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Abstract In this paper we investigate job-shop problems where limited capacity
buffers to store jobs in non-processing periods are present. In such a problem
setting, after finishing processing on a machine, a job either directly has to be
processed on the following machine or it has to be stored in a prespecified buffer. If
the buffer is completely occupied the job may wait on its current machine but
blocks this machine for other jobs. Besides a general buffer model, also specific
configurations are considered. The aim of this paper is to find a compact repre-
sentation of solutions for the jobshop problem with buffers. In contrast to the
classical job-shop problem, where a solution may be given by the sequences of the
jobs on the machines, now also the buffers have to be incorporated in the solution
representation. In a first part, two such representations are proposed, one which is
achieved by adapting the alternative graph model and a second which is based on
the disjunctive graph model. In a second part, it is investigated whether the given
solution representation can be simplified for specific buffer configurations. For the
general buffer configuration it is shown that an incorporation of the buffers in the
solution representation is necessary, whereas for specific buffer configurations
possible simplifications are presented.
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1 Introduction

The job-shop problem is one of the most popular scheduling problems. The
popularity is based on its interesting combinatorial structure and on its wide range
of applications. In the literature most articles investigate a basic version of the job-
shop problem contrasting the fact that in most applications additional constraints
have to be satisfied. One of these constraints is the fact that jobs which leave a
machine to be processed on the next machine must be stored in some buffer if the
next machine is still processing another job. Usually, the buffers have a limited
capacity. Thus, a job cannot leave a machine if the next machine is occupied and
the buffer is full. It must stay on the machine and blocks it until either a job leaves
the buffer or the next machine releases its job.

In the classical job-shop problem J||Cmax for each job a specic route through the
machines is defined. In contrast to the flow-shop situation, where the routes must
be the same for all jobs, the routes in a job-shop environment depend on the
problem input and may differ from each other. Considering a job-shop problem
with buffers jobs may enter different buffers on their routes. Thus, one has to assign
a buffer each time a job needs a storage place on its route. In a flow-shop situation
this assignment is dened in a natural way: Since all jobs take the same route, we
have an intermediate buffer between each pair of successive machines.

In this paper, we assume that a set of buffers of limited capacity is given and that
for each operation exactly one of these buffers is specified as a possible storage
place for the case that after the processing of the operation storage is needed.
Depending on this assignment of operations to buffers, several different types of
buffers are possible. If the assignment of operation Oij depends on the machine on
which operation Oij has to be processed, this type of buffer is called output buffer.
An output buffer Bk is directly related to machineMk and stores all jobs which leave
machine Mk and cannot directly be loaded on the following machine. Symmet-
rically, an input bufferBk is a buffer which is directly related to machine Mk and in
which jobs are stored that have already finished processing on the previous
machine, but cannot directly be loaded on machineMk. We also consider the model
in which a buffer Bkl is associated with each pair (Mk, Ml) of machines Mk and Ml.
Each job, which changes from machine Mk to Ml and needs storage, has to use
buffer Bkl. This model is called pairwise buffer model. If the assignment of
operations to buffers is job dependent we speak of job-dependent buffers. In this
case a dedicated buffer for storing each job is available. If the assignment underlies
no special structure, we call this type of buffers general buffers.

It has been shown by Papadimitriou and Kanellakis (1980) that even the two-
machine flow-shop problem with a limited buffer between the first and the second
machine (which is a special case of each of the above mentioned buffer models if
we exclude job-dependent buffers) is strongly NP�hard: Thus, to solve a job-
shop problem with limited buffer capacities in reasonable time, heuristics have to
be applied. In the literature only flow-shop problems with buffers of limited capac-
ities are considered. All known results concern flow-shop problems with makespan
objective and intermediate buffers between successive machines. Leisten (1990)
presents some priority based heuristics for the permutation flow-shop situation
as well as for the general flow-shop situation with buffers. Recently, Smutnicki
(1998) and Nowicki (1999) developed tabu search approaches for the
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permutation flow-shop problem with two and arbitrary many machines, respec-
tively. Brucker et al. (2003) generalized the approach of Nowicki (1999) to the
case where different job-sequences on the machines are allowed. The special
case, where all buffers have capacity 0, is called the blocking job-shop problem.
In Mascis and Pacciarelli (2002) heuristics and a branch and bound approach for
this problem are presented.

The most successful heuristics for the classical job-shop problem are based on
the representation of solutions by the disjunctive graph model. If for each machine
Mk, k=1,...,m, a sequence π

k of all operations to be processed onMk is specified, an
optimal schedule respecting the sequences (π1,...,πm) on the machines can be found
by longest path calculations. Thus, the solution space can be represented by the
set of vectors (π1,...,πm) of permutations which provide a feasible schedule. In
Smutnicki (1998), Nowicki (1999), and Brucker et al. (2003) it has been shown
that the same solution representation can be used for flow-shop problems with
intermediate buffers. By introducing so-called buffer arcs an optimal schedule
respecting given sequences (π1,...,πm) can be found by longest path calculations.

The objective of this paper is to derive solution representations for the job-shop
problem with limited capacity buffers which can be used in connection with local
search heuristics. We derive two such representations. For the first representation
buffers B with capacity b are represented by b buffer slots. The buffer slots are
considered as additional “machines” in a blocking job-shop problem. One has to
decide whether jobs use associated buffers or not. If a job uses buffer B a cor-
responding buffer operation with processing time zero must be assigned to a buffer
slot of B. Solutions are represented by assignments for buffer slots as well as by
machine and buffer slot sequences. In the second representation we introduce for
each buffer B an input sequence and an output sequence. These sequences define
the order in which jobs using B enter and leave the buffer. We show that for given
input/output sequences optimal buffer slot assignments can be calculated in poly-
nomial time. Furthermore, for all special buffer situations input and output se-
quences can be derived in polynomial time, if the machine sequences are given.

This paper is organized as follows. After a formal description of the job-shop
problem with buffers in the next section, we discuss job-shop problems with
blocking operations in Section 3. In Section 4 we describe the two different graph
models for the problem. In Section 5, we consider the special buffer types and
derive further results for these specialized situations. The last section contains some
concluding remarks.

2 Problem formulation

The job-shop problem with general buffers is a generalization of the classical job-
shop problem and may be formulated as follows:

Given are m machines M1,...,Mm and q buffers Bi with a capacity of bi units
(i=1,...q). On the machines n jobs j=1,...,n have to be processed. Each job j consists
of nj operations O1j;O2j; . . . ;Onjj which must be processed in the given order, i.e.
we have precedence constraints O1j ! O2j ! . . . ! Onjj. Associated with oper-
ation Oij is a dedicated machine μij∈{M1,...,Mm} on which Oij must be processed
for pij>0 time units without preemption. We assume that μij≠μi+1,j for all j=1,...,n
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and i=1,...,nj−1. Thus, for a job a specific route through the machines is defined.
When operation Oij finishes processing on machine μij, its successor operation
Oi+1j may directly start on the next machine μi+1,j if this is not occupied by
another job. Otherwise, job j is stored in the buffer βij , where βij∈{B1,...,Bq} is
given. However, it may happen that μi+1,j is occupied and the buffer βij is full.
In this case, job j has to stay on μij until a job leaves buffer βij or the job
occupying μi+1,j moves to another machine. Thus, during this time job j blocks
machine μij for processing other jobs.

A feasible schedule of the jobs is given by an assignment of starting times Sij
(and thus, completion times Cij=Sij+pij) to operations Oij (i=1,...,nj; j=1,...,n) such
that

1. the precedence relations within the jobs are respected (Cij≤Si+1,j),
2. during the complete time interval S1j;Cnjj

� �
job j occupies either a machine or a

buffer (j=1,...,n),
3. at each time any machine is occupied by at most one job and buffer Bi is

occupied by at most bi jobs (i=1,...,q).

The problem we consider is to find a feasible schedule which minimizes the

makespan Cmax ¼ max
n

j¼1
Cj , where Cj is the finishing time Cnjj of the last operation

Onjj of job j.
To simplify notation in some parts of the paper, for each operation i we denote

by σ(i) the successor operation of i and by J(i) the job to which i belongs.
Furthermore, μ(i)∈{M1,...,Mm} is the machine on which i must be processed and
β(i)∈{B1,...,Bq} is the specied buffer associated with i.

Depending on the buffer assignment βij one can distinguish different buffer
models:

We call a buffer model general buffer model if any assignment βij of operations
to buffers is possible.
If the assignment βij depends on the job index j, i.e. if each job has an own
buffer, we speak of job-dependent buffers.
If the assignment βij depends on the machines on which Oij and Oi+1,j are
processed, this buffer model is called pairwise buffer model. In this situation a
buffer Bkl is associated with each pair (Mk,Ml) of machinesMk andMl. If μij=Mk

and μi+1,j=Ml, operation Oij is assigned to buffer Bkl. A pairwise buffer model
is usually used in connection with the flow-shop problem. Each job has to use
Bk,k+1 when moving from Mk to Mk+1 and machine Mk+1 is still occupied.
If the assignment βij depends on the machine on which Oij is processed, this
type of buffers is called output buffer model. An output buffer Bk for machine
Mk stores all jobs which leave machine Mk and cannot directly be loaded on the
following machine.
Similarly, if the assignment βij depends on the machine on which Oi+1,j is
processed, this type of buffer model is called input buffer model. An input buffer
Bk for machine Mk stores all jobs, which have finished on their previous
machine but cannot be loaded on Mk directly.

154 P. Brucker et al.



Another basic model is the job-shop problem with blocking operations where
an operation-dependent buffer Bij for each operation Oij is given. If no buffer space
to store job j after finishing on μij is available (bij=0), we call operation Oij

blocking. In this case, job j blocks machine μij if the next machine is occupied by
another job. Otherwise (i.e. bij=1), operation Oij is called non-blocking or ideal.
Since in the classical job-shop problem all operations are non-blocking, the
classical job-shop problem is a special case of the job-shop problem with blocking
operations. On the other hand, the job-shop problem where all operations are
blocking is called blocking job-shop problem.

3 The job-shop problem with blocking operations

In this section, we investigate the job-shop problem with blocking operations
where for each operation i it is specified whether buffer space to store job J(i) after
the processing of operation i is available or not. This problem constitutes a basic
model for the job-shop problem with general buffers. In Subsection 3.1 we show
how the jobshop problem with blocking operations can be represented by an
alternative graph. An alternative graph (see Mascis and Pacciarelli (2002)) is a
generalization of a disjunctive graph which is the common model used to represent
the classical job-shop problem. In Subsection 3.2 we refer to the job-shop problem
with job-dependent buffers which is a special case of the job-shop problem with
blocking operations.

3.1 Blocking operations and alternative graphs

Assume that there is not always a buffer to store a job after it has finished on a
machine and the next machine is still occupied by another job. Then the job
remains on its machine and blocks it until the next machine becomes available. The
corresponding operation of this job is a blocking operation. Obviously, blocking
operations may delay the start of succeeding operations on the same machine.

Consider two blocking operations i and j which have to be processed on the
same machine μ(i)=μ(j). If operation i precedes operation j, the successor operation
σ(i) of operation i must start before operation j can start in order to unblock the
machine, i.e. S� ið Þ � Sj must hold. Conversely, if operation j precedes operation i,
then operation σ(j) must start before operation i can start, i.e. S� jð Þ � Si must hold.

Thus, there are two mutually exclusive (alternative) relations

S� ið Þ � Sj or S� jð Þ � Si

given in connection with i and j. These two mutually exclusive relations can be
modelled by a pair of alternative arcs (σ(i), j) and (σ(j), i) as shown in Fig. 1a. The
pair of alternative arcs is depicted by dashed lines whereas the solid lines represent
precedence constraints within job J(i) and J(j). One has to choose exactly one of
the two alternative relations (arcs). Choosing the arc (σ(i), j) implies that operation
i has to leave the machine before j can start and choosing (σ(j), i) implies that j has
to leave the machine before i can start.
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Next, consider the case where operation i is non-blocking and operation j is
blocking and both have to be scheduled on the same machine μ(i)=μ(j). If op-
eration i precedes operation j, machine μ(i) is not blocked after the processing of i.
Thus, operation j can start as soon as operation i is finished, i.e. Si+pi≤Sj must hold.
On the other hand, if operation j precedes operation i, then operation σ(j) must start
before operation i, i.e. S� jð Þ � Si must hold.

Thus, we have the alternative relations

Si þ pi � Sj or S� jð Þ � Si

given in connection with i and j. Figure 1b shows the corresponding pair of
alternative arcs (i, j) and (σ(j), i) weighted by pi and 0, respectively.

Finally, considering two non-blocking operations i and j, which have to be
processed on the same machine, leads to the alternative relations

Si þ pi � Sj or Sj þ pj � Si

These relations can be represented by the alternative arcs (i, j) and (j, i)
weighted by pi and pj, respectively. This pair of alternative arcs corresponds to a
disjunction between operation i and operation j in the classical disjunctive graph
model. Choosing one of the two alternative arcs (i, j) or (j, i) is equivalent to
directing the disjunction between i and j.

Using this concept, the job-shop problem with blocking operations can be
modelled by an alternative graph G=(V, A, F) which is a generalization of a
disjunctive graph (see Mascis and Pacciarelli (2002)).

The set of vertices V represents the set of all operations. In addition, there is a
source node ○ ∈V and a sink node *∈V indicating the beginning and the end of a
schedule (i.e. V={Oij|i=1,...,nj; j=1,...,n}∪{○,*}). The arc set ofG consists of a set A
of pairs of alternative arcs and a set F of fixed arcs. The fixed arcs reflect the
precedence relations O1j ! O2j ! . . . ! Onjj between the operations of each job
j=1,...,n. The arc Oij→Oi+1,j is weighted by the processing time pij (for i=1,...,nj−1).
Furthermore, in F we have arcs ○→O1j and Onjj ! � weighted by 0 and pnjj ,
respectively. The set A consists of all pairs of alternative arcs for operations i and j
which have to be processed on the same machine: If i and j are both blocking, the
pair of alternative arcs consists of (σ(i), j) and (σ(j), i) weighted both by 0. If i is
non-blocking and j is blocking, we introduce the pair of alternative arcs (i, j) and

j

σ( i )

σ( j )

i

j

a

pj

0
pi

0
0

σ( j )

i σ(i )

pj

pi pi

b

Fig. 1 a,b A pair of alternative arcs
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(σ(j), i) with lengths pi and 0, respectively. If i and j are both non-blocking, the pair
of alternative arcs is (i, j) and (j, i) weighted by pi and pj, respectively. In the special
case when operation i is the last operation of job J(i), machine μ(i) is not blocked
after the processing of i. Thus, in this case, operation i is always assumed to be non-
blocking.

Considering the special case of a classical job-shop problem, all operations are
nonblocking. Therefore, each pair of alternative arcs is of the form {(i, j), (j, i)}
where i and j are operations to be processed on the same machine. The resulting
special type of an alternative graph corresponds to a disjunctive graph.

In the following, we consider an example for a job-shop problem with blocking
operations and show up the corresponding alternative graph: Given are three
machines and three jobs where jobs 1 and 2 consist of three operations each and job
3 consists of two operations. Jobs 1 and 2 have to be processed first onM1, then on
M2 and last on M3, whereas job 3 has to be processed first on M2 and next on M1.
The first two operations of jobs 1 and 2 are assumed to be blocking. All other
operations are non-blocking.

Figure 2 shows the alternative graph G=(V, A, F) for this instance. (The source
node and the sink node as well as all arcs emanating from the source and all arcs
terminating in the sink are left out.) The job chains of each job are shown
horizontally. Black circles represent blocking operations whereas white circles
represent non-blocking operations. In order to differentiate pairs of alternative arcs,
alternative arcs induced by operations of the same two jobs are depicted in the same
line pattern.

Given a job-shop problem with blocking operations, the basic scheduling
decision is to define an ordering between the operations to be processed on the

job 1

job 2

job 3

M1 M2 M3

F: fixed arcs induced by job chains

A: alternative arcs of operations of jobs 1 and 2

A: alternative arcs of operations of jobs 2 and 3

A: alternative arcs of operations of jobs 1 and 3

Fig. 2 An alternative graph G=(V, A, F)
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same machine. This can be done by choosing at most one arc from each pair of
alternative arcs. A selection S is a set of arcs obtained from A by choosing at most
one arc from each pair of alternative arcs. The selection is called complete if
exactly one arc from each pair is chosen. Given a selection S, let G(S) indicate the
graph (V, F∪S).

For a graphG(S), we define the length L(p) of a path p=(i1,...,ik) with ij∈V by the
sum of the lengths of the arcs (ij−1, ij) (j=2,...,k). Note that all arc lengths inG(S) are
nonnegative and, thus, L(p)≥0 holds for each path p in G(S).

If a complete selection S is given and G(S) does not contain any cycle of
positive length, let P(S) be the schedule in which the starting time of an operation
Oij is equal to the length of a longest path from the source ○ to the vertex
representingOij inG(S). Then, P(S) is a feasible, left-shifted schedule with minimal
makespan respecting the ordering given by the selection S. The makespan Cmax(S)
is equal to the length of a longest ○–*-path in G(S).

In fact, the graph G(S) may contain cycles of length 0. In this case, all
operations included in such a cycle start processing at the same time.

As for a classical job-shop problem, a solution for an instance of a job-shop
problem with blocking operations can also be given by the sequences (π1,...,πm) of
the jobs on the machines, where πi species the order of the jobs on machine Mi

(i=1,...,m). A solution ∏=(π1,...,πm) is called feasible, if there exists a feasible
schedule, where the jobs are processed in the sequences π1,...,πm on M1,...,Mm.
Obviously, a solution ∏ induces a complete selection S. The corresponding graph
G(S) contains no cycles of positive length if and only if the solution ∏ is feasible.

job 1

job 2

0
6

3 2

1

2

0

0

1

0
6

6

1

2

2

* 

job 3

M 1 M 2 M 3

F: fixed arcs induced by job chains

S: arcs given by the selection S

Fig. 3 The graph G(S)=(V, F∪S)
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Assume that the jobs in the previous example are scheduled in the order π1=
(1, 2, 3) on M1, π

2=(3, 1, 2) onM2 and π
3=(1, 2) on M3. These sequences induce a

complete selection S, where the corresponding graph G(S) (with its appropriate
arc weights) is shown in Fig. 3. By longest path calculations in G(S), the schedule
P(S) of Fig. 4 can be calculated. The makespan of P(S) is 12. Notice that job 2
cannot start on M1 before time 6 because job 1 blocks machine M1 from time 3 to
time 6. Similarly, job 2 blocks M1 from time 7 to time 8.

3.2 Job-dependent buffers

A special case of the job-shop problem with blocking operations is the job-shop
problem with job-dependent buffers. In this model, n buffers Bj (j=1,...,n) are given
where Bjmay store only operations belonging to job j. Since operations of the same
job never require the buffer at the same time, we may restrict the buffer capacity bj
to the values 0 and 1.

Operations belonging to a job with buffer capacity 1 are never blocking since
they always can go into the buffer when finishing. On the other hand, all operations
of a job with buffer capacity 0 are blocking except its last operation. In the example
of Section 3.1, the buffer capacities b1 and b2 of jobs 1 and 2 are equal to 0, i.e. jobs
1 and 2 are blocking, whereas job 3 is non-blocking.

4 Solution representation

In the following, we will discuss different ways to represent solutions for the job-
shop problem with general buffers. These representations are useful for solution
methods like branch-and-bound algorithms and local search heuristics. In later
sections, we will show how these representations specialize in connection with
specific buffer models. In Subsection 4.1, we show that the job-shop problem with
general buffers can be reduced to the blocking job-shop problem. This reduction is
based on dividing each buffer into several buffer slots and assigning the operations
to the buffer slots. Since this representation has several disadvantages, we propose
another representation in Subsection 4.2. Finally, in Subsection 4.3, we present
how a corresponding schedule for a given solution can be constructed by longest
path calculations in a solution graph model.

1

3

M 1

M 2

M 3

2

1 2

1 2

3

0 3 6 7 8 9 10 12

Fig. 4 Schedule P(S)
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4.1 Representation by buffer slot assignments and sequences

In order to apply heuristics to a job-shop problem with general buffers, a suit-
able representation of solutions is needed. In the case of a job-shop problem with
blocking operations, we have seen in the previous section that the solution space
can be represented by a set of vectors (π1,...,πm) where πi species an order of the
jobs on machine Mi (i=1,...,m). Given a solution (π1,...,πm), an optimal schedule
respecting the sequences (π1,...,πm) can be found by longest path calculation in the
graph G(S) where S is the corresponding complete selection. This representation
generalizes a representation of solutions for the classical job-shop problem which
has been successfully used in connection with local search heuristics. In the fol-
lowing, we will show that the job-shop problem with general buffers can be
reduced to the blocking job-shop problem, i.e. to the job-shop problem where all
operations are blocking except the last operation of each job.

For this purpose, we differentiate between b storage places within a buffer B of
capacity b>0. Thus, the buffer B is divided into b so called buffer slotsB1,B2,...,Bb,
where a buffer slot Bl represents the l-th storing place of buffer B. Each buffer slot
may be interpreted as additional blocking machine on which entering jobs have
processing time zero. For each job one has to decide whether it uses a buffer on its
route or it goes directly to the next machine. If the job j uses a buffer one has to
assign a buffer slot to j. After these decisions and assignments we have to solve a
problem which is equivalent to a blocking job-shop problem.

Because of the described reduction, a solution of a job-shop problem with
general buffers can be represented by the following three characteristics:

1. sequences of the jobs on the usual machines,
2. a buffer slot assignment of each operation to a buffer slot of its corresponding

buffer (where an operation may also not use any buffer), and
3. sequences of the jobs on the additional blocking machines (which correspond to

buffer slot sequences).

4.2 Representation by sequences

Using the reduction of a job-shop problem with general buffers to a blocking job-
shop problem implies that the buffer slot assignment is part of the solution repre-
sentation. However, this way of solution representation has several disadvantages
when designing fast solution procedures for the problem: Obviously, many buffer
slot assignments exist which lead to very long schedules. For example, it is not
meaningful to assign a large number of jobs to the same buffer slot when other
buffer slots remain empty. Also there are many buffer slot assignments which are
symmetric to each other. It would be sufficient to choose one of them. Thus, we
have the problem to identify balanced buffer slot assignments and to choose one
representative buffer slot assignment among classes of symmetric assignments.

To overcome these deficits one may use a different solution representation from
which buffer slot assignments can be calculated by a polynomial time algorithm.
The basic idea of this approach is to treat the buffer as one object and not as a
collection of several slots.
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For this purpose, we assign to each buffer B with capacity b>0 two sequences,
an input sequence πin and an output sequence πout containing all jobs assigned to
buffer B. The input sequence πin is a priority list by which these jobs either enter
the buffer or go directly to the next machine. The output sequence πout is a
corresponding priority list for the jobs which leave buffer B or go directly to the
next machine.

To represent a feasible (deadlock-free) schedule the buffer sequences πin and
πout must be compatible with the machine sequences. This means, that two jobs in
πin (πout) which come from (go to) the same machine have to be in the same order
in the buffer and machine sequence. Additionally, the buffer sequences must be
compatible with each other. Necessary conditions for mutual compatibility of πin
and πout are given by the next theorem which also describes conditions under which
jobs do not use the buffer.

Denote by πin(i) and πout(i) the job in the i-th position of the sequence πin and
πout, respectively.

Theorem 1 Let B be a buffer with capacity b>0, let πin be an input sequence and
πout be an output sequence corresponding with a feasible schedule. Then the
following conditions are satisfied:

(a) If j = πout(i) = πin(i+b) for some position i, then job j does not enter buffer B, i.e.
it goes directly to the next machine.

(b)πout(i) ∈ {πin(1),...,πin(i+b)} holds for each position i.

Proof

(a) Let i be a position such that j = πout(i) = πin(i+b) holds. At the time job j leaves
its machine, i+b−1 other jobs have entered buffer B and i−1 jobs have left it.
Thus, (i+b−1)−(i−1)=b jobs different from j must be in buffer B. Therefore,
buffer B is completely filled and job j must go directly to the next machine.

(b)Assume that j=πout(i)=πin(i+b+k) for some k≥1. Similar as in (a) we can
conclude: At the time job j leaves its machine, i+b+k−1 other jobs have entered
buffer B and i−1 jobs different from j have left it. Thus, (i+b+k−1)−(i−1)=b+k
jobs dierent from j must be in buffer B. Since this exceeds the buffer capacity,
the sequences πin and πout cannot correspond to a feasible schedule.
From Theorem 1 we conclude that if we have a feasible schedule then for each

buffer B the corresponding sequences πin and πout must satisfy the conditions

�out ið Þ 2 �in 1ð Þ; . . . ; �in iþ bð Þf gfor all positions i: (4.1)

Conversely, if Eq. 4.1 holds then we can find a valid buffer slot assignment by
the following procedure which scans both sequences πin and πout from the first to
the last position.

Algorithm buffer slot assignment

1. WHILE πin is not empty DO BEGIN
2. Let j be the first job in πin;
3. IF j = πin(i+b) = πout(i) THEN
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4. Put j on the next machine and delete j both from πin and πout ELSE
5. Put j in the first free buffer slot and delete j from πin;
6. WHILE the job k in the first position of πout is in the buffer DO
7. Delete k both from the buffer and from πout END

The following example shows how this algorithm works. Consider the input
sequence πin=(1, 2, 3, 4, 5, 6) and the output sequence πout=(3, 2, 5, 4, 6, 1) in
connection with a buffer B of capacity b=2. These sequences obviously satisfy
Condition (4.1).

We scan πin from the first to the last position. Jobs 1 and 2 are assigned to the
buffer slots B1 and B2, respectively, and both are deleted from πin. Now, both buffer
slots are occupied. Then, we put job 3 on the next machine and delete this job from
πin and πout. The new first element of πout, which is job 2, is in the buffer. We
eliminate 2 both from the buffer and from πout. Next, we assign job 4 to buffer slot
B2 and delete it from πin. Again, both buffer slots are occupied now. Then, job 5
goes directly to the next machine and we delete it both from πin and πout.
Afterwards, we move the first element of πout, which is job 4, from the buffer to the
next machine and delete it from πout. Now, we assign the last element 6 of πin to
buffer slot B2 and make πin empty. Thus, by the algorithm job 1 is assigned to
buffer slot B1 and jobs 2, 4 and 6 are assigned to buffer slot B2.

To prove that the algorithm is correct one has to show that there will be no
overflow in the buffer. The only possibility to get such an overflow is when

– the buffer is full, and
– the first element k=πout(i) of πout is not in the buffer and not in position i+b of

πin.

Then, job k must be in a position greater than i+b in the input sequence πin.
Thus, Condition (4.1) is not satised.

The buffer slot assignment procedure not only assigns jobs to buffer slots. It
also defines a sequence of all jobs assigned to the same buffer slot. This buffer slot
sequence is given by the order in which the jobs are assigned to the buffer slot. This
order is induced by the buffer input sequence. In the previous example, the buffer
slot sequence of B2 is (2, 4, 6).

Let now∏ be an arbitrary feasible solution for a job-shop problem with general
buffers. ∏ defines sequences π1,...,πm for the machines M1,...,Mm as well as
sequences πin

B and πout
B for all buffers B. If we apply to the buffer input and output

sequences the buffer slot assignment procedure we get a blocking job-shop
problem (where the buffer slots function as additional blocking machines) for
which∏ is also a feasible solution. This shows, that we do not loose if we represent
solutions of the job-shop problem with general buffers by machine sequences
π1,...,πm and buffer sequences πin

B and πout
B for all buffers B.

4.3 Calculation of a schedule

We have seen that a solution∏ of the job-shop problem with general buffers can be
represented by machine sequences π1,...,πm and for each buffer Bwith b>0 an input
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sequence πin
B and an output sequence πout

B. A corresponding schedule can be
identied by longest path calculations in a directed graph G(∏) which is constructed
in the following way:

– The set of vertices consists of a vertex for each operation i as well as a source
node ○ and a sink node *. In addition, for each operation i and each buffer Bwith
β(i)=B we have a buffer-slot operation vertex iB if job J(i) is assigned to the
buffer by the buffer slot assignment procedure of the previous section.

– We have the following arcs for each operation i where i is not the last operation
of job J(i) and i is not the last operation on machine μ(i): Associated with i and
buffer B with β(i)=B there is a direct arc i→σ(i) weighted by pi if J(i) is not
assigned to the buffer. Furthermore, we have an arc σ(i)→jwith weight 0 where j
denotes the operation to be processed immediately after operation i on μ(i). This
arc ensures that operation j cannot start on μ(i) before the machine predecessor i
has left μ(i).
If job J(i) is assigned to buffer B, we introduce arcs connected with i and the
buffer-slot operation vertex iB as indicated in Fig. 5a. In this figure, j again
denotes the operation to be processed immediately after operation i on μ(i). The
buffer-slot operation kB denotes the buffer-slot predecessor of iB. If there is no
such predecessor, the vertex iB possesses only one incoming arc.
The dotted arcs are called blocking arcs. The blocking arc iB→j ensures that
operation j cannot start on μ(i) before operation i has left μ(i) and the blocking
arc σ(k)→iB takes care that job J(i) cannot enter the buffer slot before its buffer
slot predecessor, which is job J(k), has left the buffer slot.

– We have an arc ○ →i for each first operation i of a job and an arc i→* for each
last operation i of a job. The arcs ○ →i and i→* are weighted by 0 and pi,
respectively. Furthermore, if i is the last operation of job J(i) but not the last
operation on machine μ(i), there is an arc i→jweighted by piwhere j denotes the
operation to be processed immediately after i on μ(i).

This graph corresponds to the graph introduced in Section 3.1 for the job-shop
problem with blocking operations where transitive arcs are left out.

0

0

0 0

0

σ (k) σ (k)

kB iB

i j

σ (i)

a b

i j

σ (i)

p p

p

Fig. 5 a Buffer slot operation vertex iB with its incoming and outgoing arcs. b Simplification
of a by deleting iB
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If the graph G(∏) does not contain any cycle of positive length, let S� be the
length of a longest path from ○ to the vertex ν in G(∏). Then the times S� describe
a feasible schedule where Si is the starting time of operation i and SiB is the time at
which operation i is moved into buffer B.

If we are only interested in the starting times of operations and not the in-
sertion times into buffers, we can simplify G(∏) by eliminating buffer-slot oper-
ations as indicated in Fig. 5b. We call the simplied graph �G �ð Þ solution graph. In
order to detect a positive cycle in the solution graph, if one exists, and to compute
longest paths, the Floyd–Warshall algorithm can be used (see e.g. Ahuja et al.
1993). It has running time O(r3) where r is the number of vertices, i.e. the total
number of operations. An example of the graph G(∏) and the solution graph
�G �ð Þ in the case of a flow-shop problem with intermediate buffers will be given
in the next section.

5 Special types of buffers

In this section, we consider different special types of buffers and show which
simplifications (if any) can be derived in these specialized situations. For each
special buffer model, we discuss the question whether it is possible to compute an
optimal schedule respecting given sequences π1,...,πm of the jobs on the machines
in polynomial time.

5.1 Flow-shop problem with intermediate buffers

The flow-shop problem is a special case of the job-shop problem in which each job
j consists of m operations Oij (i=1,...,m) and operation Oij has to be processed on
machineMi. This means each job is processed first onM1, then onM2, then onM3,
etc. The natural way to define buffers in connection with the flow-shop problem is
to introduce an intermediate buffer Bk between succeeding machines Mk and Mk+1

for k=1,...,m−1. If πi is the sequence of the jobs on machine Mi (i=1,...,m), then
obviously the input sequence for Bk is given by π

k and the output sequence must be
πk+1. Thus, the sequences π1,...,πm are sufficient to represent a solution in the case
of a flow-shop problem with intermediate buffers.

Figure 6 shows an example of the graph G(∏) for a problem with three
machines, five jobs and two buffers which have a capacity of b1=1 and b2=2 units.
The solution∏ is given by the machine sequences π1 = (1, 2, 3, 4, 5), π2 = (2, 1, 3, 5,
4) and π3 = (3, 1, 4, 5, 2). The numbers in the white circles denote the indices of the
corresponding operations, whereas the black circles represent buffer slot operation
vertices. The job chains of each job are shown vertically, where the positions of the
black circles also indicate the corresponding buffer slot assignment. Figure 7
shows the resulting simplication after the buffer-slot vertices have been eliminated.

It can be shown that buffer-slots can always be assigned in such a way that the
simplied graph consists of the following arcs:

– machine arcs πk(1)→πk(2)→...→πk(n) for k=1,...,m,
– job arcs O1j ! O2j ! ::: ! Onjj for j=1,...,n, and
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arcs induced by job chains

arcs induced by machine sequences

arcs induced by buffer slot sequences

Fig. 6 An example of the graph G(∏)
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Fig. 7 Simplified graph after elimination of buffer-slot vertices in Fig. 6
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– buffer arcs πk+1(i)→πk(i+bk+1) for i=1,..., n−bk−1 and k=1,...,m−1(see Brucker
et al. (2003)).

Due to Condition (4.1) the machine sequences π1,...,πm are compatible if and
only if

�kþ1 ið Þ 2 �k 1ð Þ; :::; �k iþ bkð Þ� �
for k ¼ 1; . . . ;m� 1

and each position i ¼ 1; . . . ; n� bk
(5.1)

This is equivalent to the condition that the simplied graph contains no cycle. For
each k Condition (5.1) can be checked in O(n) time. Thus, we can check in O(nm)
time whether the simplified graph contains no cycle. In this case all ○–i longest
path lengths (i.e. a corresponding earliest start schedule) can be calculated inO(nm)
time because the simplified graph contains at most O(nm) arcs.

5.2 Job-shop problem with pairwise buffers

For the job-shop problem with pairwise buffers, the situation is very similar to the
situation for flow-shop problems with intermediate buffers. In this buffer model, a
buffer Bkl is associated with each pair (Mk, Ml) of machines. Each job, which
changes fromMk toMl and needs storage, has to use buffer Bkl. The input sequence
πin

kl of buffer Bkl contains all jobs in π
k which move toMl ordered in the same way

as in πk, i.e. πin
kl is a partial sequence of πk. Similarly, πout

kl is the partial sequence
of πl consisting of the same jobs but ordered as in πl. Using the subsequences πin

kl

and πout
kl for each buffer we get a simplified graph �Gkl (see Fig. 7). The solution

graph for given machine sequences π1,...,πm is a decomposition of all simplified
graphs �Gkl . However, for the job-shop problem with pairwise buffers conditions
similar to Eq. (5.1) are not sufficient to guarantee that the solution graph has no
cycles. But this is not due to the buffers since even in the case of the classical job-
shop problem the solution graph may contain cycles. Furthermore, the solution
graph may contain blocking cycles over several machines. Therefore, testing fea-
sibility and calculating a schedule for sequences π1,...,πm is more time consuming.
For longest paths calculations the Floyd–Warshall algorithm can be used. It has
running time O(r3), where r is the total number of operations. In Nieberg (2002), a
tabu search approach for the job-shop problem with pairwise buffers based on the
above considerations is presented.

5.3 Job-shop problem with output buffers

A further special type of buffers is that of output buffers. In this case, jobs leaving
machineMk are stored in a buffer Bk (k=1,...,m) if the next machine is occupied and
Bk is not full.

Let us consider a solution of a job-shop problem with output buffers given by
the sequences π1,...,πm of the jobs on the machines, the buffer input sequences
πin

1,...,πin
m and the buffer output sequences πout

1,...,πout
m. Clearly, the buffer input

sequence πin
k of buffer Bk must be identical with the sequence πk of the jobs on
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machine Mk (k=1,...,m). Thus, for the buffers only the buffer output sequences
πout

1,...,πout
m have to be specied. In the following, we show that it is also not

necessary to fix buffer output sequences. For given sequences π1,...,πm a poly-
nomial procedure is developed, which calculates optimal buffer output sequences
and a corresponding schedule at the same time.

The idea of this procedure is to proceed in time and schedule operations as soon
as possible. At the earliest time t where at least one operation is finishing the
following moves are performed if applicable:

– move a job finishing at time t to the next machine and start to process it on the
next machine,

– move a job finishing at time t on machine Mk into buffer Bk,
– move a job from a buffer to the next machine and start to process it on this

machine,
– identify a sequence of operations i0,...,ir−1 with the following properties

– each operation stays either finished on a machine or in a buffer,
– at least one of the operations stays on a machine,
– J i�ð Þ can move to the place occupied by J i �þ1ð Þmod r

� �
; and perform a cyclic

move, i.e. replace J i �þ1ð Þmod r

� �
by J i�ð Þ on its machine or in the

corresponding buffer for ν=1,...,r−1,

– move a job out of the system if its last operation has finished.

To control this dynamic process we keep a set C containing all operations
which at the current time t are either staying on a machine or are stored in a buffer.
Furthermore, machines and buffers are marked available or nonavailable. A ma-
chine is nonavailable if it is occupied by an operation. Otherwise, it is available. A
buffer is available if and only if it is not fully occupied. For each operation i
starting at time t on machine μ(i) we store the corresponding finishing time ti≔
t+pi. At the beginning we set ti=∞for all operations i. A job enters the system if
its first operation i can be processed on machine μ(i)=Mk, i.e. if the predecessor
of i in the machine sequence πk has left Mk. At the beginning all jobs whose first
operation is the first operation in a corresponding machine sequence enter the
system.

If at current time t the set C is not empty and no move is possible then we
replace t by min {ti|i∈C; ti>t} if there is an operation i∈C with ti>t. Otherwise, we
have a deadlock situation. In this case, the machine sequences are infeasible. An
infeasible situation may also occur when C is empty and there are still unprocessed
jobs.

Details are described by the Algorithm output buffers. In this algorithm Update
(C, t) is a procedure which performs one possible move.

Algorithm output buffers

1. t:=0; C:=∅;
2. FOR all operations i DO ti:=∞;
3. Mark all machines and buffers as available;
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4. FOR all first operations i which are sequenced first on a machine DO BEGIN
5. Schedule i on μ(i) starting at time t=0;
6. ti:=pi;
7. C=C∪{i};
8. Mark μ(i) as nonavailable;

END
9. WHILE C≠∅ DO BEGIN
10. FOR each machine Mj which is available DO BEGIN
11. IF the current first element k of the machine sequence πj is the first operation of

job J(k) THEN BEGIN
12. Schedule k on Mj starting at time t;
13. tk:=t+pk;
14. C=C∪{k};
15. Mark Mj as nonavailable;

END
END

16. IF an operation i∈C with ti≤t exists and a move of an operation in C is possible
at time t THEN

17. Update (C,t);
ELSE BEGIN

18. IF ti≤t for all i∈C THEN HALT; /* solution is infeasible */
19. t:=min{ti|i∈C; ti>t};

END
END

20. IF there is an operation i with ti=∞ THEN solution is infeasible

The updating process is done by the following procedure in which β(i) denotes
the buffer Bk when μ(i)=Mk.

Procedure update (C, t)

1. IF there is an operation i∈C with ti≤t where i is the last operation of job J(i)
THEN

2. Move out of system (C,t,i);
3. ELSE IF there is an operation i∈C with ti≤t on machine μ(i) and σ(i) is the

current first element of the machine sequence �� � ið Þð Þ and μ(σ(i)) is available
THEN

4. Move to machine (C,t,i);
5. ELSE IF there is an operation i∈C with ti≤t on machine μ(i) and buffer (i) is

available THEN
6. Move in buffer (C,t,i);
7. ELSE IF there is an operation i∈Cwith ti≤t in a buffer and σ(i) is the current first

element of the machine sequence �� � ið Þð Þ and μ(σ(i)) is available THEN
8. Move out of buffer (C,t,i);
9. ELSE IF there is a sequence of operations Z:i0,....,ir−1 with i� 2 C and ti��t

such that �ði�Þ is on the second position in themachine sequence for�ðið�þ1ÞmodrÞ
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or ið�þ1Þmodr is in buffer �ði�Þ for ν=0,...,r−1and at least one operation of Z is on
its machine THEN

10. Swap (C,t,Z);
END

During the updating process one of the following five different types of moves
is performed.

Move out of system (C, t, i)

1. Eliminate i from the machine sequence ��ðiÞ;
2. Mark machine μ(i) as available;
3. C:=C \{i};

Move to machine (C, t, i)

1. Eliminate i from the machine sequence ��ðiÞ ;
2. Mark μ(i) as available;
3. Schedule σ(i) on μ(σ(i)) starting at time t;
4. Mark μ(σ(i)) as nonavailable;
5. t�ðiÞ :¼ t þ p�ðiÞ ;
6. C:=C \{i}∪{σ(i)};

Move in buffer (C, t, i)

1. Move i from machine μ(i) into buffer β(i);
2. Eliminate i from the machine sequence ��ðiÞ;
3. Mark μ(i) as available;
4. IF buffer β(i) is now fully occupied THEN
5. Mark β(i) as nonavailable;

Move out of buffer (C, t, i)

1. Eliminate i from the buffer β(i);
2. Mark buffer β(i) as available;
3. Schedule σ(i) on μ(σ(i)) starting at time t;
4. Mark μ(σ(i)) as nonavailable;
5. t�ðiÞ :¼ t þ p�ðiÞ;
6. C:=C \{i}∪{σ(i)};

Swap (C, t, Z)

1. FOR ν:=0 TO r−1 DO BEGIN
2. IF ið�þ1Þmod r is in buffer �ði�Þ THEN BEGIN
3. Eliminate i� from the machine sequence for �ði�Þ;
4. Move i� into buffer �ði�Þ;

END
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ELSE BEGIN
5. Eliminate i� from the machine sequence for �ði�Þ or from its buffer;
6. Schedule �ði�Þ on �ð�ði�ÞÞ starting at time t;
7. t� i�ð Þ :¼ t þ p� i�ð Þ;
8. C :¼ Cnfi�g [ f�ði�Þg;

END

To show how the Algorithm Output Buffers works, we apply it to the following
example. We consider an instance with three machines and output buffers B1, B2

and B3 of capacities b1=0, b2=1 and b3=0. On the machines, five jobs have to be
processed where jobs 1 and 2 consist of three operations each and jobs 3, 4 and 5
consist of two operations each. In Table 1, for each operationOij its processing time
pij and the machine μij are given.

Figure 8 shows a schedule for the given instance where the jobs on machineM1,
M2 andM3 are sequenced in the order π

1=(1, 2, 4, 5), π2=(2, 3, 1, 2, 5) and π3=(4, 1,
3), respectively.

The Algorithm Output Buffers constructs this schedule as follows: We initialize
at t=0 by adding the first operations of jobs 1, 2 and 4 to C and set t11=3, t12=1 and
t14=5. Since no move is possible at t=0, we increase t to 1. At this time, a move of
job 2 into buffer B2 is performed. Job 2 is eliminated from the first position of π2,
machine M2 is marked available and B2 is marked nonavailable. Next, the first

Table 1 Instance of a job-shop problem with output buffers

pij j
i 1 2 3 4 5

1 3 1 1 5 2
2 2 4 3 1 2
3 1 2 – – –

μij j
i 1 2 3 4 5

1 M1 M2 M2 M3 M1

2 M2 M1 M3 M1 M2

3 M3 M2 – – –

1

2

2

4

3

M 1

M 2

B 2

M 3

2

1

3

4

2

5

5

1 3

0 1 2 3 5 7 8 9 10 11 12

Fig. 8 Schedule for a job-shop problem with output buffers
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operation of job 3 is scheduled on M2. We add O13 to C and set t13=2. Since no
further move is possible at t=1 and no move is possible at t=2, the next relevant
time is t=3. At this time, a simultaneous swap of the jobs 1, 2 and 3 is performed:
Job 1 can be moved from M1 to M2 when job 3 is moved simultaneously from M2

into buffer B2 and job 2 from B2 toM1. Therefore, we eliminate the first operations
O11 and O12 of jobs 1 and 2 from C and add the second operations O21 and O22 of
jobs 1 and 2 to C. The first operation O13 of job 3 is still contained in C since job 3
only changes from machine M2 into the buffer B2. We set t22=7 and t21=5 and
eliminate job 1 from the first position of π1 and job 3 from the first position of π2.
Note, that still M1, M2 and B2 are marked nonavailable. The further steps of
Algorithm Output Buffers are shown in Table 2. In the columnsM1,M2, B2 andM3,
we set the mark “a” if the corresponding machine or buffer is available.

For given sequences π1,...,πm of the jobs on the machines Algorithm Output
Buffers provides an optimal solution since each operation is scheduled as early
as possible. Postponing the start of an operation i on machine Mj is not advan-
tageous when the sequence πj of machine Mj is fixed and i is the operation to be
processed next onMj. Note, that the machine sequences are compatible if and only
if Algorithm Output Buffers schedules all operations.

Furthermore, the schedule constructed by the algorithm also induces buffer
output sequences. In contrast to the previous buffer cases, these buffer output
sequences are dependent on the processing times of the given instance. This means,
for two instances of a job-shop problem with output buffers which only
differentiate in the processing times of the jobs, the optimal assignment of
operations to buffer slots may be different though the given machine sequences are

Table 2 Output of algorithm output buffers

t Action C ti M1 M2 B2 M3

0 ∅ a a a a
Schedule first operations of jobs 1, 2
and 4

O11, O12, O14 t11=3, t12=1,
t14=5

– – – –

1 Move job 2 in B2 – a – –
Schedule first operation of job 3 O11, O12, O13,

O14

t13=2 – – – –

2 No move is possible – – – –
3 Swap of jobs 1, 3 and 2 O21, O22, O13,

O14

t21=5, t22=7 – – – –

5 No move is possible – – – –
7 Swap of jobs 1, 4 and 2 O31, O32, O13,

O24

t31=8, t32=9,
t24=8

– – – –

8 Eliminate last operations of jobs 1 and
4;

O32, O13 a – – a

Schedule first operation of job 5 O32, O13, O15 t15=10 – – – a
Move job 3 out of B2 on M3 O32, O23, O15 t23=11 – – a –

9 Eliminate last operation of job 2 O23, O15 – a a –
10 Move job 5 from M1 to M2 O23, O25 t25=12 a – a –
11 Eliminate last operation of job 3 O25 a – a a
12 Eliminate last operation of job 5 ∅ a a a a

Job-shop scheduling with limited capacity buffers 171



equal. Thus, also the corresponding solution graphs of such instances for given
machine sequences may be different. Consequently, in the output buffer case, the
constructed solution graph is not only dependent on the sequences of the jobs on
the machines as in the preceding types of buffers but it is also based on the
processing times of the given instance.

5.4 Job-shop problem with input buffers

Similar to an output buffer, an input buffer Bk is a buffer which is directly related to
machineMk (k=1,...,m). An input buffer Bk stores all jobs that have already finished
processing on the previous machine but cannot directly be loaded on machine Mk.
In the case of a job-shop problem with input buffers, the output sequence βout

k of
buffer Bk is equal to the sequence πk.

The job-shop problem with input buffers can be seen as a symmetric counter-
part to the problem with output buffers in the following sense: A given instance of a
job-shop problem with input buffers can be reversed to an instance of a job-shop
problem with output buffers by inverting any job chain O1j ! O2j ! ::: ! Onjj

into Onjj ! ::: ! O2j ! O1j and by changing the input buffer Bk related to Mk

into an output buffer (k=1,...,m). Both problems have the same optimal makespan
Cmax. Therefore, we can solve the corresponding ouput buffer problem going from
right to left. The earliest starting time Si of operations i in an optimal solution of the
output buffer problem provide latest finishing times Cmax−Si of operations i in a
makespan minimizing solution of the input buffer problem. Clearly, a schedule
with finishing times Cmax−Si for the input buffer problem is in general not left-
shifted since blocking times and machine waiting times occur before the processing
of an operation instead after its processing.

5.5 Job-shop problem with general buffers

In the previous sections we have shown that for all considered special types of
buffers an efficient calculation of an optimal schedule respecting given sequences
π1,...πm of the jobs on the machines is possible. If we consider general buffers, the
easiest type of buffers, which does not belong to the special types, is that of a single
buffer with capacity one for all jobs. In the following we show that for this case, the
problem of finding an optimal schedule respecting given sequences π1,...πm of the
jobs on the machines is already NP � hard in the strong sense.

Theorem 2 For given sequences π1,...πm of the jobs on the machines in a job-shop
problem with a single buffer of capacity one for all jobs, the problem of finding a
feasible schedule with minimal makespan respecting these sequences is NP �
hard in the strong sense.

Proof We show that the strongly NP-complete problem 3-PARTITION (3-PART)
is polynomially reducible to the decision version of the considered problem.
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3-PART Given 3r positive numbers a1,...,a3r with �3r
k¼1ak ¼ rb and b/4<ak<b/2 for

k=1,...,3r, does there exist a partition I1,...,Ir of I={1,...,3r} such that |Ij|=3 and
�k2Ij ak ¼ b for j ¼ 1; :::; r?

Given an arbitrary instance of 3-PART, we construct the following instance of
the job-shop problem with a single buffer and specify sequences π1,...,πm of the
jobs on the machines:

n ¼ 12r; m ¼ 8r; q ¼ 1; b1 ¼ 1
nj ¼ 1 p1j ¼ aj j ¼ 1; :::; 3r

�1j ¼ j j ¼ 1; :::; 3r
nj ¼ 2 p1j ¼ 1 p2j ¼ 1 j ¼ 3r þ 1; :::; 6r

�1j ¼ j� 3r �2j ¼ j j ¼ 3r þ 1; :::; 6r
nj ¼ 2 p1j ¼ 1 p2j ¼ 1 j ¼ 6r þ 1; :::; 9r

�1j ¼ j� 3r �2j ¼ j� 6r j ¼ 6r þ 1; :::; 9r

nj ¼ 2 p1j ¼ j� 9rð Þ bþ 1ð Þ p2j ¼ 10r � jð Þ bþ 1ð Þ j ¼ 9r þ 1; :::; 10r
�1j ¼ j� 3r �2j ¼ j� 2r j ¼ 9r þ 1; :::; 10r

nj ¼ 2 p1j ¼ j� 10rð Þ bþ 1ð Þ þ 1 p2j ¼ 11r � jð Þ bþ 1ð Þ j ¼ 10r þ 1; :::; 11r
�1j ¼ j� 3r �2j ¼ j� 4r j ¼ 10r þ 1; :::; 11r

nj ¼ 1 p1j ¼ 1 j ¼ 11r þ 1; :::; 12r
�1j ¼ j� 5r j ¼ 11r þ 1; :::; 12r

�i ¼ O1;3rþi;O1;i; O2;6rþið Þ i ¼ 1; :::; 3r
�i ¼ O1;3rþi;O2;ið Þ i ¼ 3r þ 1; :::6r

�6rþi ¼ O1;9rþi; O1;11rþi; O2;10rþið Þ i ¼ 1; :::; r
�7rþi ¼ O1;10rþi; O2;9rþið Þ i ¼ 1; :::r:

(Since only one buffer is available we do not have to specify the b(i, j) values.) The
problem is to find a feasible schedule respecting the sequences π1,...,πm with
makespan Cmax≤y=r(b+1)+1. We show that such a schedule exists if and only if
3-PART has a solution.

First, for a feasible schedule with Cmax≤y, we determine the structure of the
schedule on machines M6r+1,...,M8r and the resulting consequences for the buffer.

Since the sum of the processing times of the operations to be processed on
machine M6r+k for k=1,...,2r is equal to y, machine M6r+k contains no idle time in

Buffer

M

y=r(b+1)+1

M9r+k 11r+k

 9r+k

k(b+1)    k(b+1)+1

7r+k

6r+k

10r+k  9r+k

10r+k

Fig. 9 Schedule on machines M6r+k and M7r+k
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each schedule with Cmax≤y The corresponding schedules on machines M6r+k and
M7r+k are shown in Fig. 9.

Thus, job 11r+k has to be processed during time interval [k(b+1), k(b+1)+1]
and during this time period job 9r + k has to wait in the buffer. Consequently, in
each feasible schedule with Cmax≤y, the jobs 9r+1,...,10r occupy the buffer as
indicated in Fig. 10 by the hatched intervals. Furthermore, since all processing
times of the operations are at least 1, the buffer is not occupied in time interval
[0, 1] which is marked by the filled area in Fig. 10. Summarizing, in each
feasible schedule with Cmax≤y the buffer has exactly r separated intervals of
length b left for the jobs 1,...,9r.

Next, we consider the machines M1,...,M6r. Job k for k=1,...,3r, has to be
processed on machine Mk for p1k time units between the processing of the first
operation of job 3r+k and the processing of the second operation of job 6r+k.

Before the processing of job k on Mk can start, job 3r+k has to leave machine
Mk. It either has to be inserted in the buffer or it has to move on machine M3r+k. In
the first case, job 3r+k may leave the buffer at the time job 6r+k moves from
machine M3r+k to machine Mk. In this case job 3r+k occupies the buffer for at least
p1k=ak time units (see Fig. 11). In the second case, job 6r+kmust have left machine
M3r+k before job 3r+k can move on this machine. Since on machineMk job k has to
be processed, job 6r+k has to be inserted into the buffer and it has to stay in the
buffer until job k leaves machine Mk; i.e. in this case job 6r+k occupies the buffer
for at least p1k=ak time units (see Fig. 12). Summarizing, one of the two jobs 3r+k
or 6r+k has to be inserted into the buffer for at least p1k time units in each feasible
schedule.

Now, let us assume that 3-PART has a solution I1,...,Ir. We get a corresponding
feasible schedule with Cmax=y by scheduling

– all first operations of jobs 3r+1,...,9r within time interval [0, 1],
– the jobs corresponding to the elements in Ij without overlap within time
interval [(j−1)b+j, j(b+1)],

– all second operations of the jobs 3r+k and 6r+k, k=1,...,3r directly after the
completion of job k (see Fig. 11),

– the jobs 9r+1,...,12r in the above sketched only possible way within a
schedule with Cmax≤y.

During the time a job k corresponding to an element in Ij is scheduled, the job
3r+k enters the buffer (see Fig. 11). Since

P
k2Ij ak ¼ b , these jobs exactly fit in the

corresponding free interval of the buffer. Thus, the resulting schedule is feasible
and has Cmax=y.

On the other hand, lets assume that a schedule with Cmax≤y exists. As we have
argued above, in each schedule with Cmax≤y the length of all time intervals, where
the buffer is not occupied by jobs 9r+1,...,12r, is equal to rb and the minimal time

.........

b+1

b+2

2b+2 3b+3 4b+4 (r-1)(b+1)

2b+3 3b+4 4b+5 (r-1)b+r r(b+1)+1

r(b+1)

Fig. 10 Partial schedule of the buffer
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jobs from 3r+1,...,9r have to be in the buffer is at least
P3r

k¼1 p1k ¼
P3r

k¼1 ak ¼ rb.
Thus, within [1, y] the buffer has to be occupied all the time and from each
pair of jobs {3r+k, 6r+k} one job has to be inserted into the buffer for exactly
p1k time units. Now consider the jobs which are inserted within the time
interval [( j−1)b+j, j(b+1)] in the buffer. If we choose Ij as the set of elements
corresponding to the jobs which force the insertion of these jobs into the buffer, we
have:

P
k2Ij ak ¼ jðbþ1Þ � j�1ð ÞbþjÞ ¼ bð . Thus, we get a solution of 3-PART.

Clearly, as a consequence of Theorem 2, the search space in the case of a job-
shop problem with a single buffer has to consist of information for the buffer
besides the sequences of the jobs on the machines. In Section 4, we showed that an
input and an output sequence for the buffer can be used as additional information to
fully represent such a solution.

6 Concluding remarks

We have presented a compact representation of solutions for the job-shop problem
with buffers. Existing graph models have been adapted and extended in order to
compute a corresponding schedule. For special buffer congurations, such as pair-
wise buffers, job-dependent buffers, output buffers and input buffers, we have
shown that it is sufficient to represent solutions only by the sequences of the jobs
on the machines. This is the case since corresponding optimal buffer assignments
can be calculated efficiently. In Brucker et al. (2003) and Nieberg (2002), local
search methods based on these representations for the flow-shop problem with
intermediate buffers and the job-shop problem with pairwise buffers, respectively,
have been developed. These approaches can be adapted in order to develop fast
heuristics for the case of job-dependent and output buffers. In the general case, we
have shown that machine sequences are not sufficient to represent solutions. Thus,
the solution representation has to be enlarged by, e.g., an input and an output
sequence for each buffer.
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 1 t
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3r+k
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Fig. 11 Job 3r+k occupies the buffer
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Fig. 12 Job 6r+k occupies the buffer
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The presented solution representation may form the base for local search
methods as well as branch and bound approaches for the general and specic buffer
congurations. Important next steps would be to develop and test local search
heuristics for the job-shop problem with blocking operations and for the job-shop
problem with output (or input) buffers.
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