costs of health care imply pressure on hospitals to make their orga-
nization more efficient. Recent studies show that operations research provides
powerful techniques in this context (Carter 2002). One of the most expensive
resources in a hospital is the operating room (OR)1 department. Since up to
70% of all hospital admissions involve a stay in an OR department (OECD
2005), optimal utilization of OR capacity is of paramount importance.

Operating room utilization is typically jeopardized by numerous factors and
various players are active in OR planning, such as individual surgeons, OR man-
agers, and anesthesiologists (Weissman 2005). All players have autonomy, and
can have conflicting objectives with respect to productivity, quality of care, and
quality of labor (Glouberman and Mintzberg 2001). As a result, OR planning
is constantly under scrutiny and pressure of potentially competing objectives.

A further complicating factor of the OR planning is the stochastic nature of
the process. There are many uncertainties, such as stochastic durations of sur-
gical procedures, no-shows of patients, personnel availability, and emergency
surgical procedures. In addition, because surgeons tend to plan their procedures
independently from others, this results in peak demands at subsequent hospi-
tal resources such as intensive care units (ICU). As a result, unavailability of
for example ICU bed capacity can result in cancelation of surgical procedures
(McManus et al. 2003).

In this paper we consider the problem of scheduling elective procedures,
which is an operational planning problem that concerns the assignment of elec-
tive procedures to ORs over the days of the week. Due to the aforementioned
difficulties, the planning process is complex, time consuming, and often under a
lot of pressure. However, a lot of elective procedures tend to be identical during
consecutive weeks in the year. In a regional hospital it is not uncommon that
this is for more than 80% of the total volume the case (Bakker and Zuurbier
2002). In manufacturing as well as in health care, repetitive production is com-
mon practice. In such environments a cyclic planning approach is often used
(e.g., Tayur 2000; Schmidt et al. 2001; Millar and Kiragu 1998). This reduces

1 Note that “OR” in this context does not mean “operations research”, but “operating room”.
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planning efforts considerably, and leads to reduced demand fluctuations within
the supply chain, and higher utilization rates.

We propose in this paper a model for a cyclic scheduling approach of elective
surgical procedures. We refer to such a cyclic surgical schedule as a master sur-
gical schedule (MSS). An MSS specifies for each “OR-day” (i.e. operating room
on a day) of the planning cycle a list of recurring surgical procedure types that
must be performed. We demonstrate that our approach is generic: it not only
allows to level and control the workload of the involved surgical specialties, but
also from succeeding departments such as ICUs and surgical wards. It optimizes
OR utilization without increasing overtime and cancelations. Furthermore, our
approach accounts for the stochastic nature of the surgical process, such as
stochastic durations of surgical procedures.

The approach for generation of MSSs was tested with data from the Eras-
mus Medical Center in Rotterdam, The Netherlands, which is a large university
hospital. Approximately 15,000 patients annually undergo surgery in the OR
departments of Erasmus MC. Since 1994, Erasmus MC has collected their sur-
gical data in a database of 180,000 surgical procedures. The hospital actively
supported the research project and affirms the applicability of this study.

The remainder of the paper is structured as follows. Section 2 presents an
overview of studies related to the problem of construction MSSs. Section 3
presents a base model that represents the problem of constructing MSSs. Sec-
tion 4 proposes a solution approach to solve the problem. In Sect. 5 we evaluate
the solution approach. Section 6 draws conclusions from this research.

2 Related literature

There exist a strong interest in OR scheduling problems, resulting in a wide
range of papers on this subject. These studies can be separated into short-term
operating room scheduling (e.g., Gerhak et al. 1996; Sier et al. 1997; Ozkaraham
2000; Lamiri et al. 2005; Jebali et al. 2006) and mid-term planning and control
(e.g., Guinet and Chaabane 2003; Ogulata and Erol 2003; Kim and Horowitz
2002). Studies about MSS are, however, scarce. Moreover, various definitions
of a MSS are used. Blake and Donald (2002) construct MSSs that specify the
number and type of operating rooms, the hours that ORs are available, and
the specialty that has priority at an operating room. They use an integer pro-
gramming formulation for the assignment of specialties to operating rooms.
The objective function minimizes penalties related to the total under-supply of
operating rooms to specialties. The authors implement a straightforward enu-
merative algorithm, which results in considerable improvements. Beliën and
Demeulemeester (2005) use a nonlinear integer programming model to con-
struct MSSs. The model assigns blocks of OR time to specialties in such a way,
that the total expected bed shortage on the wards is minimized. After lineariza-
tion of the model the authors examine and compare several heuristics to solve
the resulting mixed integer program. They conclude that a simulated anneal-
ing approach yields the best results, but since this heuristic requires much
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computation time they propose a hybrid algorithm that combines simulated
annealing with a quadratic programming model. This approach yields the best
results concerning solution quality and computation times. Vissers et al. (2005)
propose an MSS approach for a cardiothoracic department. At an aggregate
level they form surgical procedure types and level resource requirements such
as bed requirements. The objective of their approach is to minimize the devia-
tion of target utilization rates for the OR, the ICU, and the wards. The approach
focuses on capacity planning and does not account for the stochastic nature of
health care processes.

The aforementioned authors propose various approaches for cyclic OR plan-
ning, some of them taking into account succeeding or preceding hospital depart-
ments. These approaches are designed for a higher level of aggregation than
what we focus on. None actually constructs OR schedules in which actual sur-
gical procedures or procedure types and their stochasticity are incorporated.

3 Problem description

The aim of this paper is to develop methods to generate MSSs, i.e., OR sched-
ules that are cyclically executed in a given planning period. The cyclic nature of
an MSS requires that not surgical procedures of concrete patients but surgical
procedures of a certain type are scheduled. The concrete assignment of patients
to the planned procedure types has to be done in a latter stage. To make such an
approach applicable, the types of surgical procedures must represent surgical
procedures, which are medically homogeneous in the sense that they share the
same diagnosis and are performed by the same surgical department. In most
hospitals there are three categories of types of procedures:

• Category A: elective procedures that occur quite frequent,
• Category B: elective procedures that occur rather seldom,
• Category C: emergency procedures.

Following the above discussion, an MSS can concern only Category A proce-
dures. More precisely, we define Category A procedures as elective procedure
types, which have a frequency such that they occur at least once during the
cycle time of the MSS. The chosen cycle length thus determines the number of
surgical procedure types incorporated in an MSS. Category B procedures con-
sist of all other elective procedures and cannot be planned in an MSS, whereas
Category C procedures cannot be planned due to their nature. However, in the
construction of an MSS, capacity for the procedures of types B and C will be
reserved.

An MSS is part of a cyclic OR planning strategy, which has three stages.
First, clinicians and managers determine the MSS cycle length. Correspond-
ingly, they determine how the OR capacity is divided over the three categories.
Second, before each cycle, clinicians assign actual Category A patients to the
procedure type “slots” in the MSS, and Category B procedures to their reserved
capacity. Third, during execution of the elective schedule, Category C (emer-
gency) procedures are scheduled. Widely used approaches are to assign these to
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reserved capacity (Goldratt 1997), or to capacity obtained by canceling elective
procedures (Jebali et al. 2006).

In this paper we propose a model for the construction of MSSs for Category
A procedures. Scheduling Category B and C procedures is beyond the scope of
this paper. An MSS can be used repetitively by a hospital until the size and the
content of the three categories change. Then, the MSS must be reoptimized.

The goal of our MSS is to generate a cyclic schedule, in which all Category
A procedures are scheduled according to their expected frequency, in such a
way that the workload of subsequent departments like wards and IC is leveled
as much as possible. This leveling results in reduction of peak demands on
hospital bed departments caused by elective surgical procedures and, as such
positively influences resource shortages and minimizes the number of cancel-
ation of surgical procedures McManus et al. 2003. The number of available ORs
restricts constructing the MSS as well as the available operating time and the
capacity of succeeding departments (i.e., number of available beds). Person-
nel restrictions are not taken into account. We assume that sufficient flexibility
remains for personnel scheduling at the operational level when the scheduling
of Category B procedures is done. To avoid the probability of overtime, planned
slack is included in the construction of MSSs. The amount of slack depends on
the accepted probability that overtime occurs, which is determined by the man-
agement, and the variance of procedure durations. We use the portfolio effect
to minimize the total amount of required slack (Hans et al. 2006). The portfo-
lio effect is the tendency for the risk of a well-diversified range of stochastic
variables to fall below the risk of most and sometimes, all of its individual com-
ponents. This principle can be applied with respect to the stochastic surgery
durations. Exploiting the portfolio effect can thus reduce the required amount
of slack.

3.1 Formal problem description

The surgical procedures to be incorporated into an MSS (Category A proce-
dures) are categorized into I different types of medical and logistical similar
procedures. From type i, i = 1, . . . , I we have si procedures to be added in the
MSS. The duration of a surgical procedure of type i is a stochastic variable ξi, and
based on Strum et al. (2000). we assume that ξi has a lognormal distribution. Let
B be the number of different hospital bed types. The various hospital bed types
differ in importance and to indicate the relative importance of hospital bed type
b we introduce priority factor cb. The duration of hospital bed requirements of
type b for a procedure of type i is denoted by lib ∈ N, i = 1, . . . , I; b = 1, . . . , B.
We assume that only one patient per day can use a bed.

The MSS has a fixed duration, the cycle length T. This cycle length is mea-
sured in days and typically is a multiple of 7 days. The given surgical procedures
have to be carried out in J identical ORs, where OR j on day t has a capacity
of ojt, j = 1, . . . , J; t = 1, . . . , T. For creating an MSS, procedures have to be
assigned to the ORs. The total sum of the duration of procedures assigned on
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a single OR on a specific day may not exceed the available capacity with prob-
ability α, i.e., with probability α that no overtime occurs. We refer to OR j on
day t as OR-day (j, t).

The combined objective of the problem is to construct MSSs such that both
the required OR capacity is minimized and the hospital bed requirements are
leveled over the cycle.

3.2 Base model

In this subsection we give a base model of the MSS problem. The aim of the
model is to create a precise description of the objectives and the constraints.

To distinguish between minimization of OR capacity and hospital bed
requirement leveling we define a weighted objective function, in which θ1 is
the weight of minimization of the required OR capacity and θ2 is the weight of
the hospital bed leveling. The weights may for example be related to the costs
of the reduction of required OR capacity relative to the costs of peak demand
on hospital beds.

We introduce an integer decision variable Vijt to indicate the number of
surgical procedures of type i that is assigned to OR-day (j, t), and an auxiliary
binary variable Wjt to indicate whether an OR j is used on day t. An OR is
considered to be used on day t if at least one surgical procedure is assigned to
this OR-day. The total amount of OR capacity that is made available on day t
is the sum of the available capacity of all used ORs. This is given by

T∑

t=1

J∑

j=1

ojt · Wjt.

To calculate the number of beds that is required from hospital bed type b, we
introduce parameters ψtτ ib that denotes the requirements for hospital bed type
b on day τ for a surgical procedure of type i, if this procedure is scheduled on

day t. More specific, parameter ψtτ ib is
⌈

lib
T

⌉
if min{(t − 1) mod T, (t + lib − 2)

mod T} ≤ (τ−1) ≤ max{(t−1) mod T, (t+lib−2) mod T} and
⌊

lib
T

⌋
otherwise.

To illustrate this expression, suppose an MSS has cycle length T = 7 days. On
day t = 5, a procedure of type i is scheduled that subsequently requires an IC
bed for 8 days (lib = 8). This results in the requirement of two ICU beds on day
τ = 5 of the cycle and one IC bed on all other days. On day 5 the requirement
is two beds, because the patient of the previous cycle is still occupying an ICU
bed.

To level the hospital bed requirements, we minimize the maximum demand
for hospital beds during an MSS cycle. This min–max type of resource leveling
objective is generally used for problems where resource usage is very expensive
(for this and other types, see: Brucker et al. 1999; Neumann and Zimmermann
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2000). The presented approach is not specific for beds but can be used similarly
for other types of hospital resources.

The maximum demand for hospital bed type b in a cycle is:
max
τ∈T

∑I
i=1

∑J
j=1

∑T
t=1 ψtτ ib · Vijt. To ensure that the objective function is not

influenced by the total requirement of different hospital bed types, but only by
their relative importance, we normalize the maximum demand for any hospital
bed. The normalization factor is the total demand for an hospital bed type b dur-

ing one cycle:
(∑I

i=1 lib · si

)
/T. This yields the normative sum of the maximum

demand of all hospital bed types:

B∑

b=1

⎡

⎣ cb[∑I
i=1 lib · si

]
/T

⎤

⎦ · max
τ∈T

I∑

i=1

J∑

j=1

T∑

t=1

ψtτ ib · Vijt

The overall objective function consisting of the weighted sum of needed OR
capacity and the peak demands of hospital beds is given by formula (1) in the
base model presented below.

To ensure that an operating room is considered to be used if at least one
procedure is assigned to that operating room, constraints (2 ) are introduced.
Constraints (3) ensure that all surgical procedures of all types are assigned.
To model the bound on the probability that overtime occurs, we introduce a
function fjt(V). It denotes the probability distribution of the total duration of
all procedures that are scheduled on OR-day (j, t) by V, where V is the vector
of all variables Vijt (a possible way to deal with this function, is given in the
following section). Using the function fjt(V) , the restriction that the total dura-
tion of procedures on an OR-day may not exceed the available capacity with
probability α, can be expressed by the probabilistic constraints (5). We refer
to Charnes et al. (1964) for detailed information on probabilistic constraints.
Summarizing, the base model becomes:

min θ1 ·
T∑

t=1

J∑

j=1

ojt · Wjt

+ θ2 ·
B∑

b=1

⎡

⎣ cb[∑I
i=1 lib · si

]
/T

· max
τ∈T

I∑

i=1

J∑

j=1

T∑

t=1

ψtτ ib · Vijt

⎤

⎦ (1)

subject to

Vijt ≤ si · Wjt, i = 1, . . . , I, j = 1, . . . , J, t = 1, . . . , T (2)
T∑

t=1

J∑

j=1

Vijt = si, i = 1, . . . , I (3)
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Pr[fjt(V) ≤ ojt] ≥ α, j = 1, . . . , J, t = 1, . . . , T (4)

Vijt ∈ N, i = 1, . . . , I, j = 1, . . . , J, t = 1, . . . , T

Wjt ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T.

The min–max objective can be reformulated (see Williams 1999, p. 23) such
that the base model is an integer linear program (ILP) with additional probabi-
listic constraints. The size of instances from practice gets extremely large (the
Erasmus MC instances approximately have 1.9 × 105decision variables), such
that even without the probabilistic constraints this is far too large to solve the
model to optimality within reasonable computation time. The MSS problem
itself is NP-hard even if the probabilistic effects are neglected. The first part of
the objective function together with the packing constraints contains e.g. the
bin-packing problem and the second part of the objective function contains e.g.
the three-partitioning problem. Based on this, we concentrate on a heuristic
approach to solve the MSS problem.

4 Solution approach

The main decision in the MSS problem is to fill OR-days (j, t) according to
the imposed restrictions. Since in practice the given capacities ojt are often the
same for different ORs and for different days, we introduce the concept of
so-called operating room day schedule (ORDS). An ORDS for capacity o is
a set of surgical procedures of various types, which is feasible with respect to
the OR-capacity constraint (5) with ojt = o. As a consequence, an ORDS for
capacity o can be assigned to all OR-days (j, t) with ojt = o. MSS comprises of
assigning one ORDS to each OR-day (j, t, ) in the cycle, such that the objective
function (1) is minimized.

We propose a two-phase decomposition approach. In Phase 1 hospital bed
requirement leveling is ignored, and a set of ORDSs that covers all procedures
is selected. These ORDSs have capacities fitting to the capacities of the OR-
days, and minimize the required OR capacity. We discretize the probabilistic
OR capacity constraints, and formulate an ILP that we solve with an implicit
column generation approach. In Phase 2 we assign ORDSs to concrete OR-
days in such a way, that the hospital bed capacity demand is leveled. For this
purpose, the problem is formulated as mixed integer linear program (MILP).

4.1 Phase 1

The problem in Phase 1 consists of selecting a set of ORDSs that covers all
surgical procedures and all OR-day capacities and minimizes the required OR
capacity. In Sect. 4.1.1 we formalize the problem as an ILP problem where the
variables correspond to ORDSs of given capacities. Afterwards, in Sect. 4.1.2
we propose a column generation approach to generate possible ORDSs. In this
part we discretize the probabilistic constraints on the ORDSs.
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4.1.1 Phase 1 model

The available capacity of ORs in the MSS cycle may differ from day to day. Let R
be the number of different OR capacity sizes (sorted in non-decreasing order).
The actual capacity of an OR of capacity size type r is given by dr, r = 1, . . . , R.
Let U be the set of possible ORDSs, and let Ur be the subset of U that contains
all the ORDSs that belong to the rth capacity size. In this context an ORDS
u belongs to Ur if the rth capacity size is the smallest available capacity size
where the ORDS fits in. Hence, U = ∪R

r=1Ur. Let mr be the number of OR-days
within one cycle length that have the rth capacity size and let ϕr be the set of
corresponding tuples (j, t). For a given ORDS u ∈ U we denote the number of
surgical procedures of type i that are scheduled in u by aiu ∈ N.

To formulate the Phase 1 model, we introduce integer decision variables Xu
(u ∈ U) that represent the number of times that ORDS u is selected. The objec-
tive function (5) corresponds to the first part of the objective function (1) of the
base model: minimization of the required OR capacity. Constraints (6) impose
that all procedures are selected. The number of ORDSs generated for every
OR capacity size that we can select is restricted by the number of available
OR-days mr of capacity type r. This restriction is imposed by constraints (7).
Summarizing, in Phase 1 we must solve the following ILP:

min
R∑

r=1

∑

u∈Ur

dr · Xu (5)

subject to

R∑

r=1

∑

u∈Ur

aiu · Xu ≥ si i = 1, . . . , I (6)

∑

u∈Ur

Xu ≤ mr r = 1, . . . , R (7)

Xu ∈ N u ∈ U.

This model has two main drawbacks. The set of possible ORDSs U grows
exponentially with the number of procedure types, and due to the probabilistic
constraints, the identification of all possible elements of U is difficult. To over-
come this, a column generation approach for this problem is presented where
furthermore the check on containment of an ORDS in a set Ur is discretized.

4.1.2 Column generation

Column generation is an often-used approach to solve complex optimization
problems with a large number of variables (e.g. cutting stock, capacity planning,
and crew scheduling, e.g., Barnhart et al. 1998; Pinedo 2005). The outline of our
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approach is as follows. We use column generation to solve the LP relaxation
of the Phase 1 model, and round this solution to obtain a feasible solution.
In the column generation procedure we iteratively generate subsets of U (i.e.,
subsets of ORDSs) and solve the Phase 1 model for these subsets. The Phase 1
model restricted to such a subset of U is called the restricted master problem.
In each iteration, solving the restricted LP-relaxation (i.e. the LP-relaxation of
the restricted master problem) yields shadow prices. These are used as input
for the sub-problem (the pricing problem), which revolves around generat-
ing ORDSs that are not included in the restricted master problem, but that
may improve its solution. The reduced costs of the corresponding variables Xu
are negative. These ORDSs are added to the restricted master problem, and
the LP-relaxation is re-optimized. This procedure stops if no ORDSs exist that
may improve the restricted LP-relaxation solution. The restricted LP-relaxation
solution is then optimal to the LP-relaxation. We then apply a rounding proce-
dure to obtain a feasible Phase 1 solution.

Initialization We use an initialization heuristic to generate subsets of Ur for
all OR capacity sizes r = 1, . . . , R. More precisely, for each r = 1, . . . , R we gen-
erate subsets Ūr ⊂ U of ORDSs that cover all surgical procedures. This initial
set of ORDSs serves as a starting point for the column generation procedure.

Let the variable Zr
i ∈ N, (i = 1, . . . , I, ) denote the number of procedures

of type i that is scheduled in an ORDS for OR capacity size r. Any vector
Zr = (Zr

1, . . . , Zr
I)must satisfy the probabilistic bin-packing constraint (8) to be

a feasible ORDS for capacity size r, where f (Zr) denotes the distribution func-
tion that represents the stochastic sum of the duration of all surgical procedures
in the ORDS.

Pr[f (Zr) ≤ dr] ≥ α (8)

The probabilistic constraints (8) impose difficulties on the generation of ORDSs.
We discretize constraints ( 8) using prediction bounds. A prediction bound nαi
denotes that the duration ξi of procedure type i is smaller than or equal to nαi
with a probability α. These prediction bounds are used to replace the stochastic
variables ξi, and can be calculated using the primitive of the distribution func-
tion of ξi. The total required OR capacity for an ORDS given by the vector Zr

is given by
∑I

i=1 nαi ·Zr
i . The difference between the value of a prediction bound

and the average surgical procedure duration is used to compute the planned
slack.

As discussed by Hans et al. (2006) the total amount of planned slack for a
multiple of surgical procedures is reduced by the portfolio effect. This portfolio
effect may be approximated by a function g, which only depends on the num-
ber of procedures that are scheduled in the operating room and on the average
standard deviation of all types of surgical procedures. The reduction of required
planned slack g(

∑I
i=1 Zr

i ), as a result of the portfolio effect, is subtracted from
the sum of the prediction bounds. This results in the following OR capacity
constraints:
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(
I∑

i=1

nαi · Zr
i

)
− g

(
I∑

i=1

Zr
i

)
≤ dr (9)

All vectors
(
Zr

1, . . . , Zr
I

)
that satisfy constraints (9) are possible elements

of Ur. Since the generation of ORDS is basically a bin-packing problem, we
may apply bin-packing heuristics such as First Fit Decreasing (FFD), Best Fit
Decreasing (BFD) and Minimum Bin Slack (MBS) (Gupta and Ho 1999) or a
heuristic such as Randomized List Scheduling Heuristic (van den Akker et al.
1999) to generated initial set of ORDSs. Since in a study of off-line bin-packing
algorithms by Dell’Olmo and Speranza (1999) Longest Processing Time (LPT)
performs well, we use this heuristic for the generation of an initial set of ORDSs
for an OR capacity size r. LPT first sorts all procedures of all types in decreasing
order of their prediction bound nαi and then it creates an ORDS in which it plans
the longest procedure that fit, i.e., that satisfy constraints (9). If the heuristic
reaches the end of the ordered list it closes the ORDS. This is repeated until no
surgical procedures remain in the ordered list. The heuristic is executed for all
OR capacity sizes.

Pricing problem An optimal solution of the LP relaxation of the restricted
problem is optimal for the LP relaxation of the complete master problem if the
corresponding dual solution is feasible for the dual problem of the LP relaxa-
tion of the master problem. The pricing problem is thus to determine whether
there exist ORDSs that are not in the restricted LP relaxation that violate the
dual constraints from the LP relaxation of the master problem. Such ORDSs
are added to the restricted LP relaxation and a next iteration starts. If such
ORDSs do not exist, column generation terminates, and the current restricted
LP relaxation solution is optimal to the LP relaxation of the master problem.

The dual constraints of the LP relaxation of the Phase 1 model are:

πr +
I∑

i=1

λi · aiu ≤ dr r = 1, . . . , R

πr ≤ 0 r = 1, . . . , R (10)

λi ≥ 0 i = 1, . . . , I,

where λi are the dual variables corresponding to constraints (6), and πr the dual
variables corresponding to constraints (7) of the Phase 1 LP.

As input for the pricing problem we obtain two vectors (π̄ , λ̄) of shadow
prices from the restricted LP relaxation. The pricing algorithm now examines
whether for this solution (π̄ , λ̄) an ORDS u ∈ Ur, represented by a1u, . . . , aIu,
exists that violates the dual constraint (10), i.e. values a1u, . . . , aIu, with:

dr − π̄r −
I∑

i=1

λ̄i · aiu < 0 (11)
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The left-hand side of constraints (11) are the reduced costs for variable Xu
(u ∈ Ur). We evaluate each OR capacity size r separately to determine whether
an ORDS exists, formed by a vector

(
Zr

i , . . . , Zr
I

)
, that violates the dual con-

straints (10). In the rth problem we thus need to maximize

I∑

i=1

λ̄i · Zr
i

over all vectors
(
Zr

i , . . . , Zr
I

)
representing a new ORDS, i.e. satisfying

constraint (9).
To solve the pricing problem as an ILP we write the term: g(

∑I
i=1 Zr

i ) as a
telescopic sum. For this purpose, we introduce additional notation. The binary
variable Ae indicates whether there are at least e procedures in an ORDS (e ≤ E,
where E is the maximum number of procedures that can be performed during
1 day in one operating room). The function g(e) := g1 + · · · + ge provides the
correction for the portfolio effect for e surgical procedures. Using this function
and the binary variables Ae, the rth pricing problem ILP becomes:

max
I∑

i=1

λ̄i · Zr
i

subject to

(
I∑

i=1

nαi · Zr
i

)
−

E∑

e=1

ge · Ae ≤ dr r = 1, . . . , R

I∑

i=1

Zr
i =

E∑

e=1

Ae

Ae ≥ Ae+1 e = 1, . . . , E

Ae ∈ {0, 1} e = 1, . . . , E

Zr
i ∈ N i = 1, . . . , I.

After this problem is solved for all capacity sizes r, the resulting ORDSs with
negative reduced costs are added to the restricted LP relaxation of the Phase
1 model. This model is reoptimized to obtain new shadow prices. Column gen-
eration stops if no such ORDSs are found any more. If in practice this process
takes very long and generates a large number of extra columns, one might
incorporate some of the stopping criteria like the amount of improvement in
the LP resulting from the newly generated columns. This may have some effect
on the quality of the LP-solution, but since afterwards still an integer solution
has to be constructed, the effect on the solution after Phase 2 might be only
marginal. In our test instances, we always were able to solve the LP-relaxation
to optimality.
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Rounding heuristic The solution to the restricted LP relaxation does not di-
rectly lead to a starting point for the second phase, since ORDSs may have been
selected fractionally. To obtain an integer solution we use a rounding heuristic
that rounds down the fractional solution. This results in an integer solution with
a small number of surgical procedures that are not assigned to selected ORDSs.
These procedures are assigned to newly created ORDSs using an LPT heuristic.
There may also be some redundant surgical procedures due to the “≥” sign in
constraints (6). We remove these redundant procedures randomly. In general,
this approach does not guarantee to result in a feasible solution. However, for
the tested instances a quite large fraction of procedures was planned before
rounding, only a fraction had to be planned by the LPT heuristic. We never got
stuck with infeasible solutions at this stage. If infeasibility might get an issue, the
simple rounding heuristic leave room for algorithmic improvements and may
be replaced by more elaborate approaches. Summarizing, the output of Phase
1 consists of a set of ORDSs that cover the set of all surgical procedures to be
assigned within the MSS.

4.2 Phase 2

In Phase 2 the actual MSS cycle is constructed. We propose an ILP in which the
set of ORDSs is assigned to OR-days such that the hospital bed requirements
are leveled over the days.

4.2.1 Phase 2 model

Given is a set Ū of ORDSs to be assigned to the OR-days of the MSS. Let
Ūr ⊂ Ū denote the ORDSs which are of capacity size r. To model the assign-
ment of an ORDS u to an OR-day (j, t) we introduce binary decision variables
Yujt for all u ∈ Ūr and (j, t) ∈ ϕr. We ensure that the OR capacity sizes match and
that at most one ORDS is assigned to an OR on a day. The objective function
takes into account the requirements for all hospital beds for all days within one
MSS cycle, thus also requirements of surgical procedures that have taken place
in previous cycles. Corrected by a normalized priority factor (see Sect. 3.2), we
minimize the maximum requirements for hospital beds. The objective function
is the second term of the objective function (1) of the base model. This objective
function is a minimax objective and can be rewritten to Eq. ( 12) and constraints
(13) in which HBb is the maximum requirement of hospital bed type b on a
given day in the cycle.

All selected ORDSs from Phase 1 must be assigned to an operating room
and a day. This is ensured by constraints (14). No more than one ORDS can be
assigned to an operating room on a day, which is imposed by constraints (15).
Summarizing, the model of Phase 2 is the following ILP:

min
B∑

b=1

⎡

⎣ cb[∑I
i=1 lib · si

]
/T

⎤

⎦ · HBb (12)
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R∑

r=1

∑

u∈Ūr

∑

(j,t)∈ϕr

I∑

i=1

T∑

t=1

ψtτ ib · aiu · Yujt ≤ HBb τ = 1, . . . , T, b = 1, . . . , B

(13)
∑

(j,t)∈ϕr

Yujt = Xu r = 1, . . . , R; u ∈ Ūr (14)

∑

u∈Ūr

Yujt ≤ 1 r = 1, . . . , R; (j, t) ∈ ϕ (15)

Yujt ∈ {0, 1} u ∈ Ūr; (j, t) ∈ ϕr

zb ≥ 0 b = 1, . . . , B.

4.2.2 Solving the Phase 2 model

We solve the Phase 2 model using the commercial solver ILOG CPLEX 9.0. We
use lower bound on the values HBb to determine the quality of an intermediate
solution and to speed up the computation. These lower bounds are calculated
by rounding up the sum of the total requirements of hospital beds during one
cycle divided by the cycle length:

⌈∑I
i=1 lib · si

T

⌉

This represents a theoretical minimum of the maximum requirements for hos-
pital bed type b on 1 day in a cycle. The lower bounds are multiplied by the
normative sum used in the objective (1) of the base model:

∑

b∈B

⎛

⎝ cb(∑I
i=1 qlib · si

)
/T

⎞

⎠ ·
⌈∑I

i=1 lib · si

T

⌉
(16)

This overall lower bound (16) is given as an initial lower bound to CPLEX to
speed up the branch-and-bound process.

5 Computational experiments

We implemented the two-phase approach in the AIMMS mathematical
modeling-language 3.5 (Bisschop 1999), which interfaces with the ILOG
CPLEX 9.0 LP/ILP solver. We test our approach with realistic data instances
from the Erasmus MC based on the available database of surgical procedures
that has been collected from 1994 until 2004. This data consists of the fre-
quency of surgical procedures, procedure durations, and data about the usage
of hospital beds after surgical procedures.
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5.1 Instance generation

Since 1994 Erasmus MC has been collecting data on the frequency of surgical
procedures, the duration of procedures, and standard deviation of the dura-
tion of procedures. In cooperation with surgeons we defined procedure types
by grouping medically homogeneous procedures, which results in the Erasmus
MC instance. The data consist for each surgical procedure type i of the fre-
quency of a surgical procedure type during one cycle si, the prediction bound
nαi , and the length of a request of a hospital bed lib. We vary the parameter val-
ues of the cycle length T, the number of operating rooms J, and the number of
hospital bed types B (see Table 1), which results in 36 instances types. For each
parameter combination 9 additional instances are generated, this yields a total
of 360 instances. The additional instances are generated by randomly drawing
data from the intervals in Table 2 and rounding them to the nearest integers (the
values with a tilde in the table represent the values of the parameters resulting
from the Erasmus MC instance).

The cycle length influences the number of procedure types and the number
of surgical procedures that can be incorporated into the MSS (Category A
procedures). Table 3 shows the dependency between the cycle length and the
number of surgical procedure types in Category A together with their numbers
and total duration.

We assume that all ORs are available during weekdays and are closed for
elective procedures in weekends. For the computational experiments in this
paper we use one OR capacity size (R = 1) of 450 min (dr := 450). Further-
more, we assume that procedures are finished before their prediction bound in
69% of the cases, i.e., α := 69%. This value is taken from the current practice

Table 1 Parameter values for
the instances

Cycle length in days T ∈ {7, 14, 28}
Number of operating rooms J ∈ {5, 10, 15, 20}
Number of hospital bed types B ∈ {1, 2, 3}

Table 2 Intervals for creating
instances

si ∈ [0.9 · s̃i, 1.1 · s̃i]
nαi ∈ [0.9 · ñαi , 1.1 · ñαi ]
lib ∈ [0.5 · l̃ib, 1.5 · l̃ib]

Table 3 The relation between the cycle length and procedures in Category A

Cycle length Number of Total number Total duration of all
in days procedure types of procedures procedures (in hours)

7 42 56 126
14 109 177 398
28 203 423 952
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Table 4 Parameter values for
function g, to model the
portfolio effect

e 1 2 3 4 5

g(e) 0.00 · σ̄ 0.10 · σ̄ 0.22 · σ̄ 0.36 · σ̄ 0.48 · σ̄

of Erasmus MC. The priority factors of hospital beds are given by: c(1) := 5
c(2) := 2 c(3) := 1.

The function g, which we use to model the portfolio effect, depends on the
number of procedures that is scheduled in an ORDS and the average standard
deviation σ̄ of all surgical procedures. We approximate the portfolio effect using
the function g(e) that takes the values indicated in Table 4. The value for the
average surgical procedure standard deviation σ̄ is 36, based on the database
of the Erasmus MC.

5.2 Test results

In the tests we focus on three different aspects. Firstly, we study the dependen-
cies of the computation times of both phases on the used parameter combina-
tions. Secondly, we investigate the obtained results of the minimization of the
required OR capacity. And finally, we address the hospital bed leveling. For this
last issue, we have truncated computations that exceed 600 s and have used the
best incumbent solutions as output. These incumbent solutions are, therefore,
generally not optimal for the Phase 2 model.

5.2.1 Computation times

Table 5 presents the computation times in Phase 1 for all parameter combina-
tions. The computation times in Phase 1 include the initialization and rounding
heuristic.

The computation time increases with T, whereas B and J hardly influence the
computation time. Similar results are obtained when computation times of the
initialization heuristic are considered solely. Here the computation times vary
from 0 to 6 s. We conclude that the initialization heuristic only needs a small
fraction of time that is required by the complete Phase 1 computation. Table 6
presents the computation time in Phase 2 for all parameter combinations.

Table 5 Computation times of Phase 1 in relation with T, B and J

T → 7 14 28

J ↓ B → 1 2 3 1 2 3 1 2 3

5 15.10 17.08 13.76 43.91 47.00 45.90 80.96 78.78 74.56
10 15.29 16.59 13.36 47.12 44.28 45.62 80.24 83.90 87.01
15 16.29 16.12 13.17 47.24 44.70 44.03 80.20 75.96 95.17
20 15.01 16.73 14.35 48.01 45.94 42.39 81.07 75.00 89.70
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Table 6 Computation times of Phase 2 in relation with T, B and J

T → 7 14 28

J ↓ B → 1 2 3 1 2 3 1 2 3

5 0.30 0.49 0.56 1.55 2.79 3.69 6.16 8.94 13.32
10 0.63 0.93 1.11 3.78 5.86 72.04 15.02 30.54 325.08
15 0.96 1.37 121.60 5.39 8.69 72.92 18.87 43.09 517.08
20 1.21 1.81 122.27 7.45 11.26 87.79 24.54 47.25 478.67

Table 7 Number of times
that computation is truncated

T → 7 14 28

J ↓ B → 1 2 3 1 2 3 1 2 3

5 0 0 0 – – – – – –
10 0 0 0 0 0 1 0 0 3
15 0 0 2 0 0 1 0 0 7
20 0 0 2 0 0 1 0 0 5

Table 6 shows that all three parameters have considerable impact on the
computation time and in all cases the computations time increases with increas-
ing parameter value. Table 7 shows the number of times that the calculation is
truncated after 600 s for all parameter combinations. The ‘–’ sign denotes that
these test instances are infeasible due to the lack of operating rooms.

The extreme growth of the computation time for some of the test instances
in Table 6 results mainly from hard instances, where the calculation is truncated
(see Table 7). Computation times are not high and therefore allow use of the
proposed approach in practice.

5.2.2 OR utilization

Table 8 shows the average number of required ORs per week in relation to
the cycle length T. The number of required ORs increases if the cycle length
increases, which may be expected since the total surgical procedure volume
increases as well (see Table 3). The rounding gap between the integer solution

Table 8 Test results of Phase 1

Initialization heuristic and column generation Initialization heuristic only

T↓ Required number of Rounding Required number of
operating rooms gap(%) operating rooms
during 1 week during 1 week

7 16.50 1.25 16.50
14 27.80 0.9 27.80
28 34.18 0.6 34.33
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of Phase 1 and the value after rounding up the optimal fractional solution of the
LP relaxation denotes the quality of the rounding heuristic. We conclude that
the rounding gap is small and decreases if more ORDSs are required. Thus, we
may conclude that the achieved OR utilization after Phase 1 is close to the best
possible utilization.

Table 8 gives the results of using only the ORDSs generated by the initiali-
zation heuristic. These values are found by solving the restricted LP using the
initially generated ORDSs and applying the rounding heuristic. They are equal
to the values of the complete column generation approach for the construction
of MSSs with the cycle length of 7 and 14 days. For larger instances with the
cycle length of 28 days, the complete column generation slightly improves the
initialization heuristic. Thus, in most of the cases, the ORDSs generated by the
initial heuristic already contain the ORDSs needed for the optimal fractional
solution of the LP-relaxation of the Phase 1 model. But since an MSS is typi-
cally constructed once a year, the additional computational effort of the column
generation approach should be used to try to improve the initial solution.

5.2.3 Hospital bed leveling

In this section we discuss the hospital bed leveling. The relative difference
between the objective value of the Phase 2 model and the lower bound [see
expression (16)] indicates the quality of the solutions found. Table 9 presents
the relative differences.

The results in Table 9 show that the difference between the found solutions
and the lower bound is small. Therefore, Phase 2 almost optimally levels the
hospital bed requirements. This is the more surprising, since the ORDSs in
Phase 1 have been generated with the only goal to optimize resource utilization
not taking into account the subsequent problem of hospital bed leveling.

In 22 out of 360 experiments the computation of Phase 2 is truncated. Table 10
presents the relative differences between the found solution and the lower
bound for the 22 truncated instances.

Even for these instances the average gap is small; the maximum gap is 10.1%.
Based on the presented results we conclude that the constructed MSSs level the
hospital bed requirements of the incorporated surgical procedures. This means
that the requirements on one day rarely exceed the lower bound.

Table 9 Average gap between the lower bound and the Phase 2 solution

T → 7 14 28

J ↓ B → 1 2 3 1 2 3 1 2 3

5 0.0% 0.0% 0.5% – – – – – –
10 0.0% 0.0% 0.5% 0.0% 0.0% 0.2% 0.0% 0.0% 1.3%
15 0.0% 0.0% 0.5% 0.0% 0.0% 0.2% 0.0% 0.0% 2.4%
20 0.0% 0.0% 0.5% 0.0% 0.0% 0.2% 0.0% 0.0% 1.5%
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Table 10 Average gap
between the lower bound and
the Phase 2 solution for
truncated instances

T → 7 14 28

J ↓ B → 1 2 3 1 2 3 1 2 3

5
10 1.9% 4.5%
15 2.7% 1.9% 3.4%
20 2.7% 1.9% 3.0%

6 Conclusions and further research

The computational experiments show that generation of MSSs is well possible
within acceptable time bounds by the proposed two-phase decomposition ap-
proach. The proposed solution approach generates MSSs that minimize the
required OR capacity for a given set of procedures and level the hospital bed
requirements well. The chosen solution approach makes it possible to add
restrictions imposed by personnel and to consider other types of hospital re-
sources than beds. This flexibility is required to implement an OR planning
strategy that includes an MSS. The approach has been successfully tested on
real data from Erasmus MC. The hospital management is pleased with the
outcomes, and encourages and initiates further research into implementing the
MSS-approach in practice.

In further research we will investigate implementation aspects, and schedul-
ing of Category B and C procedures as such is required to determine the overall
benefits of cyclic scheduling of OR departments. This research should also pro-
vide insight into the benefits of a cyclic OR planning approach for hospitals with
various patient mixes. Furthermore, we will investigate the leveling of hospital
beds when the length of request for beds is assumed to be stochastic.

The repetitive nature of our cyclic surgical planning approach yields that it
reduces the overall management effort. In addition, it not only optimizes OR
utilization but also levels the output towards wards and ICU. This results in
less surgery cancelations, and thus a reduction of the lead-time of the patient’s
care pathway. Therefore, MSS contributes to an improved integral planning of
hospital processes. The intensive cooperation with clinicians and OR managers
has lead to a framework for cyclic OR planning and a method for construction
of MSSs that can handle constraints imposed by health care processes. This flex-
ibility ensures the applicability of the developed method in OR departments
and hospitals.
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