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Abstract. In this paper we study multi-server tandem queues with finite buffers
and blocking after service. The service times are generally distributed. We develop
an efficient approximation method to determine performance characteristics such as
the throughput and mean sojourn times. The method is based on decomposition into
two-station subsystems, the parameters of which are determined by iteration. For the
analysis of the subsystems we developed a spectral expansion method. Comparison
with simulation shows that the approximation method produces accurate results.
So it is useful for the design and analysis of production lines.
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1 Introduction

Queueing networks with finite buffers have been studied extensively in the litera-
ture; see, e.g., Dallery and Gershwin [6], Perros [17,18], and Perros and Altiok [19],
and the references therein. Most studies, however, consider single-server models.
The few references dealing with multi-server models typically assume exponential
service times. In this paper we focus on multi-server tandem queues with general
service times, finite buffers and Blocking After Service (BAS).

Models with finite buffers and phase-type service times can be represented by
finite state Markov chains. Hence, in theory, they can be analyzed exactly. However,
the number of states of the Markov chain can be very large, which makes numerical
solutions intractable. In practice, only small systems with one or two queues can
be solved exactly; for exact methods we refer to Perros [18].

We develop an efficient method to approximate performance characteristics
such as the throughput and the mean sojourn time. The method only needs the
first two moments of the service time and it decomposes the tandem queue into
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subsystems with one buffer. fitted on Each multi-server subsystem is approximated
by a single (super) server system with state dependent arrival and departure rates,
the queue length distribution of which can be efficiently computed by a spectral
expansion method. The parameters of the inter-arrival and service times of each
subsystem are determined by an iterative algorithm. Numerical results show that
this method produces accurate estimates for important performance characteristics
as the throughput and the mean sojourn time.

Decomposition techniques have also been used by, e.g., Buzacott [2], Dallery
et al. [5], Perros [18], and Kerbache and MacGregor Smith [11]. These papers deal
with single-server queueing networks. Methods for multi-server queueing networks
with finite buffers are presented by Tahilramani et al. [21], Jain and MacGregor
Smith [9], and Cruz et al. [3,4]. These methods, however, do not assume general
service times. An excellent survey on the analysis of manufacturing flow lines with
finite buffers is presented by Dallery and Gershwin [6].

In the analysis of queueing networks with blocking three basic approaches
can be distinguished. The first approach decomposes the network into subsystems
and the parameters of the inter-arrival and service times of the subsystems are
determined iteratively. This is the most common approach. It involves three steps:

1. Characterize the subsystems;
2. Derive a set of equations that determine the unknown parameters of each sub-

system;
3. Develop an iterative algorithm to solve these equations.

This approach is treated in Perros’ book [18] and in the survey of Dallery
and Gershwin [6]. The approach in this paper also involves the three steps men-
tioned above, as we will explain in Section 5. There are also decomposition meth-
ods available for finite buffer models with some special features, such as assem-
bly/disassembly systems (see Gershin and Burman [7]) and systems with multiple
failure modes (see Tolio et al. [23]).

The second approach is also based on decomposition of the network, but instead
of iteratively determining the parameters of the inter-arrival and service times of
the subsystems, holding nodes are added to represent blocking. This so-called
expansion method has been introduced by Kerbache and Smith [11]. The expansion
method has been successfully used to model tandem queues with the following kinds
of nodes: M/G/1/K [20], M/M/C/K [9] and M/G/C/C [3,4].

The expansion method consist of the following three stages:

1. Network reconfiguration;
2. Parameter estimation;
3. Feedback elimination.

This method is very efficient; it produces accurate results when the buffers are large.
The third approach has been introduced by Kouvatsos and Xenios [12]. They

developed a method based on the maximum entropy method (MEM) to analyze
single-server networks. Here, holding nodes are also used and the characteristics
of the queues are determined iteratively. For each subsystem in the network the
queue-length distribution is determined by using a maximum entropy method. This
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algorithm is a linear program where the entropy of the queue-length distribution is
maximized subject to a number of constraints. For more information we refer the
reader to [12]. This method has been implemented in QNAT by Tahilramani et al.
[21]; they also extended the method to multi-server networks. This method works
well; the average error in the throughput is typically around 5%.

There are also several methods available for optimizing tandem queues with
finite buffers. For example, Hillier and So [8] give some insight into the general
form of the optimal design of tandem queues with the expected service times, the
queue capacities and the number of servers at each station as the decision variables.
Li et al. [13] have developed a method for optimization of tandem queues using
techniques and concepts like simulation, critical path and perturbation analysis.

The paper is organized as follows. In Section 2 we introduce the tandem queue
and its decomposition. In the section thereafter we elaborate on the arrivals at and
departures from the subsystems. The spectral expansion method for analyzing the
subsystems is discussed in Section 4. Section 5 describes the iterative algorithm.
Numerical results are presented in Section 6. The results of the approximation
method are compared with simulation and with QNAT. Finally, Section 7 contains
some concluding remarks.

2 Model and decomposition

We consider a tandem queue (L) with M server-groups and M − 1 buffers Bi,
i = 1, . . . , M − 1, of size bi in between. The server-groups are labelled Mi,
i = 0, . . . , M − 1; server-group Mi has mi parallel identical servers. The random
variable Si denotes the service time of a server in group Mi; Si is generally dis-
tributed with rate µp,i (and thus with mean 1/µp,i) and coefficient of variation cp,i.
Each server can serve one customer at a time and the customers are served in order
of arrival. The servers of M0 are never starved and we consider the BAS blocking
protocol. Figure 1 shows a tandem queue with four server groups.

The tandem queue L is decomposed into M −1 subsystems L1, L2, . . . , LM−1.
Subsystem Li consists of a finite buffer of size bi, mi−1 so-called arrival servers in
front of the buffer, and mi so-called departure servers after the buffer. The arrival
and departure servers are virtual servers who describe the arrivals to a buffer and
the departures from a buffer. The decomposition of L is shown in Figure 1.

The random variable Ai denotes the service time of an arrival-server in sub-
system Li, i = 1, . . . , M − 1. This random variable represents the service time
of a server in server-group Mi−1 including possible starvation of this server. The
random variable Di denotes the service time of a departure-server in subsystem
Li; it represents the service time of a server in server-group Mi including possible
blocking of this server. Let us indicate the rates of Ai and Di by µa,i and µd,i

and their coefficients of variation by ca,i and cd,i, respectively. If these character-
istics are known, we are able to approximate the queue-length distribution of each
subsystem. Then, by using the queue-length distribution we can also approximate
characteristics of the complete tandem queue, such as the throughput and mean
sojourn time.
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Fig. 1. The tandem queue L and its decomposition into three subsystems L1, L2 and L3

3 Service times of arrival and departure servers

In this section we describe how the service times of the arrival and departure servers
in subsystem Li are modelled.

The service-time Di of a departure-server in subsystem Li is approximated as
follows. We define bi,j as the probability that just after service completion of a server
in server-group Mi, exactly j servers of server-group Mi are blocked. This means
that, with probability bi,j , a server in server-group Mi has to wait for one residual
inter-departure time and j − 1 full inter-departure times of the next server-group
Mi+1 before the customer can leave the server. The inter-departure times of server-
group Mi+1 are assumed to be independent and distributed as the inter-departure
times of the superposition of mi+1 independent service processes, each with service
times Di+1; the residual inter-departure time is approximated by the equilibrium
residual inter-departure time of the superposition of these service processes. Let
the random variable SDi+1 denote the inter-departure time of server-group Mi+1
and RSDi+1 the residual inter-departure time. Figure 2 displays a representation
of the service time of a departure-server of subsystem Li.

In the appendix it is explained how the rates and coefficients of variation of
SDi+1 and RSDi+1 can be determined. If also the blocking probabilities bi,j
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Fig. 2. Representation of the service time Di of a departure-server of subsystem Li

are known, then we can determine the rate µd,i and coefficient of variation cd,i

of the service time Di of a departure-server of subsystem Li. The distribution of
Di is approximated by fitting an Erlangk−1,k or Coxian2 distribution on µd,i and
cd,i, depending on whether c2

d,i is less or greater than 1/2. More specifically, if
c2
d,i > 1/2, then the rate and coefficient of variation of the Coxian2 distribution

with density

f(t) = (1 − q)µ1e
−µ1t + q

µ1µ2

µ1 − µ2

(
e−µ2t − e−µ1t

)
, t ≥ 0,

matches with µd,i and cd,i, provided the parameters µ1, µ2 and q are chosen as (cf.
Marie [14]):

µ1 = 2µd,i, q =
1

2c2
d,i

, µ2 = µ1q. (1)

If 1/k ≤ c2
d,i ≤ 1/(k−1) for some k > 2, then the rate and coefficient of variation

of the Erlangk−1,k with density

f(t) = pµk−1 tk−2

(k − 2)!
e−µt + (1 − p)µk tk−1

(k − 1)!
e−µt, t ≥ 0,

matches with µd,i and cd,i if the parameters µ and p are chosen as (cf. Tijms [22]):

p =
kc2

d,i −
√

k(1 + c2
d,i) − k2c2

d,i

1 + c2
d,i

, µ = (k − p)µd,i. (2)

Of course, also other phase-type distributions may be fitted on the rate and coef-
ficient of variation of Di, but numerical experiments suggest that other distributions
only have a minor effect on the results, as shown in [10].

The service times Ai of the arrival-servers in subsystem Li are modelled simi-
larly. Instead of bi,j we now use si,j defined as the probability that just after service
completion of a server in server-group Mi, exactly j servers of Mi are starved.
This means that, with probability si,j , a server in server-group Mi has to wait one
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Fig. 3. Representation of the service time Ai of an arrival-server of subsystem Li

residual inter-departure time and j − 1 full inter-departure times from the preced-
ing server-group Mi−1. Figure 3 displays a representation of the service time of an
arrival-server of subsystem Li.

4 Spectral analysis of a subsystem

By fitting Coxian or Erlang distributions on the service times Ai and Di, subsystem
Li can be modelled as a finite state Markov process; below we describe this Markov
process in more detail for a subsystem with ma arrival servers, md departure servers
and a buffer of size b.

To reduce the state space we replace the arrival and departure servers by super
servers with state-dependent service times. The service time of the super arrival
server is the inter-departure time of the service processes of the non-blocked arrival
servers. If the buffer is not full, all arrival servers are working. In this case, the
inter-departure time (or super service time) is assumed to be Coxianl distributed,
where phase j (j = 1, . . . , l) has parameter λj and pj is the probability to proceed
to the next phase (note that Erlang distributions are a special case of Coxian dis-
tributions). If the buffer is full, one or more arrival servers may be blocked. Then
the super service time is Coxian distributed, the parameters of which depend on
the number of active servers (and follow from the inter-departure time distribution
of the active service processes). The service time of the super departure server is
defined similarly. In particular, if none of the departure servers is starved, the super
service time is the inter-departure time of the service processes of all md departure
servers. This inter-departure time is assumed to be Coxiann distributed with pa-
rameters µj and qj (j = 1, . . . , n). So, the time spend in phase j is exponentially
distributed with parameter µj and the probability to proceed to the next phase is qj .

Now the subsystem can be described by a Markov process with states (i, j, k).
The state variable i denotes the total number of customers in the subsystem. Clearly,
i is at most equal to md +b+ma. Note that, if i > md +b, then i−md −b actually
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indicates the number of blocked arrival servers. The state variable j (k) indicates
the phase of the service time of the super arrival (departure) server. If i ≤ md + b,
then the service time of the super arrival server consists of l phases; the number of
phases depends on i for i > md + b. Similarly, the number of phases of the service
time of the super departure server is n for i ≥ md, and it depends on i for i < md.

The steady-state distribution of this Markov process can be determined effi-
ciently by using the spectral expansion method, see e.g. Mitrani [16]. Using the
spectral expansion method, Bertsimas [1] analysed a multi-server system with an
infinite buffer; we will adapt this method for finite buffer systems. The advantage of
the spectral expansion method is that the time to solve a subsystem is independent
of the size of the buffer.

Below we formulate the equilibrium equations for the equilibrium probabilities
P (i, j, k). Only the equations in the states (i, j, k) with md < i < md + b are
presented; the form of the equations in the other states appears to be of minor
importance to the analysis.

So, for md < i < md + b we have:

P (i, 1, 1)(λ1+µ1) =
l∑

j=1

(1 − pj)λjP (i−1, j, 1)+
n∑

k=1

(1−qk)µkP (i+1, 1, k)(3)

P (i, j, 1)(λj + µ1) = pj−1λj−1P (i, j − 1, 1) +
n∑

k=1

(1 − qk)µkP (i + 1, j, k),

j = 2, . . . , l (4)

P (i, 1, k)(λ1 + µk) = qk−1µk−1P (i, 1, k − 1) +
l∑

j=1

(1 − pj)λjP (i − 1, j, k),

k = 2, . . . , n (5)

P (i, j, k)(λj + µk) = pj−1λj−1P (i, j − 1, k) + qk−1µk−1P (i, j, k − 1),
j = 2, . . . , l, k = 2, . . . , n. (6)

We are going to use the separation of variables technique presented in Mickens
[15], by assuming that the equilibrium probabilities P (i, j, k) are of the form

P (i, j, k) = DjRkwi, md ≤ i ≤ md + b, 2 ≤ j ≤ l, 2 ≤ k ≤ n. (7)

Substituting (7) in the equilibrium equations (3)–(6) and dividing by common pow-
ers of w yields:

D1R1(λ1+µ1) =
1
w

l∑
j=1

(1 − pj)λjDjR1 + w

n∑
k=1

(1 − qk)µkD1Rk (8)

DjR1(λj+µ1) = pj−1λj−1Dj−1R1+w

n∑
k=1

(1−qk)µkDjRk, 2≤j≤l (9)

D1Rk(λ1+µk) =
1
w

l∑
j=1

(1−pj)λjDjRk+qk−1µk−1D1Rk−1, 2≤k≤n (10)

DjRk(λj+µk) = pj−1λj−1Dj−1Rk + qk−1µk−1DjRk−1

2 ≤ j ≤ l, 2 ≤ k ≤ n (11)
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We can rewrite (11) as:
λjDj−pj−1λj−1Dj−1

Dj
=

−µkRk+qk−1µk−1Rk−1

Rk
, 2≤j≤l, 2≤k≤n. (12)

Since (12) holds for each combination of j and k, the left-hand side of (12) is
independent of k and the right-hand side of (12) is independent of j. Hence, there
exists a constant x, depending on w, such that

−xDj = λjDj − pj−1λj−1Dj−1, 2 ≤ j ≤ l, (13)

−xRk = −µkRk + qk−1µk−1Rk−1, 2 ≤ k ≤ n. (14)

Solving equation (13) gives

Dj = D1

l−1∏
r=1

prλr

x + λr+1
(15)

Substituting (15) in (10) and using equation (14) we find the following relationship
between x and w,

w =
l∑

j=1

(1 − pj)λj

x + λj

j−1∏
r=1

prλr

x + λr
. (16)

Note that w is equal to the Laplace Stieltjes transform fA(s) of the service time of
the super arrival server, evaluated at s = x. Now we do the same for (9) yielding
another relationship between x and w,

1
w

=
n∑

k=1

(1 − qk)µk

−x + µk

k−1∏
r=1

qrµr

−x + µr
. (17)

Clearly, 1/w is equal to the Laplace Stieltjes transform fD(s) of the service time
of the super departure server, evaluated at s = −x. Substituting (16) and (17) in
(8) and using (13) and (14) we find that

1 = fA(x)fD(−x).

This is a polynomial equation of degree l+n; the roots are labeled xt, t = 1, . . . , l+
n, and they are assumed to be distinct. Note that these roots may be complex-
valued. Using equation (17) we can find the corresponding l + n values for wt for
t = 1, . . . , l + n. Summarizing, for each t, we obtain the following solution of
(3)–(6),

P (i, j, k) = Bt

(
j−1∏
r=1

prλr

xt + λr+1

)(
k−1∏
r=1

qrµr

−xt + µr+1

)
wi

t,

mb ≤ i ≤ md + b, 1 ≤ j ≤ l, 1 ≤ k ≤ n,

where Bt = D1,tR1,t is some constant. Since the equilibrium equations are linear,
any linear combination of the above solutions satisfies (3)–(6). Hence, the general
solution of (3)–(6) is given by

P (i, j, k) =
l+n∑
t=1

Bt

(
j−1∏
r=1

prλr

x(wt) + λr+1

)(
k−1∏
r=1

qrµr

−x(wt) + µr+1

)
wi

t,

mb ≤ i ≤ md + b, 1 ≤ j ≤ l, 1 ≤ k ≤ n.
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Finally, the unknown coefficients Bt and the unknown equilibrium probabilities
P (i, j, k) for i < md and i > md + b can be determined from the equilibrium
equations for i ≤ md and i ≥ md + b and the normalization equation.

5 Iterative algorithm

We now describe the iterative algorithm for approximating the performance char-
acteristics of tandem queue L. The algorithm is based on the decomposition of L
in M − 1 subsystems L1, L2, . . . , LM−1. Before going into detail in Section 5.2,
we present the outline of the algorithm in Section 5.1.

5.1 Outline of the algorithm

• Step 0: Determine initial characteristics of the service times Di of the departure
servers of subsystem Li, i = M − 1, . . . , 1.

• Step 1: For subsystem Li, i = 1, . . . , M − 1:
1. Determine the first two moments of the service time Ai of the arrival servers,

given the queue-length distribution and throughput of subsystem Li−1.
2. Determine the queue-length distribution of subsystem Li.
3. Determine the throughput Ti of subsystem Li.

• Step 2: Determine the new characteristics of the service times Di of the departure
servers of subsystem Li, i = M − 1, . . . , 1.

• Repeat Step 1 and 2 until the service time characteristics of the departure servers
have converged.

5.2 Details of the algorithm

Step 0: Initialization: The first step of the algorithm is to set bi,j = 0 for all i and
j. This means that we initially assume that there is no blocking. This also means
that the random variables Di are initially the same as the service times Si.

Step 1: Evaluation of subsystems: We now know the service time characteristics
of the departure servers of Li, but we also need to know the characteristics of the
service times of its arrival servers, before we are able to determine the queue-length
distribution of Li.

(a) Service times of arrival servers

For the first subsystem L1, the characteristics of A1 are the same as those of S0,
because the servers of M0 cannot be starved.

For the other subsystems we proceed as follows. By application of Little’s law
to the arrival servers, it follows that the throughput of the arrival servers multiplied
with the service time of an arrival server is equal to mean number of active (i.e.
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non-blocked) arrival servers. The service time of an arrival server of subsystem i
is equal to 1/µa,i and the mean number of active servers is equal to
1 −

mi−1∑
j=1

pi,mi+bi+j


mi−1 +

mi−1∑
j=1

pi,mi+bi+j(mi−1 − j).

So, we have for the throughput Ti of subsystem Li,

Ti =


1 −

mi−1∑
j=1

pi,mi+bi+j


mi−1µa,i +

mi−1∑
j=1

pi,mi+bi+j(mi−1 − j)µa,i, (18)

where pi,j denotes the probability of j customers in subsystem Li. By substituting

the estimate T
(n)
i−1 for Ti and p

(n−1)
i,ni+j for pi,ni+j we get as new estimate for the

service rate µa,i,

µ
(n)
a,i =

T
(n)
i−1

(1 −∑mi−1
j=1 p

(n−1)
i,mi+bi+j)mi−1 +

∑mi−1
j=1 p

(n−1)
i,mi+bi+j(mi−1 − j)

,

where the super scripts indicate in which iteration the quantities have been calcu-
lated.

To approximate the coefficient of variation ca,i of Ai we use the representation
for Ai as described in Section 3 (which is based on si−1,j , Si−1, RSAi−1 and
SAi−1).

(b) Analysis of subsystem Li

Based on the (new) characteristics of the service times of both arrival and departure
servers we can determine the steady-state queue-length distribution of subsystem
Li. To do so we first fit Coxian2 or Erlangk−1,k distributions on the first two mo-
ments of the service times of the arrival-servers and departure-servers as described
in Section 3. Then we calculate the equilibrium probabilities pi,j by using the
spectral expansion method as described in Section 4.

(c) Throughput of subsystem Li

Once the steady-state queue length distribution is known, we can determine the
new throughput T

(n)
i according to (cf. (18))

T
(n)
i =


1 −

mi−1∑
j=0

p
(n)
i,j


miµ

(n−1)
d,i +

mi−1∑
j=1

p
(n)
i,j jµ

(n−1)
d,i . (19)

We also determine new estimates for the probabilities bi−1,j that j servers of
server-group Mi−1 are blocked after service completion of a server in server-group
Mi−1 and the probabilities si,j that j servers of server-group Mi are starved after
service completion of a server in server-group Mi.

We perform Step 1 for every subsystem from L1 up to LM−1.



Performance analysis of multi-server tandem queues 325

Step 2: Service times of departure servers: Now we have new information about
the departure processes of the subsystems. So we can again calculate the first two
moments of the service times of the departure-servers, starting from DM−2 down
to D1. Note that DM−1 is always the same as SM−1, because the servers in server-
group MM−1 can never be blocked.

A new estimate for the rate µd,i of Di is determined from (cf. (18))

µ
(n)
d,i =

T
(n)
i+1

(1 −∑mi−1
j=0 p

(n)
i,j )mi +

∑mi−1
j=1 p

(n)
i,j j

(20)

The calculation of a new estimate for the coefficient of variation cd,i of Di is similar
to the one of Ai.

Convergence criterion: After Step 1 and 2 we check whether the iterative algo-
rithm has converged by comparing the departure rates in the (n − 1)-th and k-th
iteration. We decide to stop when the sum of the absolute values of the differ-
ences between these rates is less than ε; otherwise we repeat Step 1 and 2. So the
convergence criterion is
M−1∑
i=1

∣∣∣µ(n)
d,i − µ

(n−1)
d,i

∣∣∣ < ε.

Of course, we may use other stop-criteria as well; for example, we may consider
the throughput instead of the departure rates. The bottom line is that we go on until
all parameters do not change anymore.

Remark. Equality of throughputs.

It is easily seen that, after convergence, the throughputs in all subsystems are
equal. Let us assume that the iterative algorithm has converged, so µ

(n)
d,i = µ

(n−1)
d,i

for all i = 1, . . . , M − 1. From equations (19) and (20) we find the following:

T
(n)
i =


1 −

mi−1∑
j=0

p
(n)
i,j


miµ

(n−1)
d,i +

mi−1∑
j=1

p
(n)
i,j jµ

(n−1)
d,i

=


1 −

mi−1∑
j=0

p
(n)
i,j


miµ

(n)
d,i +

mi−1∑
j=1

p
(n)
i,j jµ

(n)
d,i

= T
(n)
i+1.

Hence we can conclude that the throughputs in all subsystems are the same after
convergence.

Complexity analysis: The complexity of this method is as follows. Within the
iterative algorithm, solving a subsystem consumes most of the time. In one iteration
a subsystem is solved M times. The number of iterations needed is difficult to
predict, but in practice this number is about three to seven iterations.

The time consuming part of solving a subsystem is solving the boundary equa-
tions. This can be done in O((ma + md)(kakd)3) time, where ka is the number
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of phases of the distribution of one arrival process and kd is the number of phases
of the distribution of one departure process. Then, the time complexity of one it-
eration becomes O(M maxi((mi + mi−1)(kiki−1)3)). This means that the time
complexity is polynomial and it doesn’t depend on the sizes of the buffers.

6 Numerical results

In this section we present some numerical results. To investigate the quality of our
method we compare it with discrete event simulation. After that, we compare our
method with the method developed by Tahilramani et al. [21], which is implemented
in QNAT [25].

6.1 Comparison with simulation

In order to investigate the quality of our method we compare the throughput and
the mean sojourn time with the ones produced by discrete event simulation. We are
especially interested in investigating for which set of input-parameters our method
gives satisfying results. Each simulation run is sufficiently long such that the widths
of the 95% confidence intervals of the throughput and the mean sojourn time are
smaller than 1%.

In order to test the quality of the method we use a broad set of parameters. We
test two different lengths M of tandem queues, namely with 4 and 8 server-groups.
For each tandem queue we vary the number of servers mi in the server-groups; we
use tandems with 1 server per server-group, 5 servers per server-group and with the
sequence (4, 1, 2, 8). We also vary the level of balance in the tandem queue; every
server-group has a maximum total rate of 1 and the group right after the middle
can have a total rate of 1, 1.1, 1.2, 1.5 and 2. The coefficient of variation of the
service times varies between 0.1, 0.2, 0.5, 1, 1.5 and 2. Finally we vary the buffer
sizes between 0, 2, 5 and 10. This leads to a total of 720 test-cases. The results for
each category are summarized in Table 1 up to 5. Each table lists the average error
in the throughput and the mean sojourn time compared with the simulation results.
Each table also gives for 4 error-ranges the percentage of the cases which fall in
that range. The results for a selection of 54 cases can be found in Tables 6 and 7.

Table 1. Overall results for tandem queues with different buffer sizes

Buffer Error in throughput Error in mean sojourn time
sizes (bi) Avg. 0–5% 5–10% 10–15% >15% Avg. 0–5% 5–10% 10–15% >15%

0 5.7% 55.0% 35.0% 4.4% 5.6% 6.8% 42.8% 35.0% 14.4% 7.8%
2 3.2% 76.1% 22.8% 1.1% 0.0% 4.7% 57.2% 35.0% 7.2% 0.6%
5 2.1% 90.6% 9.4% 0.0% 0.0% 4.5% 60.6% 32.2% 7.2% 0.0%

10 1.4% 95.6% 4.4% 0.0% 0.0% 5.1% 53.3% 34.4% 12.2% 0.0%
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Table 2. Overall results for tandem queues with different balancing rates

Rates Error in throughput Error in mean sojourn time
unbalanced Avg. 0–5% 5–10% 10–15% >15% Avg. 0–5% 5–10% 10–15% >15%
server-group
(miµp,i)

1.0 3.3% 76.4% 20.8% 1.4% 1.4% 3.4% 74.3% 22.2% 2.1% 1.4%
1.1 3.1% 78.5% 18.1% 2.1% 1.4% 4.0% 68.1% 27.1% 3.5% 1.4%
1.2 3.0% 79.2% 18.8% 0.7% 1.4% 4.6% 59.7% 34.7% 4.2% 1.4%
1.5 3.0% 81.3% 16.0% 1.4% 1.4% 6.5% 38.2% 43.1% 16.7% 2.1%
2.0 3.1% 81.3% 16.0% 1.4% 1.4% 7.9% 27.1% 43.8% 25.0% 4.2%

Table 3. Overall results for tandem queues with different coefficients of variation of the
service times

Coefficients Error in throughput Error in mean sojourn time
of variation Avg. 0–5% 5–10% 10–15% >15% Avg. 0–5% 5–10% 10–15% >15%
(c2

p,i)

0.1 4.4% 54.2% 44.2% 1.7% 0.0% 3.1% 77.5% 21.7% 0.8% 0.0%
0.2 2.6% 88.3% 11.7% 0.0% 0.0% 3.4% 75.8% 22.5% 1.7% 0.0%
0.5 2.2% 90.8% 9.2% 0.0% 0.0% 4.5% 60.8% 32.5% 6.7% 0.0%
1.0 1.5% 93.3% 2.5% 4.2% 0.0% 4.1% 64.2% 30.0% 5.0% 0.8%
1.5 3.0% 82.5% 13.3% 0.0% 4.2% 7.5% 25.8% 54.2% 15.0% 5.0%
2.0 4.8% 66.7% 26.7% 2.5% 4.2% 9.1% 16.7% 44.2% 32.5% 6.7%

Table 4. Overall results for tandem queues with a different number of servers per server-
group

Number of Error in throughput Error in mean sojourn time
servers (mi) Avg. 0-5% 5–10% 10–15% >15% Avg. 0–5% 5–10% 10–15% >15%

All 1 2.9% 83.8% 9.2% 2.9% 4.2% 5.9% 46.3% 39.2% 10.0% 4.6%
All 5 3.8% 68.3% 30.8% 0.8% 0.0% 4.6% 60.0% 29.2% 10.8% 0.0%
Mixed 2.6% 85.8% 13.8% 0.4% 0.0% 5.3% 54.2% 34.2% 10.0% 1.7%

We may conclude the following from the above results. First, we see in Table 1
that the performance of the approximation becomes better when the buffer sizes
increase. This may be due to less dependencies between the servers-groups when
the buffers are large.

We also notice that the performance is better for balanced lines (Table 2); for
unbalanced lines, especially the estimate for the mean sojourn time is not as good
as for balanced lines. If we look at the coefficients of variation of the service times
(Table 3), we get the best approximations for the throughput when the coefficients
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Table 5. Overall results for tandem queues with 4 and 8 server-groups

Number of Error in throughput Error in mean sojourn time
server- Avg. 0–5% 5–10% 10–15% >15% Avg. 0–5% 5–10% 10–15% >15%
groups (M )

4 2.3% 87.2% 12.2% 0.6% 0.0% 4.7% 57.5% 32.8% 9.7% 0.0%
8 3.9% 71.4% 23.6% 2.2% 2.8% 5.8% 49.4% 35.6% 10.8% 4.2%

Table 6. Detailed results for balanced tandem queues

mi M c2
p,i Buffers T App. T Sim. Diff. S App. S Sim. Diff.

1 4 0.1 0 0.735 0.771 −4.7% 4.70 4.63 1.5%
8 2 0.906 0.926 −2.2% 16.14 15.99 0.9%
4 10 0.981 0.985 −0.4% 19.22 19.03 1.0%
8 1.0 0 0.488 0.443 10.2% 11.73 13.43 −12.7%
4 2 0.703 0.700 0.4% 9.09 9.25 −1.7%
8 10 0.855 0.855 0.0% 49.52 49.81 −0.6%
4 1.5 0 0.504 0.473 6.6% 5.82 6.27 −7.2%
8 2 0.607 0.581 4.5% 21.94 23.52 −6.7%
4 10 0.834 0.835 −0.1% 22.38 22.31 0.3%

5 4 0.1 0 0.789 0.856 −7.8% 22.48 21.78 3.2%
8 2 0.827 0.926 −10.7% 52.35 49.71 5.3%
4 10 0.927 0.983 −5.7% 36.88 35.24 4.7%
8 1.0 0 0.693 0.697 −0.6% 49.20 49.14 0.1%
4 2 0.797 0.808 −1.4% 26.37 26.17 0.8%
8 10 0.867 0.882 −1.7% 83.09 83.96 −1.0%
4 1.5 0 0.742 0.724 2.5% 22.99 23.90 −3.8%
8 2 0.759 0.737 3.0% 54.63 57.27 −4.6%
4 10 0.867 0.874 −0.8% 37.97 38.86 −2.3%

Mixed 4 0.1 0 0.746 0.793 −5.9% 16.19 16.28 −0.6%
8 2 0.845 0.921 −8.3% 39.90 38.96 2.4%
4 10 0.956 0.984 −2.8% 31.61 30.05 5.2%
8 1.0 0 0.619 0.604 2.5% 37.90 38.55 −1.7%
4 2 0.756 0.757 −0.1% 20.15 20.14 0.0%
8 10 0.863 0.871 −0.9% 71.67 71.74 −0.1%
4 1.5 0 0.633 0.619 2.3% 16.78 18.01 −6.8%
8 2 0.705 0.678 4.0% 43.38 46.32 −6.3%
4 10 0.850 0.856 −0.7% 31.43 32.37 −2.9%



Performance analysis of multi-server tandem queues 329

Table 7. Detailed results for unbalanced tandem queues

mi M c2
p,i Buffers T App. T Sim. Diff. S App. S Sim. Diff.

1 8 0.1 0 0.718 0.751 −4.4% 8.90 9.27 −4.0%
4 2 0.960 0.958 0.2% 6.18 6.41 −3.6%
8 10 0.980 0.983 −0.3% 38.45 43.22 −11.0%
4 1.0 0 0.594 0.561 5.9% 4.84 5.28 −8.3%
8 2 0.690 0.670 3.0% 18.81 20.31 −7.4%
4 10 0.918 0.912 0.7% 16.20 17.41 −7.0%
8 1.5 0 0.482 0.409 17.8% 11.26 13.79 −18.3%
4 2 0.714 0.691 3.3% 8.03 8.60 −6.6%
8 10 0.830 0.819 1.3% 46.75 50.16 −6.8%

5 8 0.1 0 0.781 0.851 −8.2% 43.03 42.65 0.9%
4 2 0.902 0.958 −5.8% 21.63 21.50 0.6%
8 10 0.922 0.983 −6.2% 71.89 73.95 −2.8%
4 1.0 0 0.801 0.794 0.9% 20.79 21.13 −1.6%
8 2 0.789 0.787 0.3% 51.52 53.49 −3.7%
4 10 0.927 0.929 −0.2% 30.37 32.61 −6.9%
8 1.5 0 0.730 0.692 5.5% 44.43 47.95 −7.3%
4 2 0.850 0.828 2.7% 21.95 23.70 −7.4%
8 10 0.864 0.862 0.2% 74.69 81.01 −7.8%

Mixed 8 0.1 0 0.744 0.790 −5.8% 30.96 32.41 −4.5%
4 0.1 2 0.920 0.953 −3.5% 16.72 17.14 −2.5%
8 0.1 10 0.945 0.983 −3.9% 61.00 62.54 −2.5%
4 1.0 0 0.714 0.702 1.7% 16.22 16.43 −1.3%
8 1.0 2 0.750 0.742 1.1% 39.64 42.20 −6.1%
4 1.0 10 0.926 0.919 0.8% 25.99 27.60 −5.8%
8 1.5 0 0.628 0.588 6.8% 32.68 37.66 −13.2%
4 1.5 2 0.787 0.773 1.8% 17.52 18.93 −7.4%
8 1.5 10 0.844 0.843 0.1% 61.82 69.32 −10.8%

of variation are 1, and also the estimate for the mean sojourn time is better for small
coefficients of variation.

The quality of the results seems to be rather insensitive to the number of servers
per server-group (Table 4), in spite of the super-server approximation used for
multi-server models. Finally we may conclude from Table 5 that the results are
better for shorter tandem queues.

Most crucial to the quality of the approximation of the throughput appears to be
the buffer-size. For the sojourn time this appears to be the coefficient of variation of
the service time. In Figures 4 and 5 we present a scatter-plot of simulation results
versus approximation results for the throughput and mean sojourn times; the plotted
cases are the same as in Tables 6 and 7. The results of the throughput are split-up
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Fig. 4. Scatter-plot of the throughput of 54 cases split up by buffer-size

according to the buffer-size; the one for the sojourn times are split-up according to
the squared coefficient of variation of the service times.

Overall we can say that the approximation produces accurate results in most
cases. In the majority of the cases the error of the throughput is within 5% of the
simulation and the error of the mean sojourn time is within 10% of the simulation
(see also Tables 6 and 7). The worst performance is obtained for unbalanced lines
with zero buffers and high coefficients of variation of the service times. But these
cases are unlikely (and undesired) to occur in practice.

The computation times are very short. On a modern computer the computation
times are much less than a second in most cases, only in cases with service times
with low coefficients of variation and 1 server per server-group the computation
times increase to a few seconds. Therefore, for the design of production lines, this
is a very useful approximation method.

6.2 Comparison with QNAT

We also compare the present method with QNAT, a method developed by Tahilra-
mani et al. [21]. We use a tandem queue with four server-groups. It was only possible
to test cases where the first server-group consists of a single exponential server. The
reason is that the two methods assume a different arrival process to the system. Both
processes, however, coincide for the special case of a single exponential server at
the beginning of the line. We varied the number of servers per server-group and the
size of buffers. Table 8 shows the results.
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Fig. 5. Scatter-plot of the mean sojourn time of 54 cases split up by coefficient of variation

Table 8. Comparison of our method with QNAT

TP TP Our TP QNAT Soj. Soj. Our Soj. QNAT
mi bi Sim. App. error QNAT Error Sim. App. error QNAT error

(1,1,1,1) 0 0.515 0.537−4.3% 0.500 2.9% 5.95 5.61 5.7% – –
(1,1,1,1) 2 0.702 0.703−0.1% 0.750 −6.8% 9.25 9.10 1.7% 8.17 11.7%
(1,1,1,1) 10 0.879 0.876 0.3% 0.917 −4.3% 21.43 21.41 0.1% 18.55 13.5%
(1,5,5,5) 0 0.711 0.717−0.8% 0.167 76.5% 17.87 17.67 1.1% – –
(1,5,5,5) 2 0.791 0.788 0.3% 0.800 −1.1% 20.53 20.45 0.4% – –
(1,5,5,5) 10 0.898 0.884 1.6% 0.895 0.3% 32.27 32.59−1.0% 22.88 29.1%
(1,4,2,8) 0 0.677 0.692−2.3% 0.200 70.5% 16.59 16.28 1.9% – –
(1,4,2,8) 2 0.775 0.774 0.1% 0.800 −3.2% 19.29 19.15 0.7% – –
(1,4,2,8) 10 0.893 0.886 0.8% 0.902 −1.0% 31.03 30.86 0.6% 23.04 25.7 %

We see that the present approximation method is much more stable than QNAT
and gives in almost all cases better results. Especially the approximation of the mean
sojourn time is much better; in a number of cases QNAT is not able to produce an
approximation of the mean sojourn time. Of course, one should be careful with
drawing conclusions from this limited set of cases. Table 8 only gives an indication
of how the two methods perform.
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6.3 Industrial case

To give an indication of the performance of our method in practice, we present the
results of an industrial case. The case involves a production line for the production
of light bulbs. The production line consists of 5 production stages with buffers in
between. Each stage has a different number of machines varying between 2 and 8.
The machines have deterministic service times, but they do suffer from breakdowns.
In the queueing model we included the breakdowns into the coefficient of variation
of the service times, yielding effective service times with coefficients of variation
larger than 0. In Table 9 the parameters of the production line are shown.

Table 9. Parameters for the production line for the production of bulbs

Stage mi µp,i c2
p,i bi

1 2 5.73 0.96 −
2 8 1.53 0.09 21
3 4 3.43 0.80 11
4 1 32.18 0.57 34
5 4 16.12 0.96 19

We only have data of the throughput and not of the mean sojourn time of the
line, so we can only test the approximation for the throughput. The output of the
production line based on the measured data is 11.34 products per time unit. If we
simulate this production line, we obtain a throughput of 11.41 products per time
unit. The throughput given by our approximation method is 11.26, so in this case
the approximation is a good prediction for the actual throughput.

7 Concluding remarks

In this paper we described a method for the approximate analysis of a multi-server
tandem queue with finite buffers and general service times. We decomposed the
tandem queue in subsystems. We used an iterative algorithm to approximate the
arrivals and departures at the subsystems and to approximate some performance
characteristics of the tandem queue. Each multi-server subsystem is approximated
by a single (super) server queue with state-dependent inter-arrival and service times,
the steady-state queue length distribution of which is determined by a spectral
expansion method.

This method is robust and efficient; it provides a good and fast alternative to
simulation methods. In most cases the errors for performance characteristics as the
throughput and mean sojourn time are within 5% of the simulation results. Numer-
ical results also give an indication of the performance of the method compared with
QNAT. The method can be extended in several directions. One may think of more
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Fig. 6. Phase diagram of an arbitrary inter-departure time

general configurations, like splitting and merging of streams or the possibility of
feedback. Other possibilities for extension are for example unreliable machines and
assembly/disassembly (see [24]). Possibilities for improving the quality of the ap-
proximation are, for example, using a more detailed description of the arrival to and
departures from the subsystems (e.g. including correlations between consecutive
arrivals and departures) or improving the subsystem analysis by using a description
of the service process that is more detailed than the super-server approach.

Appendix: Superposition of service processes

Let us consider m independent service processes, each of them continuously ser-
vicing customers one at a time. The service times are assumed to be independent
and identically distributed. We are interested in the first two moments of an arbi-
trary inter-departure time of the superposition of m service processes. Below we
distinguish between Coxian2 service times and Erlangk−1,k service times.

A.1 Coxian2 service times

We assume that the service times of each service process are Coxian2 distributed
with the same parameters. The rate of the first phase is µ1, the rate of the second
phase is µ2 and the probability that the second phase is needed is q. The distribution
of an arbitrary inter-departure time of the superposition of m service processes can
be described by a phase-type distribution with m+1 phases, numbered 0, 1, . . . , m.
In phase i exactly i service processes are in the second phase of the service time and
m − i service processes are in the first phase. A phase diagram of the phase-type
distribution of an arbitrary inter-departure time is shown in Figure 6. The probability
to start in phase i is denoted by ai, i = 0, . . . , m − 1. The sojourn time in phase
i is exponentially distributed with rate R(i), and pi is the probability to continue
with phase i + 1 after completion of phase i. Now we explain how to compute the
parameters ai, R(i) and pi.

The probability ai can be interpreted as follows. It is the probability that i service
processes are in phase 2 just after a departure (i.e., service completion). There is
at least one process in phase 1, namely the one that generated the departure. Since
the service processes are mutually independent, the number of service processes
in phase 2 is binomially distributed with m − 1 trials and success probability p.
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The success probability is equal to the fraction of time a single service process is
in phase 2, so

p =
qµ1

qµ+µ2
.

Hence, for the initial probability ai we get

ai =
(

m − 1
i

)(
qµ1

qµ1 + µ2

)i(
µ2

qµ1 + µ2

)m−1−i

(21)

To determine the rate R(i), note that in state i there are i processes in phase 2 and
m − i in phase 1, so the total rate at which one of the service processes completes
a service phase is equal to

R(i) = (m − i)µ1 + iµ2 (22)

It remains to find pi, the probability that there is no departure after phase i. In phase
i three things may happen:

– Case (i): A service process completes phase 1 and immediately continues with
phase 2;

– Case (ii): A service process completes phase 1 and generates a departure;
– Case (iii): A service process completes phase 2 (and thus always generates a

departure).

Clearly, pi is the probability that case (i) happens, so

pi =
q(m − i)µi

R(i)
(23)

Now the parameters of the phase-type distribution are known, we can determine
its first two moments. Let Xi denote the total sojourn time, given that we start in
phase i, i = 0, 1, . . . , m. Starting with

EXm =
1

R(m)
, EX2

m =
2

R(m)2
,

the first two moments of Xi can be calculated from i = m − 1 down to i = 0 by
using

EXi =
1

R(i)
+ piEXi, (24)

EX2
i =

2
R(i)2

+ pi

(
2EXi+1

R(i)
+ EX2

i+1

)
. (25)

Then the rate µs and coefficient of variation cs of an arbitrary inter-departure time
of the superposition of m service processes follow from

µ−1
s =

m∑
i=0

aiEXi =
1
m

(
1
µ1

+
q

µ2

)
, (26)

c2
s = µ2

s

(
m∑

i=0

aiEX2
i

)
− 1 (27)
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A.2 Erlangk−1,k service times

Now the service times of each service process are assumed to be Erlangk−1,k

distributed, i.e., with probability p (respectively 1 − p) a service time consists of
k − 1 (respectively k) exponential phases with parameter µ. Clearly, the time that
elapses until one of the m service processes completes a service phase is exponential
with parameter mµ. The number of service phases completions before one of the
service processes generates a departure ranges from 1 up to m(k − 1) + 1. So the
distribution of an arbitrary inter-departure time of the superposition of m service
processes is a mixture of Erlang distributions; with probability pi it consists of i
exponential phases with parameter mµ, i = 1, . . . , m(k − 1) + 1. Figure 7 depicts
the phase diagram. Below we show how to determine the probabilities pi.

An arbitrary inter-departure time of the superposition of m service processes is
the minimum of m−1 equilibrium residual service times and one full service time.
Both residual and full service time have a (different) mixed Erlang distribution. In
particular, the residual service consists with probability ri of iphases with parameter
µ, where

ri =

{
1/(k − p), i = 1, 2, . . . , k − 1;

(1 − p)/(k − p), i = k.

The minimum of two mixed Erlang service times has again a mixed Erlang distribu-
tion; below we indicate how the parameters of the distribution of the minimum can
be determined. Then repeated application of this procedure yields the minimum of
m mixed Erlang service times.

Let X1 and X2 be two independent random variables with mixed Erlang dis-
tributions, i.e., with probability qk,i the random variable Xk (k = 1, 2) consists of
i exponential phases with parameter µk, i = 1, . . . , nk. Then the minimum of X1

Fig. 7. Phase diagram of an arbitrary inder-departure time
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and X2 consists of at most n1 +n2 −1 exponential phases with parameter µ1 +µ2.
To find the probability qi that the minimum consists of i phases, we proceed as
follows. Define qi(j) as the probability that the minimum of X1 and X2 consists
of i phases transitions, where j(≤ i) transitions are due to X1 and i − j transitions
are due to X2. Obviously we have

qi =
min(i,n1)∑

j=max(0,i−n2)

qi(j), i = 1, 2, . . . , n1 + n2 − 1.

To determine qi(j) note that the ith phase transition of the minimum can be due to
either X1 or X2. If X1 makes the last transition, then X1 clearly consists of exactly
j phases and X2 of at least i − j + 1 phases; the probability that X2 makes i − j
transitions before the jth transition of X1 is negative-binomially distributed with
parameters j and µ1/(µ1 + µ2). The result is similar if X2 instead of X1 makes
the last transition. Hence, we obtain

qi(j) =
(

i − 1
j − 1

)(
µ1

µ1 + µ2

)j (
µ2

µ1 + µ2

)i−j

q1,j


 n2∑

k=i−j+1

q2,k




+
(

i − 1
j

)(
µ1

µ1 + µ2

)j (
µ2

µ1 + µ2

)i−j

 n1∑

k=j+1

q1,k


 q2,i−j ,

1 ≤ i ≤ n1 + n2 − 1, 0 ≤ j ≤ i,

where by convention, q1,0 = q2,0 = 0.
By repeated application of the above procedure we can find the probability pi

that the distribution of an arbitrary inter-departure time of the superposition of m
Erlangk−1,k service processes consists of exactly i service phases with parameter
mµ, i = 1, 2, . . . , m(k − 1) + 1. It is now easy to determine the rate µs and
coefficient of variation cs of an arbitrary inter-departure time, yielding

µ−1
s =

1
m

(
p(k − 1)

µ
+

(1 − p)k
µ

)
=

k − p

mµ
,

and, by using that the second moment of an Ek distribution with scale parameter
µ is k(k + 1)/µ2,

c2
s = µ2

s

m(k−1)+1∑
i=1

pi
i(i + 1)
(mµ)2

− 1 = −1 +
1

(k − p)2

m(k−1)+1∑
i=1

pii(i + 1).

A.3 Equilibrium residual inter-departure time

To determine the first two moments of the equilibrium residual inter-departure time
of the superposition of m independent service processes we adopt the following
simple approach.

Let the random variable D denote an arbitrary inter-departure time and let R
denote the equilibrium residual inter-departure time. It is well known that

E(R) =
E(D2)
2E(D)

, E(R2) =
E(D3)
3E(D)

.



Performance analysis of multi-server tandem queues 337

In the previous sections we have shown how the first two moments of D can be
determined in case of Coxian2 and Erlangk−1,k service times. Its third moment is
approximated by the third moment of the distribution fitted on the first two moments
of D, according to the recipe in Section 3.
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