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Abstract In this paper we propose a model which aims at selecting a tight cluster
from a set of points. The same formulation applies also to the grey pattern problem
where the objective is to find a set of black dots in a rectangular grid with a given
density so that the dots are spread as evenly as possible. A branch and bound
algorithm and five heuristic approaches are proposed. Computational results
demonstrate the efficiency of these approaches. Seven grey pattern problems are
solved to optimality and for eight additional grey pattern problems the best known
solution is improved. The cluster problem on a network is solved for 40 problems
with the number of points ranging between 100 and 900 and the size of the cluster
ranging between 5 and 200. Twenty one problems were solved optimally and the
remaining 19 problems were heuristically solved in a very short computer time
with excellent results.

Keywords Quadratic assignment problem . Metaheuristics . Cluster . Grey pattern

1 Introduction

Consider n objects (such as points in the plane or nodes of a network) with a given
distance between every pair of points. We wish to find a cluster of m points which
minimizes the total distance between all pairs of points in the cluster. This cluster
can be interpreted as the “tightest” cluster of m points. This is similar to the one
facility version of the max-cover problem (for a network or discrete formulation,
see Daskin 1995; Current et al. 2002; for planar models, see Drezner 1981 for one
facility, and Watson-Gandy 1982 for several facilities) where we wish to find the
location of several facilities which cover the maximum number of points within a
given distance.
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Examples of applications include the selection of a group of m people out of
n available people. The distance between a pair of persons is a measure of
compatibility or a measure of being able to work together. The ideal group will
have the most compatibility among the group members and the least potential for
conflicts. Another application is selecting a subset of m points out of a given set
of n points in the plane to be connected by links. We wish to minimize the total
length of all links. The grey pattern problems in the context of the Quadratic
Assignment Problem (Taillard 1995) can be formulated in an identical way. The
grey pattern problem (Taillard 1995) is based on a rectangle of dimensions n1 by
n2. A grey pattern of m black points is selected from the n=n1×n2 points in the
rectangle while the rest of the points remain white. This forms a “grey pattern”
of density m=n . The objective is to have a grey pattern where the black points
are distributed as uniformly as possible. This objective is achieved by defining a
distance between pairs of points according to some rule. For more details see
Taillard (1995).

All computational experiments were performed on a 2.8 GHz Pentium IV
desktop computer. Programs were coded in FORTRAN and compiled by Microsoft
FORTRAN PowerStation 4.0.

2 Formulation

Let

n be the number of points,
m be the number of points to be selected for the cluster,
dij be the distance between points i and j (dij=dji, d (ii) = 0).

LetM of cardinality m be the subset of selected points. The objectivefunction is
to minimize

FðMÞ ¼
X
i2M

X
j2M

dij (1)

This problem can be formulated as a quadratic assignment problem (Rendl
2002). The QAP is a combinatorial optimization problem stated for the first time
by Koopmans and Beckmann (1957). The problem is defined as follows. A set of
n possible sites are given and n facilities are to be located on these sites, one
facility at a site. Let cij be the cost per unit distance between facilities i and j and
dij be the distance between sites i and j. The cost f to be minimized over all
possible permutations, calculated for an assignment of facility i to site p(i) for
i=1, . . . n, is:

f ¼
Xn
i¼1

Xn
j¼1

cijdpðiÞpðjÞ (2)

The quadratic assignment problem is a very difficult optimization problem and
only recently problems of up to n=36 points were solved optimally (see Drezner
et al. 2005).
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We define the weight matrix {cij} as cij=1 for i, j≤m and cij=0 otherwise, and
the distance matrix is defined by the given distances {dij}. Every permutation of the
points defines the selected group as the first m points of the permutation and the
value of the objective function is the sum of all the distances among the selected
group members. This is the formulation used by Taillard (1995) and two problems
of this type of grey pattern are available at QAPLIB http://www.seas.upenn.edu/
qaplib) and are called Tai64c and Tai256c. Tai64c is a grey pattern problem in a
square of 8 by 8 points (n=64) and m=13 black points. Tai256c is a grey pattern
problem in a square of dimensions 16 by 16 (n=256) and m=92 black points.
Taillard and Gambardella (1997) define 126 grey pattern problems similar to
Tai256c for n=256 and 3≤m≤ 128. Since this quadratic assignment formulation
has a special structure, it is easier to solve as pointed out in Taillard (1995). In this
paper, we use the formulation (1) rather than the general QAP formulation with
successful results.

3 The branch and bound algorithm

Consider the matrix of symmetric distances dij of size n by n with a zero diagonal
(see Fig. 1). Suppose thatm indices p1, p2,..., pm are selected for the cluster. Half the
value of the objective function can be calculated by summing the distances in
columns p1, p2,...pm whose rows belong to a lower pj. These distances are all in the
upper triangle of the matrix. All the combinations of selecting m columns out of n
are implicitly scanned. A lower bound is constructed for every partial selection of
columns. The first column is selected and the lower bound calculated, then the
second column is selected and the lower bound calculated, and so on until the lower

Fig. 1 Calculating the lower bounds
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bound is greater than or equal to the best found solution. When the lower bound of
the last selected column is greater than or equal to the best found solution, the last
selected column is advanced by one place. Suppose k≤m columns have been
selected. If the last column is at column number n−m+ k, no further advancement
is necessary, and the next to last selected column (k−1) is advanced one place, the
selection of k is ignored and the process continues until the first selected column is
column number n−m+1.

3.1 The three lower bounds

We first detail the calculation of several values which are used in the proposed
lower bounds. Suppose that k≤m columns p1 <p2... <pk are selected and we wish
to find a lower bound for all possible selections of the remaining m− k columns (all
beyond column pk). The objective function is the sum of the “relevant” distances in
zones 1, 2, and 3 (see Fig. 1).

3.1.1 Preliminary values

Let the first r−1 distances in column r (the values “above” the zero diagonal) be
sorted in increasing order yielding the vector δjr for j=1, . . . , r−1. Define Ds as a
lower bound on the sum of the distances in any column if it is the s+1th selected
column (i.e. s distances are selected from this column). For example, the first
selected column, p1, includes no distances to be added to the value of the objective
function because all relevant distances are below the diagonal; the second selected
column, p2, includes only one distance to be added to the objective function, the
distance in row p1; and so on. The value of Ds is:

Ds ¼ min
sþ1�r�n�mþs

Xs

j¼1

�jr

( )
(3)

The value of the objective function is the sum of the selected distances in zones
1,2, and 3 (see Fig. 1). We term these sums as s1, s2, and s3, respectively.

For a given partial selection p1 < p2 . . . <pk we have the following bounds.

3.1.2 Bounds independent of the partial selection

Zone 1: s1 ¼
Pk�1

i¼1

Pk
j¼iþ1

dpipj . This value is the same for all possible selections of the

remaining m−k columns.

Zones 2&3: s2 þ s3 � B23ðkÞ ¼
Pm�1

i¼k
Di. The values of B23(k) for every 1≤ k≤m

can be calculated before the branch and bound procedure and need not be repeated
for any partial selection.
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Zone 3: s3 � B3ðkÞ ¼
Pm�k�1

i¼1
Di. The value of B3 (k) can also be calculated for

every k and its value is independent of the partial selection.

3.1.3 Bounds dependent on the partial selection

These bounds need to be recalculated for each partial selection.

Zone 2: For every r> pk calculate vr ¼
Pk
i¼1

dpir. Sort the values {vr} in increasing

order and let {ur} be the sorted vector. Then, s2 � B2ðkÞ ¼
Pm�k

i¼1
ui . This bound

depends on the partial selection and need to be recalculated for every partial
selection.

Zones 2&3: For every r> pk sort the distances in column r starting at row pk+1
and ending at row r (including the zero diagonal value). The sorted vector is {wir}

for i=1, . . . , r−pk. Let D
ð1Þ
i ¼ min

pkþi�r�n
ur þ

Pi
j¼1

wjr

( )
.

Then, s2 þ s3 � Bð1Þ
23 ðkÞ ¼

Pm�k

i¼1
Dð1Þ

i .

3.1.4 The suggested lower bounds

LB1: LB1 = s1 +B23(k). This lower bound is calculated quickly because B23(k) need
not be recalculated for every partial selection. However, this bound may not be
very tight.

LB2 : LB2= s1 +B23
(1) (k). This lower bound is tighter than LB1 but it takes longer

to calculate because B23
(1) (k) needs to be recalculated for every partial selection.

One possible weakness of LB2 is that in the event that a column in Zone 2 has
relatively low values, it may be selected repeatedly in calculating the components
of B23

(1) (k).
LB3: LB3 = s1 +B2(k) +B3(k). This lower bound is also tighter than LB1 but it

takes longer to calculate because B2(k) needs to be recalculated for every partial
selection. An advantage of LB3 is that B2(k) is indeed the lowest possible value of
s2. However, the bound for s3 is not necessarily calculated by using the same
columns and may not be that tight. For larger k’s the contribution of Zone 3 to the
objective function is diminished. Therefore LB3 is effective for larger k’s.

Note that s1 needs to be calculated for each lower bound. B23(k) is calculated
once before the branch and bound procedure for every k so LB1 is the quickest one
to calculate. Therefore, when applying LB2 or LB3, LB1 is calculated at no extra
effort and if it is greater than or equal to the best found solution, there is no need to
calculate the lower bound LB2 or LB3.
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3.2 Optimal solutions to grey pattern problems

We first experimented with the grey pattern Tai64c problem. In Table 1 we report
the run times required to prove that the best known value of 1,855,928 is indeed
optimal by total enumeration, and branch and bound using each of the bounds. The
shortest run time was required by using a branch and bound procedure applying the
lower bound LB3.

We then used the branch and bound algorithm to solve grey pattern problems
with n=256 and small values of m between 3 and 8. The run times are depicted in
Table 2. All best known solutions for these problems are proven optimal. The
lowest run time was required for LB1.

4 Heuristic algorithms

We propose five heuristic solution procedures: Greedy, Steepest Descent, Tabu
Search, Simulated Annealing, and an Evolutionary Algorithm. The first two
algorithms take a very short run time but the three metaheuristics tend to provide
higher quality solutions.

4.1 A greedy algorithm

The greedy algorithm starts with a point (the “kernel” point) and builds the cluster
by adding one by one points close to the cluster. Every point is tested as the kernel
point and the best cluster is selected as the result of the greedy algorithm.

Table 1 Times for finding the optimal solution to Tai64c

Method Time (min.)

Total enumeration 9,367.20
LB1 277.54
LB2 313.28
LB3 131.76

Table 2 The optimal solution to n = 256 grey pattern problems

m Optimum Time (min.)

LB1 LB2 LB3

3 7,810 0.00 0.00 0.00
4 15,620 0.00 0.05 0.02
5 38,072 0.65 3.24 2.65
6 63,508 18.78 68.87 51.74
7 97,178 486.82 1,285.05 836.70
8 131,240 3,229.81 ** 4,065.73

**Not attempted
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The following is repeated n times, once for each point being the “kernel” point.

1. The selected cluster consists of the kernel point.
2. Go over all the points which are not in the cluster and evaluate the sum of all

distances between them and all the points in the cluster.
3. Add to the cluster the point with the minimum sum of distances to all cluster

points.
4. Go to Step 2 unless the cluster contains m points.
5. If the cluster contains m points, stop.

The best cluster obtained by all n possible kernel points is the result of the
Greedy algorithm. The greedy algorithm requires O(m2n2) time.

4.2 A steepest descent algorithm

The steepest descent algorithm is very similar to the algorithm proposed by Teitz
and Bart (1968) for the heuristic solution of the p-median problem.

1. Select a starting cluster M of m points.
2. Evaluate the change in the value of the objective function for all possible

exchanges between a point in the cluster and a point not in the cluster.
3. If there is an improving exchange, perform the best improving exchange and go

to Step 2; otherwise go to Step 4.
4. Stop the algorithm with the final cluster as the solution.

4.2.1 The short cut

Note that evaluating the difference in the value of the objective function can be

expedited by the following approach. Define SiðMÞ ¼ Pm
j¼1

dipj . The n values of

Si(M) are calculated once at the beginning of the descent algorithm for the starting
solution M. This requires O(mn) time and is performed once. In each iteration

1. Evaluate the change in the value of the objective function by a removal of a
point k∈M from the cluster and adding a point l∉M to the cluster. The change in
the value of the objective function is Sl(M)−Sk(M)−dkl. This takes O (1) time
and is evaluated m(n−m) times, once for each possible exchange.

2. Suppose that the selected move is to remove k from the cluster and add l to the
cluster forming cluster M′. Then, Si(M′) =Si(M) +dil−dik. The calculation of all
Si(M) requires O(n) time.

3. An iteration thus requires O(m(n−m)) time.

The short cut is more efficient than evaluating the m(n−m) exchanges directly.
The calculation of an exchange directly requires O(m) time for a total time of
O(m2(n−m)) per iteration.
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4.3 A tabu search

Tabu search is a commonly used metaheuristic (Glover 1986; Glover and Laguna
1997; Salhi 1998). The parameters for the tabu search applied in this paper are: the
definition of the tabu list as points recently removed from the cluster, the tabu
tenure TT which is randomly generated each iteration in [Tmin,Tmax], and the
number of iterations, N. We also employ the stipulation that if the best found
solution is improved in an iteration, the tabu list is emptied. The details of the tabu
search are:

1. Select a starting solution. Its value of the objective function is the best found
solution.

2. Empty the tabu list.
3. If the number of iterations exceeds N, stop with the best found solution as the

result of the algorithm.
4. Randomly generate the tabu tenure TT in [Tmin,Tmax].
5. Evaluate all m(n−m) possible exchanges.
6. If an exchange leads to a solution better than the best found solution, perform

the best exchange, update the best found solution, and go to Step 2; otherwise
go to Step 7.

7. – Perform the best exchange (whether improving or not) excluding exchanges
for which the tenure of the entering point in the tabu list is less than the tabu
tenure TT.

– Enter the point removed from the cluster to the tabu list.
– Go to Step 3.

Since all m(n−m) possible exchanges are evaluated every iteration in Step 5, the
short cut used for the steepest descent algorithm (Section 4.2.1) is used also for the
tabu search.

4.4 A simulated annealing algorithm

Simulated annealing is also a commonly used metaheuristic. It was suggested by
Kirkpatrick et al. (1983) and simulates the annealing of metals from a high
temperature liquid to a low temperature solid (see also Glover and Laguna 1997;
Salhi 1998). The parameters for the simulated annealing are: the starting
temperature T0, the cooling factor α, and the number of iterations N. The variant
used in this paper is:

1. Set the temperature T=T0. Generate a starting cluster.
2. Randomly select a point in the cluster to be removed and a point not in the

cluster to be added to the cluster.
3. Calculate the change in the value of the objective function ΔF.
4. If ΔF≤ 0 perform the exchange and go to Step 6.
5. Calculate � ¼ �F

T . Perform the exchange with probability e��. Otherwise, retain
the current cluster.
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6. Multiply the temperature T by α, and if the number of iterations does not exceed
N, go to Step 2.

7. Stop the procedure with the best found cluster during the process as the result of
the algorithm.

The simulated annealing procedure requires O(mN) time. However, the
calculation of e�� and the random number associated with the calculation of the
probability requires quite a large proportion of the computer time. Since for δ>10
the probability of accepting a move is negligible (4.54×10−5 ), it is assumed “0”
and the probability is not calculated.

4.5 Evolutionary algorithms

A population of P member solutions is maintained. Each population member M is
represented by a set of m points.

1. Randomly generate a population of P solutions.
2. Repeat the following G times (generations)

– Randomly select two members of the population and merge them to produce
an offspring M′.

– If F(M′) is not better than the worst population member, do not change the
population and start the next generation.

– If F(M′) is better than the worst population member, then

– If the offspring is identical to an existing population member, do not
change the population and start the next generation.

– Otherwise, replace the worst population member with M′ and start the
next generation.

3. The best population member is the resulting solution.

The most important part of an evolutionary algorithm is the merging process
applied to produce an offspring. We tested two merging processes with a parameter
K: the descent merging process and the tabu merging process.

4.5.1 The descent merging process

The descent merging process is similar to the merging process suggested in Berman
and Drezner (2005).

1. The two parents are M1 and M2, each represented by a set of m points.
2. The intersection between M1 and M2 is: MI=M1∩M2. The cardinality of the

intersection is mI.
3. The union of M1 and M2 is: M

U=M1[M2. The cardinality of MU is 2m−mI.
4. K different points not in MU are selected to form MK (if 2m−mI+K>n then

select only n− 2m+mI points).

Finding a cluster of points and the grey pattern problem 425



5. All the points in MU which are not in MI define ME. The cardinality of ME is
2m− 2mI.

6. Define MD=ME[MK. The cardinality of MD is mD=min{n−mI, 2m−
2mI+K}.

7. A starting offspring M′ is created by randomly adding m−mI points from MD

to MI.
8. A restricted descent process is performed on M′ by adding or removing only

points in MD and keeping the points in MI fixed.
9. The result of the restricted descent process is the offspring.

Table 3 Best known results for the grey pattern problems

m BKV m BKV m BKV m BKV

3 7,810* 35 4,890,132 67 21,439,396 99 52,660,116
4 15,620* 36 5,222,296 68 22,234,020 100 53,838,088
5 38,072* 37 5,565,236 69 23,049,732 101 55,014,262
6 63,508* 38 5,909,202 70 23,852,796 102 56,202,826
7 97,178* 39 6,262,248 71 24,693,608 103 57,417,112
8 131,240* 40 6,613,472 72 25,529,984 104 58,625,240
9 183,744 41 7,002,794 73 26,375,828# 105 59,854,744
10 242,266 42 7,390,586 74 27,235,240 106 61,084,902
11 304,722 43 7,794,422 75 28,114,952 107 62,324,634
12 368,952 44 8,217,264 76 29,000,908 108 63,582,416
13 457,504 45 8,674,910 77 29,894,452 109 64,851,966
14 547,522 46 9,129,192 78 30,797,954 110 66,120,434
15 644,036 47 9,575,736 79 31,702,182 111 67,392,724
16 742,480 48 10,016,256 80 32,593,088 112 68,666,416
17 878,888 49 10,518,838 81 33,544,628 113 69,984,758
18 1,012,990 50 11,017,342 82 34,492,592 114 71,304,194
19 1,157,992 51 11,516,840 83 35,443,938# 115 72,630,764
20 1,305,744 52 12,018,388 84 36,395,172# 116 73,962,220
21 1,466,210 53 12,558,226 85 37,378,800# 117 75,307,424
22 1,637,794 54 13,096,646 86 38,376,438 118 76,657,014
23 1,820,052 55 13,661,614 87 39,389,054 119 78,015,914
24 2,010,846 56 14,229,492 88 40,416,536 120 79,375,832
25 2,215,714 57 14,793,682 89 41,512,742 121 80,756,852
26 2,426,298 58 15,363,628 90 42,597,626# 122 82,138,768
27 2,645,436 59 15,981,086 91 43,676,474# 123 83,528,554
28 2,871,704 60 16,575,644 92 44,759,294 124 84,920,540
29 3,122,510 61 17,194,812 93 45,870,244# 125 86,327,812
30 3,373,854 62 17,822,806 94 46,975,856# 126 87,736,646
31 3,646,344 63 18,435,790 95 48,081,112 127 89,150,166
32 3,899,744 64 19,050,432 96 49,182,368 128 90,565,248
33 4,230,950 65 19,848,790 97 50,344,050
34 4,560,162 66 20,648,754 98 51,486,642

*Optimal
#A new BKV
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Note that the shortcut described in Section 4.2.1 can be applied to the restricted
descent process.

4.5.2 The tabu merging process

We also experimented with a tabu extension of the restricted descent search. Let h
be the number of iterations performed by the restricted descent algorithm. A
restricted tabu search of 5h iterations is performed following the approach outlined
in Section 4.3.We need to selectm−mI points out ofmD points. IfmD− (m−mI)≤ 5,

Table 4 Results for the grey pattern problems by tabu search

m 2,000n 10,000n m 2,000n 10,000n m 2,000n 10,000n

† ‡ † ‡ † ‡ † ‡ † ‡ † ‡

22 100 0 100 0 53 71 0.009 100 0 84 0 0.060 0 0.040
23 100 0 100 0 54 87 0.001 100 0 85 0 0.089 0 0.067
24 100 0 100 0 55 43 0.010 80 0.004 86 0 0.081 0 0.046
25 100 0 100 0 56 92 0.002 98 0.001 87 0 0.128 0 0.069
26 29 0.009 75 0.003 57 9 0.037 9 0.034 88 0 0.197 5 0.150
27 100 0 99 0.002 58 58 0.037 76 0.022 89 0 0.114 1 0.081
28 100 0 100 0 59 8 0.032 18 0.030 90 0 0.076 0 0.061
29 100 0 100 0 60 99 0.000 100 0 91 0 0.069 0 0.057
30 100 0 100 0 61 100 0 100 0 92 2 0.058 9 0.038
31 100 0 100 0 62 100 0 100 0 93 4 0.024 9 0.009
32 100 0 100 0 63 100 0 100 0 94 1 0.020 2 0.011
33 100 0 100 0 64 100 0 100 0 95 47 0.002 97 0.000
34 70 0.014 70 0.011 65 0 0.114 0 0.121 96 100 0 100 0
35 100 0 100 0 66 0 0.079 0 0.088 97 100 0 100 0
36 94 0.001 95 0.001 67 12 0.041 8 0.041 98 100 0 100 0
37 100 0 100 0 68 1 0.037 10 0.024 99 100 0 100 0
38 100 0 100 0 69 1 0.047 12 0.027 100 100 0 100 0
39 100 0 100 0 70 3 0.126 11 0.085 101 100 0 100 0
40 100 0 100 0 71 1 0.090 2 0.059 102 97 0.001 100 0
41 98 0.006 97 0.008 72 0 0.090 1 0.052 103 93 0.000 100 0
42 100 0 100 0 73 0 0.092 0 0.073 104 14 0.004 44 0.002
43 64 0.013 62 0.010 74 0 0.087 0 0.066 105 100 0 100 0
44 14 0.035 55 0.013 75 0 0.058 1 0.037 106 99 0.000 100 0
45 5 0.045 25 0.023 76 0 0.048 1 0.034 107 100 0 100 0
46 2 0.036 18 0.017 77 0 0.049 1 0.033 108 100 0 100 0
47 46 0.016 97 0.001 78 0 0.034 0 0.024 109 100 0 100 0
48 67 0.074 100 0 79 10 0.034 18 0.022 110 99 0.000 100 0
49 36 0.057 91 0.004 80 56 0.028 75 0.017 111 100 0 100 0
50 43 0.004 94 0.000 81 87 0.000 100 0 112 100 0 100 0
51 15 0.003 45 0.000 82 1 0.015 3 0.012
52 37 0.023 82 0.001 83 0 0.018 0 0.008 Ave 55.1 0.027 62.6 0.018

†Number of times out of 100 that BKV found
‡Percentage of average solution over BKV
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the tabu search is not performed and the result of the descent algorithm is applied.
Note that the shortcut described in Section 4.2.1 can be applied to the restricted tabu
search.

These merging processes do not resemble neither the standard crossover
operator nor the hybrid genetic algorithm approach. However, they combine
elements of both and thus the procedure is termed “an evolutionary algorithm”
because it does not conform to the standard genetic or hybrid genetic algorithms.

5 Computational experiments with heuristic algorithms

We first solved the 126 grey pattern problems with n=256 (Taillard and
Gambardella 1997). Optimal solutions were obtained for problems with 3≤m≤ 8
(see Table 2), and the rest were solved by heuristic algorithms. We then used the 40
problems suggested by Beasley (1990) for the p-median problem on a network, and
solved them as cluster problems.

5.1 Grey pattern problems

We present the results in non-chronological order because values presented in later
tables require the value of the best known value (BKV) depicted in Table 3. All
BKVs where obtained by the evolutionary algorithm with the tabu merging process

Table 5 Summary of experiments with ten replications per problem

K= 0 1 2 3 5 7 10 15 20

Descent merging process (all 91 problems)
(1) 0.118 0.083 0.078 0.078 0.069 0.065 0.067 0.064 0.056
(2) 30 41 53 48 51 54 54 54 55
(3) 61 138 180 189 213 230 234 243 279
(4) 1 3 2 1 3 2 2 3 3
(5) 260.1 259.4 267.2 292.0 333.5 358.6 418.2 521.4 618.9
Tabu merging process (all 91 problems)
(1) 0.039 0.019 0.016 0.013 0.012
(2) 78 83 85 90 87
(3) 296 525 550 575 598
(4) 6 8 7 8 8
(5) 2,333.2 2,440.5 2,746.2 2,870.5 3,550.3
Tabu merging process (72 ≤m ≤ 94)
(1) 0.026 0.017 0.017 0.015 0.016
(2) 17 19 18 22 20
(3) 59 92 96 107 100
(4) 6 8 7 8 8
(5) 841.9 816.3 887.4 934.1 1,061.1

(1) Percent of average over BKV (%); (2) Number of problems for which BKV found; (3)
Number of times BKV found; (4) Problems for which a new BKV found; (5) Total time for all
runs (min)
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and adding K=3 dots. The original best known values are reported in Taillard and
Gambardella (1997). Misevicius (2003a,b, 2004, 2005) improved some best
known values. Eight new improved BKVs are reported in Table 3.

The greedy heuristic solved all 126 problems in less than 2 min. It found the
BKV for 11 problems (m=3, 4, 8, 16, 112, 120, 124–128). The average was
1.437% over the BKV.

The descent approach was replicated 1,000 times for each problem. Solving all
126 problems took about 4 min. It found the BKVat least once in 1,000 trials for 25
of the problems (m=3–17, 20, 21, 23, 24, 31, 33, 123, 125, 126, 128). The
minimum value in 1,000 trials was, on the average, 0.250% above the BKV.

Table 6 Results for the grey pattern problems by the evolutionary algorithm

m Descent Tabu m Descent Tabu m Descent Tabu

† ‡ † ‡ † ‡ † ‡ † ‡ † ‡

22 99 0.000 100 0 53 29 0.055 97 0.001 84 14 0.011 76 0.001
23 100 0 100 0 54 2 0.112 87 0.004 85 11 0.013 39 0.001
24 99 0.000 99 0.000 55 0 0.085 48 0.010 86 14 0.015 80 0.000
25 87 0.004 95 0.001 56 4 0.056 70 0.005 87 28 0.035 94 0.000
26 7 0.026 8 0.021 57 13 0.078 98 0.000 88 3 0.109 78 0.014
27 69 0.021 90 0.006 58 5 0.195 91 0.005 89 12 0.056 62 0.006
28 46 0.046 49 0.040 59 7 0.064 81 0.005 90 2 0.066 60 0.006
29 81 0.007 96 0.001 60 11 0.117 33 0.039 91 0 0.083 66 0.007
30 89 0.023 100 0 61 7 0.085 55 0.021 92 0 0.099 65 0.010
31 44 0.170 78 0.055 62 16 0.022 83 0.003 93 0 0.079 36 0.005
32 61 0.252 68 0.124 63 22 0.076 91 0.003 94 0 0.091 16 0.016
33 69 0.023 94 0.004 64 20 0.206 72 0.028 95 0 0.122 40 0.026
34 36 0.030 49 0.019 65 16 0.105 66 0.019 96 0 0.185 29 0.065
35 44 0.020 74 0.006 66 21 0.033 47 0.013 97 0 0.125 30 0.040
36 29 0.019 61 0.005 67 4 0.070 29 0.028 98 0 0.129 13 0.052
37 77 0.004 99 0.000 68 0 0.126 18 0.059 99 0 0.104 32 0.020
38 93 0.003 100 0 69 0 0.108 42 0.025 100 0 0.082 42 0.005
39 94 0.001 100 0 70 0 0.182 28 0.079 101 0 0.092 46 0.012
40 81 0.016 96 0.001 71 1 0.132 19 0.034 102 0 0.095 38 0.012
41 74 0.005 97 0.001 72 1 0.124 1 0.039 103 0 0.064 60 0.002
42 63 0.007 95 0.001 73 0 0.128 17 0.057 104 0 0.065 9 0.008
43 51 0.009 87 0.001 74 0 0.112 3 0.062 105 1 0.064 67 0.001
44 8 0.159 24 0.107 75 1 0.075 25 0.020 106 1 0.080 34 0.002
45 8 0.034 24 0.018 76 0 0.064 13 0.010 107 7 0.085 90 0.001
46 20 0.019 42 0.005 77 0 0.053 13 0.016 108 10 0.070 82 0.000
47 57 0.038 92 0.004 78 0 0.041 6 0.013 109 28 0.046 92 0.000
48 49 0.150 90 0.021 79 2 0.050 13 0.022 110 19 0.042 83 0.000
49 32 0.083 83 0.018 80 3 0.107 27 0.058 111 27 0.035 87 0.000
50 59 0.007 100 0 81 13 0.032 65 0.004 112 22 0.043 79 0.001
51 26 0.004 80 0.000 82 16 0.011 52 0.002
52 27 0.052 84 0.002 83 26 0.006 90 0.000 Ave 24.4 0.067 61.1 0.016

†Number of times out of 100 that BKV found
‡Percentage of average solution over BKV
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We tried many possible parameters for the simulated annealing approach but
could not find good parameters for it. We therefore report only results obtained by
the tabu search and the evolutionary algorithm. Since problems with m≤21 and
m≥113 are easily solved by all metaheuristic approaches, we report in the rest of
this section results of experiments with problems of 22≤m≤ 112 dots.

5.1.1 Experiments with tabu search

We tried various values for Tmin and Tmax and following the experience in Drezner
and Marcoulides (2005) and our own extensive experiments we applied

Table 7 Run times (min/run) for the grey pattern problems

m (1) (2) (3) (4) m (1) (2) (3) (4) m (1) (2) (3) (4)

22 0.21 0.96 0.23 1.12 53 0.41 1.90 0.38 3.21 84 0.56 2.54 0.43 2.96
23 0.22 1.00 0.20 1.11 54 0.42 1.92 0.40 2.91 85 0.56 2.55 0.42 3.43
24 0.22 1.03 0.19 0.94 55 0.42 1.95 0.47 4.92 86 0.57 2.57 0.41 2.70
25 0.23 1.06 0.30 1.62 56 0.42 1.97 0.42 3.90 87 0.57 2.58 0.35 2.11
26 0.24 1.10 0.32 1.67 57 0.43 1.99 0.36 2.79 88 0.58 2.60 0.35 2.20
27 0.25 1.13 0.31 1.66 58 0.43 2.02 0.40 3.60 89 0.58 2.61 0.38 2.89
28 0.25 1.16 0.33 1.78 59 0.44 2.04 0.37 3.91 90 0.58 2.63 0.42 5.04
29 0.26 1.20 0.30 1.57 60 0.44 2.07 0.40 3.97 91 0.59 2.64 0.48 5.35
30 0.27 1.23 0.28 1.54 61 0.45 2.09 0.46 6.43 92 0.59 2.66 0.48 3.73
31 0.27 1.26 0.22 1.40 62 0.45 2.11 0.35 1.66 93 0.59 2.67 0.47 4.34
32 0.28 1.29 0.21 1.26 63 0.46 2.13 0.39 6.35 94 0.59 2.69 0.48 4.55
33 0.29 1.32 0.13 0.98 64 0.47 2.16 0.49 8.60 95 0.59 2.70 0.48 3.61
34 0.29 1.36 0.18 1.01 65 0.47 2.19 0.47 6.93 96 0.59 2.71 0.52 3.94
35 0.30 1.39 0.30 1.73 66 0.47 2.21 0.32 3.95 97 0.59 2.73 0.46 2.59
36 0.30 1.42 0.31 1.75 67 0.47 2.23 0.32 5.09 98 0.60 2.73 0.45 2.42
37 0.31 1.45 0.28 1.69 68 0.47 2.25 0.36 4.07 99 0.60 2.75 0.49 2.81
38 0.31 1.48 0.27 1.51 69 0.48 2.27 0.43 4.74 100 0.60 2.76 0.44 1.81
39 0.32 1.51 0.21 1.12 70 0.48 2.29 0.44 4.26 101 0.60 2.77 0.42 2.08
40 0.33 1.54 0.17 1.80 71 0.5 2.31 0.53 4.77 102 0.61 2.78 0.40 1.60
41 0.34 1.57 0.26 2.28 72 0.5 2.33 0.58 4.95 103 0.61 2.79 0.38 1.36
42 0.34 1.60 0.30 2.39 73 0.51 2.34 0.62 5.59 104 0.61 2.81 0.43 1.91
43 0.35 1.62 0.49 3.32 74 0.51 2.36 0.69 5.97 105 0.61 2.83 0.47 1.71
44 0.36 1.65 0.46 3.35 75 0.52 2.38 0.69 5.72 106 0.62 2.84 0.56 1.88
45 0.36 1.68 0.44 3.44 76 0.52 2.40 0.68 5.31 107 0.63 2.86 0.52 2.04
46 0.37 1.71 0.37 2.70 77 0.52 2.42 0.70 6.26 108 0.64 2.87 0.39 2.98
47 0.37 1.74 0.23 1.30 78 0.53 2.44 0.65 5.03 109 0.64 2.89 0.36 1.45
48 0.38 1.77 0.25 1.76 79 0.54 2.45 0.58 4.22 110 0.64 2.91 0.33 3.91
49 0.38 1.79 0.37 3.02 80 0.54 2.47 0.48 2.96 111 0.64 2.92 0.29 5.96
50 0.39 1.82 0.36 3.22 81 0.54 2.49 0.44 1.56 112 0.64 2.93 0.30 13.16
51 0.39 1.84 0.36 3.45 82 0.55 2.51 0.42 2.07
52 0.40 1.87 0.37 3.23 83 0.55 2.52 0.46 2.78 Ave 0.46 2.12 0.40 3.25

(1) Tabu with 2000n iterations; (2) Tabu with 10000n iterations; (3) Evolutionary with descent
merging; (4) Evolutionary with tabu merging
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successfully a wide range for the tabu tenure with Tmin = 0.2(n−m) and Tmax =
0.2(n−m). We tested the tabu search with N=2,000n and N=10,000n iterations.
Each problem was solved 100 times. The computational results are depicted in
Table 4 (run times are given in Table 7). There seem to be three distinct “regions”
of m. Problems with m≤ 64 and problems with m≥ 95 are, with a few exceptions,
easily solved by the tabu search. Problems with 65≤m≤94, with a few exceptions,
seem to be difficult for tabu search. Overall, tabu search with N=10,000n iterations
failed to find the BKV in 12 problems but found the BKV in all 100 replications for
41 problems (see Table 8). Increasing the number of iterations from 2,000n to
10,000n improved the performance of the algorithm. However, we believe that
diversification approaches may further improve the performance of the algorithm
without adding run time.

5.1.2 Experiments with the evolutionary algorithm

We tested the evolutionary algorithm with both suggested merging processes.
Following extensive experiments we set the population size at 300 (slightly higher
than n=256) and the number of generations to 1,000n=256,000. In order to
determine the preferred value of the parameter K, we solved the 91 problems
(22≤m≤ 112) ten times for various values of K. The results are summarized in
Table 5. For the descent merging process, the performance seems to improve with
the increase in the value of K. However, run time increases as well. By inspection
of the table we selected K=7 for further experiments. We also depict in Table 5

Table 8 Summary of grey pattern problems (22 ≤m ≤ 112)

Tabu Evolutionary

2,000n 10,000n Descent Tabu

Frequency of BKV
None 18 12 23 0
0–10 31 26 43 5
11–20 4 5 11 8
21–30 1 1 2 8
31–40 2 0 4 7
41–50 4 2 3 8
51–60 2 1 4 4
61–70 3 2 2 9
71–80 1 4 4 8
81-90 2 1 4 13
91–100 41 49 5 21
100 33 41 1 6
New 2 2 4 8
Averages
# BKV 55.1 62.6 24.4 61.1
Percent over BKV (%) 0.027 0.018 0.067 0.016
Time (min) 0.46 2.12 0.40 3.25

Finding a cluster of points and the grey pattern problem 431



Table 9 Cluster solutions for branch and bound, greedy, and descent

n m Best known B&B Greedy Descent

† Time‡ † Time‡ # $ Time‡

100 5 260* 0 0.01 0 0.01 410 71.065 0.02
100 10 2,664* 0 0.19 0 0.00 522 4.879 0.04
100 10 1,856* 0 0.00 0 0.00 477 76.154 0.04
100 20 29,322* 0 2,000.59 0 0.00 462 4.995 0.11
100 33 74,032 0 3,600.01 0.159 0.02 390 0.132 0.21
200 5 92* 0 0.01 0 0.00 131 112.913 0.04
200 10 862* 0 0.44 0 0.01 732 19.432 0.10
200 20 8,790* 0 163.25 0 0.03 954 2.630 0.27
200 40 64,500 0.465 3,600.00 0.598 0.10 236 1.367 0.75
200 67 161,884 0 3,600.00 0.033 0.24 381 0.029 1.41
300 5 68* 0 0.01 0 0.01 18 63.103 0.06
300 10 858* 0 0.81 0 0.02 225 39.606 0.14
300 30 17,052 0 3,600.00 0 0.13 251 1.035 0.87
300 60 116,480 0.539 3,600.00 0.539 0.46 114 0.214 2.49
300 100 323,024 0 3,600.00 0.016 2.22 574 0.002 4.74
400 5 44* 0 0.03 0 0.01 140 92.636 0.14
400 10 496* 0 1.25 0 0.03 398 41.272 0.32
400 40 33,104 0.278 3,600.00 0.296 0.38 230 0.690 2.45
400 80 155,784 0.134 3,600.00 0.153 1.97 108 0.015 6.72
400 133 533,392 0 3,600.00 0.001 8.93 538 0.001 12.48
500 5 40* 0 0.03 0 0.02 34 109.475 0.28
500 10 608* 0 18.94 0 0.05 100 19.056 0.70
500 50 42,526 0 3,600.00 0 0.92 931 0.128 5.57
500 100 226,950 0.057 3,600.00 0.061 6.79 99 0.019 15.43
500 167 638,878 0.014 3,600.02 0.046 25.78 1,000 0 32.63
600 5 36* 0 0.06 0 0.02 107 99.694 0.42
600 10 312* 0 2.86 0 0.07 339 21.369 0.94
600 60 49,250 0.374 3,600.00 0.459 1.90 1,000 0 10.28
600 120 268,154 0.481 3,600.09 0.481 17.18 258 0.009 30.82
600 200 937,014 0 3,600.06 0 59.72 990 0.001 69.71
700 5 32* 0 0.08 0 0.03 31 86.938 0.56
700 10 330* 0 12.00 0 0.10 270 44.706 1.32
700 70 74,524 0 3,600.02 0 3.90 558 0.313 16.88
700 140 336,418 0.015 3,600.00 0.026 36.45 597 0.008 54.09
800 5 36* 0 0.14 0 0.03 199 49.806 0.67
800 10 334* 0 32.47 0 0.12 122 29.892 1.48
800 80 96,124 0.501 3,600.03 0.504 8.66 631 0.122 26.08
900 5 32* 0 0.17 0 0.05 52 48.375 0.78
900 10 264* 0 24.58 0 0.14 353 25.769 1.76
900 90 112,444 0.004 3,600.05 0.004 18.00 244 0.445 40.78
Average 0.072 1,766.46 0.084 4.86 380.2 26.707 8.61

†Percent of value over best known solution
‡Time in seconds for all runs
#Number of times best known solution found out of 1,000 replications
$Percent of average over the best known solution
*Optimal
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experiments with various values of K for the tabu merging process. There seem to
be a drop in performance when K is increased from K=3 to K=5. To confirm this
phenomenon, we also report the performance of the algorithm for problems with
72≤m≤ 94. This range includes all new BKVs, and seems to contain more difficult
problems for this approach. Consequently, we selected K=3 for further
experiments with the tabu merging process. The results of 100 replications for
each problem are reported in Table 6 (and run times reported in Table 7). The
results are much better for the tabu merging process but run times are about eight
times longer for the tabu merging process. The descent merging algorithm missed
the BKV for 23 problems while the tabu merging algorithm found it at least once
for all problems. The average number of found BKV increased from about 24 to
61% (see Table 8). The average solution was 0.067% over the BKV for the descent
merging algorithm and only 0.016% for the tabu merging algorithm.

5.2 Cluster problems

We tested the cluster problems on the 40 problems given in Beasley (1990) for the
p-median problem. These problems range between n=100 and n=900 points, and
the cluster sizes range between m=5 and m=200 points. We were unsuccessful in
finding good parameters for the tabu search so we report in Table 9 only results for
the branch and bound with LB3 (which was the best variant), the greedy algorithm,
and the steepest descent approach. In Table 10, we report the results for simulated
annealing (with the following parameters: T0 = 1,000,N=50,000n, and� ¼ 1� 10

N ),
and the evolutionary algorithm using the tabu merging process with a population
size of P=n and 1,000n generations. The branch and bound procedure was
terminated after 1 h if it did not finish, the descent algorithm was replicated
1,000 times, and the simulated annealing and the evolutionary algorithm were
replicated ten times each.

Examining Tables 9 and 10, we conclude that 21 of the 40 problems were
solved to optimality within 1 h of computer time. Twenty nine problems terminated
with the best known solution. Overall, the final solution of the branch and bound
algorithm was 0.072% above the best known solution. The greedy algorithm found
the best known solution for 25 of the 40 problems. The solution of the greedy
algorithm was, on the average, 0.084% over the best known solution. The descent
approach and the simulated annealing found the best known solution at least once
for all 40 problems. The evolutionary algorithm failed to find the BKV for one
problem. The run time for 1,000 replications of the descent approach was faster
than the run time for ten replications of the simulated annealing or the evolutionary
algorithm by a factor of about 40. This means that for “fair” comparison we have to
run the descent algorithm 40,000 times. The descent algorithm found the best
known solution in about 38% of the replications while simulated annealing found it
in almost 99% of the cases. The evolutionary algorithm found it in about 94% of
the cases. We conjecture that all best known solutions are optimal. Twenty one
problems were solved to optimality. The descent algorithm found the best known
solution at least 99 times out of 1,000 replications and the simulated annealing
algorithm found it at least nine times out of 10 for the remaining 19 problems. The
recommended procedure is the descent algorithm which seems to perform very
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Table 10 Cluster solutions for simulated annealing and evolutionary algorithm

n m Best known Simulated annealing Evolutionary

# $ Time‡ # $ Time‡

100 5 260* 10 0 15.65 10 0 9.47
100 10 2,664* 10 0 16.66 10 0 13.42
100 10 1,856* 10 0 16.57 10 0 6.98
100 20 29,322* 10 0 18.42 6 1.101 39.76
100 33 74,032 10 0 21.80 10 0 12.19
200 5 92* 10 0 32.65 10 0 34.39
200 10 862* 10 0 34.90 10 0 41.53
200 20 8,790* 10 0 38.51 10 0 23.17
200 40 64,500 10 0 47.96 7 0.034 166.08
200 67 161,884 10 0 53.12 10 0 52.76
300 5 68* 10 0 51.90 9 0.588 47.15
300 10 858* 10 0 55.46 10 0 42.70
300 30 17,052 9 0.137 76.59 9 0.110 1,103.82
300 60 116,480 10 0 88.09 10 0 82.44
300 100 323,024 10 0 99.25 10 0 126.90
400 5 44* 10 0 84.12 10 0 101.43
400 10 496* 10 0 93.12 10 0 62.07
400 40 33,104 10 0 150.89 10 0 106.13
400 80 155,784 10 0 193.26 10 0 185.10
400 133 533,392 10 0 229.26 10 0 299.30
500 5 40* 9 1.000 124.11 10 0 124.36
500 10 608*\ 9 0.428 148.98 10 0 247.09
500 50 42,526 10 0 279.17 10 0 158.78
500 100 226,950 10 0 380.57 9 0.000 360.14
500 167 638,878 10 0 466.45 10 0 602.53
600 5 36* 10 0 166.92 9 1.111 174.46
600 10 312* 10 0 207.87 10 0 139.06
600 60 49,250 10 0 446.10 10 0 234.53
600 120 268,154 10 0 636.95 10 0 589.21
600 200 937,014 10 0 760.18 10 0 1,271.97
700 5 32* 10 0 210.15 10 0 246.53
700 10 330* 10 0 278.10 10 0 173.98
700 70 74,524 10 0 730.31 10 0 3,604.65
700 140 336,418 10 0 940.74 10 0 1,041.27
800 5 36* 10 0 252.63 10 0 355.36
800 10 334* 8 0.838 332.53 10 0 454.70
800 80 96,124 10 0 979.83 10 0 554.58
900 5 32* 10 0 300.78 8 2.500 382.44
900 10 264* 10 0 414.25 10 0 255.64
900 90 112,444 10 0 1,366.54 0 0.366 1,419.07
Average 9.88 0.060 271.03 9.43 0.145 373.68

†Percent of value over best known solution
‡Time in seconds for all runs
#Number of times best known solution found out of 1000 replications
$Percent of average over the best known solution
*Optimal
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well in an extremely short computer time (less than half a second required for the
largest problem). Simulated annealing requires much longer time (about 2 min for
the largest problem) but finds the BKV in a large proportion of the cases. The
Evolutionary algorithm, while performing quite well, is inferior to the simulated
annealing algorithm both in the quality of the solution and run time.

6 Conclusions

We presented the cluster selection problem and proposed three robust algorithms
and five heuristic algorithms for its solution. The same algorithms are also applied
for the solution of the grey pattern problem which is usually formulated as a
quadratic assignment problem. The computational results demonstrated the
efficiency and effectiveness of the proposed solution methods.

As future research, we suggest to examine possible improvements to the lower
bounds. We experimented with bounds that depend on the values of k and pk (the
last column in Zone 1) which can be calculated once before the branch and bound
process. Such bounds for Zones 2 and 2&3 may improve the performance of the
branch and bound. However, in our experiments we did not observe significantly
improved performance. It is also suggested to further investigate metaheuristic
algorithms for the solution of these problems and employ a diversification strategy
for the tabu search.
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