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Abstract. Network Topology Dependencies (NTD) are a class of externalities in
the maintenance cost structure of infrastructure networks with applications to many
network industries, including natural gas and water distribution pipelines. It is
shown that the above externalities may be included to infrastructure maintenance
decisions, if optimal maintenance is formulated as a Rhys-Balinski selection prob-
lem. A unique contribution is that this risk management problem is analyzed from
the point of view of integrating quantitative analysis to organizational and inter-
organizational decision processes. Hence, the importance of various procedural
requirements is established in addition to computational efficiency and numerical
accuracy. In particular, the benefits of sensitivity analysis facilitation and of avoid-
ing manipulability are stressed. The proposed solution process achieves all four
requirements. Special attention is paid to the role of submodularity and antitone
differences in sensitivity analysis.
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1 Introduction

Maintaining networks is a common problem to many industries. Examples include
natural gas and oil pipelines, underground cable networks, water mains networks,
sewer systems, railroads, and road networks. In all these industries the maintenance
cost structure can be seen as having two distinct components.

(1) Direct costs. These depend on the technological attributes of the capital equip-
ment to be maintained / renewed. The typical example of direct cost is pipe material
cost. Direct costs cannot be shared and are necessary if a part of the network is to
be maintained.
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(2) Network topology dependencies (NTD). Two types of NTD, capturing a wide
variety of construction – maintenance costs, are considered here: A) Contiguity
Discounts are realized when costs – that would otherwise be replicated – are paid
once when contiguous sections are maintained at the same time. Examples include
parts of the excavation cost for pipelines and parts of horizontal drilling costs. B)
Setup Discounts are realized when costs may be paid once for a neighborhood
of the infrastructure network, independently of how much work is carried out on
it. Examples include parts of material handling cost, nuisance costs (from traffic
disruption and noise), and construction site setup costs.

The operation of the networks we consider, for instance pipelines, railroads
and highways, tends to have benefits that are broadly shared in society and risks
burdening mainly residents of locations adjacent to network segments. Experts
and lay-people are likely to agree on the concept of network dependencies, even
though it is more likely that only the network operating company would be in
a position to generate a precise quantitative estimate of dependency magnitudes.
This information asymmetry may generate difficult to resolve conflicts between
the network operating company deciding on network maintenance and residents in
neighborhoods close to network segments or other stakeholders concerned about
risk equity.

Consider a network operator interested in finding its annual optimal mainte-
nance plan, where segment risk distribution is according to Figure 1. In Figure 1
segment risk is represented by a risk index measuring the ratio of expected liability
for the operator to cost of segment maintenance. This risk index can be seen as the
benefit cost ratio for the maintenance of the individual segment. Assuming a linear
cost structure where the cost of segment maintenance is proportional to length and
segments have equal length, the direct cost of maintenance is equal for all segments
in the network. There is a very simple and intuitive process for the selection of the
optimal maintenance plan in this case (left side of Fig. 1): start with the highest
risk index segment and proceed until all segments with risk index higher than one
are scheduled for maintenance. This “greedy” algorithm achieves efficiency and
equity simultaneously.

Clearly this is the most cost-efficient maintenance plan from the point of view
of the network operator. But whether this plan is equitable or not can be estab-
lished only after equity is carefully defined. If a perfect system of compensation
for injuries to network neighbors exists, then the distribution of residual risk after
maintenance loses its importance. It would be unrealistic to assume such a sys-
tem exists, however, especially in the case of physical injuries and fatalities. Thus,
residual risk distribution is expected to be an important part of optimal network
maintenance decisions. The “highest risk index first” process has the obvious at-
tribute that risks eliminated are higher than risks accepted during network operation.
If continuing network operation generates an essential public good, some residual
risk is unavoidable. In this common case, minimizing maximum residual risk will
be viewed as an equitable decision process from a network neighbor knowing the
risk distribution, but blinded by a “Rawlsian veil of ignorance” unaware of who
is exposed to which risk. It is very easy to imagine a “veil of ignorance” exists
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Fig. 1. Risk distribution prior to maintenance with efficient maintenance plan segments
marked by a vertical line. Nonlinearities in the cost structure affect the congruence between
efficiency and equity priorities

when high-risk locations vary from one decision period to another as well as when
network neighbors do not trust the operator.

When network dependencies are significant, the most efficient maintenance plan
may look like the one on the right side of Figure 1. Clearly, a nonlinear cost structure
may result in a conflict between equity and efficiency priorities. The most efficient
maintenance plan accepts high risks and eliminates low risks, thus violating the
minimax residual risk attribute of the previous case. Now, the operator may seek
to establish that if injuries occur, compensation will be perfect or that inequity
in residual risk is justifiable by the significant shared efficiencies from exploiting
the nonlinear cost structure (reflected in lower costs of network access). Nonlinear
cost structures are associated with more complex decision processes that are not
as transparent as the “highest risk first” process. We propose a decision process
that is fairly complex, but is verifiable, non-manipulable, and permits maintenance
plan overrides to impose equity constraints or management priorities. Hence, we
maintain that the proposed decision process may facilitate, not hinder, acceptance of
optimal maintenance plans by concerned stakeholders, external to the organization
of the network operating company.

Risk assessment, whether it is based on statistical estimation or on risk models,
produces estimates within confidence intervals or ranges of uncertainty. It is thus
necessary to put risk management decisions, hinging on imprecise risk estimates,
under the test of sensitivity analysis. The proposed decision process anticipates and
facilitates sensitivity analysis. In particular, we show that the decision model we
propose is robust in the sense that it has intuitively appealing properties in response
to changes in estimated decision parameters. This is very desirable in avoiding
decision process inefficiencies resulting from protracted deliberations and high-
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cost data verification, within or across the organizational boundaries of the network
operator.

Up to now NTD have received little attention during budgeting. It is clear that in
the execution phase of a yearly maintenance plan one can and should avoid replicat-
ing certain expenses. But, if NTD are not recognized during budgeting, their value
may become deadweight loss. For example, consider a plan that doesn’t identify
NTD, but assigns all the work in a service subregion to one organizational division.
Employees in this division may capture the NTD value by operating at a lower
workload. If, however, the division of workload doesn’t follow the proper bound-
aries, then nobody is in a position to capture the value of NTD. A telling example
of NTD value loss is having a crew dig a hole on the ground, finish some work, and
then cover the hole only to have another crew visit the same area shortly after and
redig the same hole. Investor-owned companies and many municipal companies
have been operating in the past under a rate-of-return regulation system. It is well
known that the efficiency of capital investments doesn’t receive the highest prior-
ity under cost-plus regulation. However, Crew and Kleindorfer (2002) report that
many network industries are switching from rate-of-return regulation to incentive
regulation (e.g., price caps) and therefore one can expect more attention to capital
investment efficiencies and to NTD in the years to come.

Moreover, institutional innovations in the governance of infrastructure networks
(e.g., privatization of network assets) have intensified public interest in the physi-
cal risk resulting from the operations of networks and the equity of its distribution.
Heuristic solutions for maintenance prioritization – often utilized in practice - are
challenged not only on the basis of inefficiency, but also on the basis of undue
inequity. Crude heuristics result in inexact solutions that exhibit unpredictable in-
consistencies in space and time. In addition to their evident inefficiency, these
inconsistencies raise questions about maintenance prioritization being manipula-
ble. The decision process for maintenance prioritization we propose produces exact
solutions, hence its results are replicable. We expect that verifiability supports the
legitimation of efficient network maintenance even when the resulting residual risk
distribution is unbalanced.

The importance of a legitimable and efficient decision model for network main-
tenance, becomes clearer if one considers the disadvantages arising from its ab-
sence. Inefficiency, as a result of failing to recognize the importance of NTD or
due to dependence on crude heuristics, forces the network operator to function
suboptimally, with lower profitability and higher service price. When a legitimable
maintenance decision process is missing, local communities are forced to accept
an arbitrary – in their minds – allocation, even though imperfect compensation
gives them standing in the risk allocation decision. This sense of injustice results,
in turn, to lack of cooperation from local communities and thus to many long term
risks for the network company, including unnecessary friction in network expansion
projects.

The multiple procedural requirements in the solution of the maintenance prob-
lem, legitimation, allocational efficiency, non-manipulability, and decision pro-
cess efficiency, are met by following an integrative approach. It consists of three
equivalent formulations, which are presented in Section 2. First, a quadratic binary
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program is presented that applies if infrastructure network topology, section main-
tenance costs, and expected maintenance benefits are known. This is followed by
a Rhys (1970) – Balinski (1970) model, developed for the analysis of investments
with mutually exclusive costs and dependencies in benefits. Examples of the latter
problem are the “provisioning problem” described by Lawler (2001) and Mamer
and Smith’s (1982) “repair kits.” Finally, an equivalent maximum flow – minimum
cut model is developed in order for an exact solution to be efficiently obtained.
In addition, Section 2 includes a subsection that shows how requiring the mainte-
nance of certain segments can be handled efficiently within the proposed solution
framework.

In Section 3 submodularity and antitone difference properties are verified to
hold for the problem in hand. Using Topkis’ (1978) work, it is shown that the opti-
mal set of arcs to be maintained using the most conservative estimates will remain
in the optimal set if benefits are revised upwards. The latter property facilitates
sensitivity analysis in response to often occurring changes in benefit parameters.
Furthermore, this property can be utilized to obtain the Benefit-Cost efficiency
frontier for this problem quite easily, an essential part of a budgeting exercise.
Section 4 includes a complete analysis of the optimal network maintenance prob-
lem employing our solution process to a fictitious network with 180 segments. In
addition, Section 4 includes a comparison of common general purpose mathemat-
ical programming solvers against the proposed solution process with respect to
effectiveness in reaching the optimum. Section 5 concludes.

2 Formulations of the maintenance problem

2.1 Binary programming formulation

Let the undirected network G ≡ {V, E, cr, cδ, br, bδ} describe the infrastructure
network under study, where V is its node set, E is its arc set, and its parameters are
given as follows:
cr : E → �+ is the local maintenance cost function.
cδ : E → �+ is the excess cost of replacement function. To restore arc e to an “as
new” condition the amount cr (e) + cδ (e) is required.
br : E → �+ is the function assigning expected savings in emergency repair cost
after local preventive maintenance.
bδ : E → �+ is the function assigning additional expected savings after equipment
renewal in excess to the ones resulting from local maintenance. If arc e is restored
to an “as new” condition, then the total savings in expected emergency repair costs
is given as br (e) + bδ (e).

All costs and benefits are nonnegative.
The savings in emergency repair costs are usually calculated by multiplying

the typically very high cost of emergency repair (includes possible liabilities) by
the expected reduction in failure probability after maintenance. Risk assessment
studies may provide estimates for failure probabilities without maintenance, after
local maintenance, and after preventive replacement (renewal). Typically preventive



68 I.S. Papadakis and P.R. Kleindorfer

 0

 2

 4

 6

 8

10

 0  2  4  6  8  10

 0.7  0.3  0.1  0.3  0.6  0.3  1.2  1.1  0.3  0.9

 0.4  0.4  0.9  0.9  0.6  0.9  0.9  0.6  0.6  0.3

 0.8  0.2  0.2  0.5  0.8  0.7  1.2  1.2  0.8  0.6

 0.4  0.4  0.7  0.8  0.7  1.0  0.7  0.8  1.2  0.9

 0.9  0.5  0.6  0.2  0.9  1.0  1.1  0.9  0.3  0.7

 0.5  0.7  0.9  0.8  0.5  0.6  0.3  0.2  0.4  0.4

 0.6  0.5  0.6  0.5  0.4  0.7  0.9  0.2  0.3  0.3

 0.4  0.4  0.6  0.6  0.5  0.7  0.9  0.4  0.6  0.8

 0.5  0.7  0.6  1.0  1.1  0.7  0.9  0.8  0.2  0.7

 1.0  0.9  1.2  1.1  0.6  0.7  0.1  0.6  0.4  0.1

R E G I O N  1 R E G I O N  2

R E G I O N  3 R E G I O N  4

Segment Risk 
(0.2 + 0.9) / 2  = 0.55 

Segment Risk 
(1.2 + 0.9) / 2  = 1.05 

Fig. 2. Part of an infrastructure network divided in 4 regions. Each location is marked by
its risk value with segment risk equal to the average of its adjacent locations. High risk arcs
(thick lines) tend to form clusters.

replacement results in lower failure probabilities than local maintenance; therefore
it is reasonable to assume bδ takes nonnegative values only.

An example of an infrastructure network appears in Figure 2, where a fictitious
natural gas pipeline a service area is depicted. High-risk segments, and thus can-
didates for preventive maintenance in the short term, are drawn in thick lines. It
is clear that the ratio of high-risk segments to total number of segments should be
small in a well-maintained network. The risk of each segment is calculated as the
average of the risk in its surrounding neighborhoods. Hence, high-risk segments
tend to be close to each other forming clusters, as in Figure 2. The network is
divided into four regions within which setup discounts apply. This representation
of the network may lead the reader to believe that another equity concern is also
important to consider, transboundary risk. In many types of network maintenance
problems transboundary risks are not significant. For instance in railroad safety, risk
has more to do with the number of crossings than the concentration of traffic on the
one or the other side of the rail line. In another example, natural gas distribution,
risk is highly concentrated within a narrow strip of land surrounding the pipeline,
thus the stakeholders are essentially located on the pipeline and not far away.

In some cases, however, transboundary risk is important. It is well known that
divided highways tend to also divide cities in dissimilar sections with respect to
income (or ethnic origin). Risks to property values from highway traffic may be very
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pronounced on the one side of the network segment and non existent on the other
side. Policies guided by average risk considerations may lead to friction from both
a rich area regarding noise reduction walls as inadequate and from its neighboring
poor area regarding, say, noise reduction walls as expensive. In these transboundary
risk cases, though, more policy options exist (e.g., raising a taller noise reduction
wall only on the one side), thus a different analysis outside the scope of our paper
is required.

NTD in maintenance investments are defined by the following two functions:

Contiguity discount function dc : 2E → �+

dc ({e, f}) is the cost that will not be replicated, if the contiguous arcs e and f
are both replaced: dc ({e, f}) > 0 ⇒ ∃v ∈ V : e, f ∈ θ(v), where the inci-
dence sets θ(v) are defined as ∀v ∈ V θ (v) ≡ {(v, h) : h ∈ V, (v, h) ∈ E} ∪
{(h, v) : h ∈ V, (h, v) ∈ E}.

Two-way contiguity discounts are meant to exist for contiguous (or possibly
near contiguous) arcs. No computational problem, however, arises in solving the
maintenance problem, if the latter restriction is relaxed. Also, ∀e ∈ E dc ({e}) = 0.

If two contiguous arcs e and f are to be replaced, then their replacement cost
will be: cr (e) + cδ (e) + cr (f) + cδ (f) − dc ({e, f}).

Setup cost discount function ds : E × Π → �+

Where Π is a partition of physical network arcs to subregions according to the
structure of setup costs: Π ≡ {R, R′ ⊂ E : R ∩ R′ = ∅,

⋃
Π R = E}. ds(e, R)

is the savings in replacement costs for any arc e ∈ R after the cost cs(R) is
paid once. If S ⊂ R are arcs to be replaced and the cost cs(R) is paid, then the
resulting total cost of replacement excluding contiguity discounts for region R
will be:

∑
e∈S (cr(e) + cδ(e) − ds(e, R)) + cs(R). The setup cost discounts are

positive only in the neighborhood they refer to, i.e.: e /∈ R ⇒ ds (e, R) = 0.
It may be assumed that E is ordered according to some convention, so that

e(i) ∈ E is the ith section in the accepted order. Similarly, R(j) ∈ Π is the jth

region according to some accepted ordering. Define three cost vectors of magnitude
|E|, |E|, and |Π|, respectively as:

(
cr

)
i

= cr

(
e(i)

)
,
(
cd

)
i

= cδ

(
e(i)

)
,
(
cs

)
j

=
cs

(
R(j)

)
. Also, Br, Bd, and Dc are [|E| × |E|] matrices and Ds a [|E| × |Π|]

matrix given as follows:

(Br)ii =br

(
e(i)

)
, ∀i /=j (Br)ij = 0; (Bd)ii = bδ

(
e(i)

)
, ∀i /= j (Bd)ij = 0

(Dc)ij =
{∀i < j dc

({
e(i), e(j)

})
0 otherwise

; (Ds)ik = ds

(
e(i), R(k)

)

Compacting cost-benefit data further with: c =

∣∣∣∣∣∣
cr

cd

cs

∣∣∣∣∣∣ ≥ 0, and B =


Br 0 0

Bd Dc Ds

0 0 0


 ≥ 0 the total maintenance costs are given by:

T = cTx = xTBx (1)
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Where the binary decision vector, x, has magnitude (|E| + |E| + |Π|) and is
comprised of 0s and 1s as follows:
∀i : 1 ≤ i ≤ |E| (x)i = 1 if arc e(i) is to be locally maintained
∀i : |E| < i ≤ 2 · |E| (x)i = 1 if arc e(i−|E|) is to be replaced
∀i : 2 · |E| < i ≤ 2 · |E| + |Π| (x)i = 1 if the setup cost is paid in region
R(i−2·|E|)
The first row of blocks in the benefit matrix B contains nonzero elements in the
diagonal because no interaction in local-maintenance benefits is considered. In
contrast, B’s third row contains only zero elements, as the benefits of setup discounts
are realized though interactions only. The second block row in B contains no 1s in
the diagonal and captures the structure of benefit interactions. Excess benefits in
Bd accrue only if both decision variables for local maintenance and excess work
for renewal are set to 1.

Formulating Dc as a lower triangular matrix assures no double counting of
contiguity discounts and economizes in calculations. Finally, Ds applies setup cost
discounts to renewal jobs only and not to local maintenance, as appears to be the
case in practice. No computational problem arises, however, if setup discounts can
be realized in local maintenance.

Now the maintenance cost minimization problem becomes:

(Prob. 1) min
x∈{0,1}K

{
cTx − xTBx

}
with K = |E| + |E| + |Π|

It is reasonable to assume that discounts do not exceed full cost in the following
sense:

cd > [Dc Ds] · 1 (2)

Typically, contiguity and setup discounts are but a fraction of the total mainte-
nance/reconstruction cost needed to return a defective segment to “as new” condi-
tion, if not an order of magnitude less. In addition, the cost of local maintenance is
also a small fraction of reconstruction cost. Hence, in practice (2) is satisfied by a
wide margin. Regularity assumption (2) is important though, in that it guarantees
that no optimal solution to Problem 1 has the form: ∃i : 1 ≤ i ≤ |E| , (x∗)i <
(x∗)i+|E| which would have no meaning in practice.

The cost vector is likely to be easy to estimate. It is rather difficult, however,
to estimate the Benefit Matrix, mainly because of uncertainties in the assessment
of failure probabilities and consequently in the calculation of expected emergency
repair costs. Handling uncertainty in benefits is discussed in Section 3.

2.2 Rhys-Balinski formulation

Equation (1) will be put in the form used by Balinski (1970) in his selection prob-
lem. Balinski (1970) generalized Rhys’ (1970) optimization problem for invest-
ments with mutually exclusive costs but possibly not itemizable benefits. With-
out loss of generality we may use H = {1, 2, ..., K} as the set of possible
maintenance investment opportunities in Problem 1. The cost of each investment
k ∈ H is c′ (k) = (c)k ≥ 0. The benefit form each investment set σ ⊂ H is
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b′ (σ) = x (σ)TBx (σ) ≥ 0, where x (σ) is the indicator vector of set σ, i.e.:

∀k ∈ σ
(
x (σ)

)
k

= 1 ⇔ k ∈ σ.

Note that function b′ : Λ ⊂ 2H → �+is not difficult to construct. Only two-
way benefit interactions are relevant to the NTD problem. Thus, the cardinality of

the benefit function domain is not large: |Λ| ≤
(

|H|
2

)
. It is now clear that, with

little computational effort, Problem 1 may be written as an optimization problem
of itemizable costs and possibly non-itemizable benefits as:

(Prob. 2) σ∗ = arg max
σ∈H

{
b′ (σ) − ∑

k∈σ

c′ (k)
}

2.3 Max flow – min cut formulation

Balinski (1970) has shown (see also Nemhauser and Wolsey, 1988, pp. 694–702, for
a more instructive proof) that Problem 2 is equivalent to a maximum flow problem
in an auxiliary directed network, heretofore called Cost Benefit Network (CBN).
Let Ω ≡ {N, A, c′, b′} be the CBN of Problem (1-2). It can be constructed as
follows:

N ≡ {o, NB ≡ {σ ∈ Λ : b′(σ) > 0}, NC ≡ {k ∈ H : c(k) > 0}, q}, where o is
a source node and q a sink node.
A ≡ {AB ≡ {(o, σ) : σ ∈ NB}, AI ≡ {(σ, k) : σ ∈ NB , k ∈ σ ⊂ NC}, AC

≡ {(k, q) : k ∈ NC}}. With upper capacity limits as follows1:

BENEFIT INTERACTION COST

{2,3}

{1,3}

{1,4}

{3}

{3,4}

{4}

{1,2}

{1}

1

2

3

4

o q

Fig. 3. Cost-benefit network example

1 Typically, arcs in AI have infinite capacity, but setting C(e) = b’(σ)+ ε for e = (σ, k) ∈
AI obviously does not change the nature of the problem as no arc in AI would ever be part
of the minimum cut, while it eliminates questions about the choice of a capacity that is high
enough to be considered infinite.
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C (e) =

∣∣∣∣∣∣
b′ (σ) if e = (o, σ) ∈ AB

b′ (σ) + ε if e = (σ, k) ∈ AI

c′ (k) if e = (k, q) ∈ AC

where ε ∈ R+ is a small quantity.

An example of a CBN is depicted in Figure 3. Let a cut separating two dis-
tinct node sets in N be given as: ∀X, Y ⊂ N ; X ∩ Y = ∅ Γ (X, Y ) ≡
{(i, j) ∈ A : i ∈ X, j ∈ Y }. Balinski (1970) has shown that the max-flow/min-cut
problem below reveals the solution to Problem (1-2):

(Prob. 3) X∗ = arg min
{X⊂N :o∈X,q/∈X}

{ ∑
e∈Γ (X,N−X)

C (e)

}

In particular, the cost arcs in the minimum cut reveal the optimal solution to Problem
2, which is optimized by σ∗ = (N − X∗) ∩ NC . Flow in the CBN corresponds to
benefit and there is a one-to-one correspondence from network segment selection
to flow in the AC arcs. If the flow though an arc in AC equals its capacity, it is
called cost-limited and the net benefit of maintaining the corresponding segment
is positive. Otherwise the flow is considered benefit-limited, thus corresponding
segments are left out of the optimal maintenance list. Some arcs in AC may appear
to be cost-limited due to interactions with benefit-limited arcs. This problem is
avoided if σ∗ is calculated by employing a depth first search for arcs with positive
interaction to cost-limited arcs.

It is well known that solving Problem 2 as a mixed integer program with a general
purpose mathematical programming procedure, like branch and bound, will require
exponentially increasing computation time. By contrast, referring for instance to
Tarjans’s (1986) analysis, general purpose network flow algorithms would require
O(|A|2 · log(M))time for maximum capacity flow augmenting paths, with M being
the maximum capacity limit for arcs in AB ∪AC . Alternatively, O(|A|2 · |N |) time
will be required for minimum cardinality flow augmenting paths.

Of the two approaches we recommend the second as it does not depend on the
capacities taking integer values. Typically, rational capacities can be converted to
integer after multiplication by a constant, this however increases M and is thus
counterproductive. In the example we solve, the well known algorithm by Dinic
(1970) is utilized. In the past 30 years there has been considerable progress in
maximum flow algorithms. Goldberg (1998) in a recent overview of this progress
cites algorithms that are faster by about one polynomial factor, closer to O(|N |2).
These methods are clearly more scalable as they permit the timely solution of
much bigger problems. In our implementation, we used a free version of Dinic’s
Algorithm, available from the Center for Discrete Mathematics and Theoretical
Computer Science at Rutgers University (dimacs.rutgers.edu), which dominated
other approaches taking into account convenience and code reliability.

It is important to note that in a well maintained network the majority of segments
will not be even considered for maintenance. An obvious simplification of the
problem we consider arises from the a priori elimination of segments in excellent
condition. For these segments the risk of failure is so small, that even if all possible
network dependencies associated with them are counted the net benefit of their
replacement is still negative. Depending on the state of the network and not only



Optimizing infrastructure network maintenance when benefits are interdependent 73

on its size the set of remaining segments (ambiguous with respect to inclusion to
the optimal maintenance list) can then become the input to the proposed selection
procedure. Hence, even though the total number of segments in a utility network
may be in the order of hundreds of thousands, one expects that the segments for
which inlcusion to the optimal maintenance list is unclear would be an order of
magnitude less. In the discussion of our illustrative example we show that results
for sizable networks can be obtained with an off-the-self computer in minutes. We
expect that various factors affect computational time, including the state of the
network, the size of network dependencies, and the proximity of poor-condition
segments. Investigating in depth the determinants of computional requirements,
when our procedure is applied to a real utility network, is left outside the scope of
this paper.

CBN optimization leads to exact solutions. Enumeration techniques, like branch
and bound, and more often crude heuristics terminate with approximations of the
optimal solution. It is important to note, that the values of total maintenance costs
for near-optimal solutions may lie close to the exact optimum, but the near-optimal
arc list may be quite distinct from the optimal list in a geographic sense. Obtain-
ing the true optimal solution is an important advantage of the proposed procedure,
when it is applied to geographic-distribution-sensitive risk management problems.
Furthermore, exact solutions reduce significantly the latitude for manipulation in
maintenance prioritization, as other parties using the same parameters may repro-
duce the unique results of the optimization procedure.

2.4 Enforced maintenance formulation

Finally, we show that requiring maintenance of certain segments, possibly due
to equity considerations, is very easy to do within the solution framework. Let e
be the vector of enforced maintenance, then the solution space of Problem 1 is
transformed:

(Prob. 1.a) min
x≥e

{
cTx − xTBx

}
But now x can be written as:

x = x − e + e = y + e where 0 ≤ y ≤ 1 (3)

And the objective function of Problem 1.a becomes:

cT(y+e)−(y+e)TB(y+e)=(cT−eTBT−eTB)y−yTBy+(cTe−eTBe) (4)

Note that the third factor in the right part of (4) is a constant, hence the objective
of Problem 1.a has the same form as the objective in Problem 1. Consequently, en-
forcing maintenance on some arcs does not add difficult to deal with complications
to the proposed solution process.2

2 Note that significant complications arise when there are negative externalities in the
benefit function, in addition to the positive externalities assumed here. For maintenance
problems, one would normally expect only positive externalities. In the case of simultaneous
negative and positive externalities, solving the maintenance problem would probably require
an altogether different methodology (e.g., global optimization).
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3 Sensitivity analysis

Brumelle and Granot (1993) have analyzed in detail the effect of parametric changes
in the solution set of a “repair-kit” problem. Problem 2 belongs to the family of
“repair-kit” problems they analyze and their results are applicable to sensitivity
analysis of the problem studied here. In the next we focus first on the effect of a
uniform increase in maintenance benefits in response to a reevaluation of expected
emergency repair costs. Then we discuss the selection of total maintenance budget
by varying cost of capital. We show, also, that in both cases parametric variation
leads to nested solutions.

There exist many examples of parameters that affect all service region benefits
in the same direction: for instance: upwards revision of the probability of failure
after an unknown failure mode is discovered, increases in emergency repair labor
costs, increases in possible liabilities for section failures. The revision of other
parameters may or may not produce a uniform upwards revision of benefits. For
instance, changes in economic value and population densities do not always occur
in a uniform way. Some city neighborhoods experience positive growth, but other
neighborhoods may experience zero growth or decline. Uniform revisions of ben-
efits, however, are very common in infrastructure maintenance problems and their
effect is very conveniently obtained by the CBN procedure. This property of our
solution framework is shown in the following.

First, submodularity is verified by showing the following:

Proposition 1. If x ∈ {0, 1}n
,d ∈ �n, and Q ≥ 0 is a nonnegative [K × K]

matrix, then F (x;Q,d) = dTx − xTQx is submodular (i.e.: F (x;Q,d) +
F (x′;Q,d) ≥ F (x ∨ x′;Q,d)) + F (x ∧ x′;Q,d)).

Where x ∧ x′, x ∨ x′symbolize respectively greatest lower and least upper
bounds, following Topkis’ (1978) notation. Topkis (1978) provides also descrip-
tions of submodular function properties and examples.

Proof. Without loss of generality we put vectors x,x′ in the following form:

x =

∣∣∣∣∣∣∣∣
x1

x2

x3

x4

∣∣∣∣∣∣∣∣
,x′ =

∣∣∣∣∣∣∣∣
x′

1

x′
2

x′
3

x′
4

∣∣∣∣∣∣∣∣
so that




x1 = x′
1 = 1

x2 = 1, x′
2 = 0

x3 = 0, x′
3 = 1

x4 = x′
4 = 0

and x ∧ x′ =

∣∣∣∣∣∣∣∣
1
0
0
0

∣∣∣∣∣∣∣∣
,x ∨ x′ =

∣∣∣∣∣∣∣∣
1
1
1
0

∣∣∣∣∣∣∣∣
(5)

where 0 and 1 are zero and one subvectors. Matrix Q is put accordingly in the
following form:

Q =




Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44
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Now by regular algebra:

F (x;Q,d) + f(x′;Q,d) = F (x ∧ x′;Q,d) + F (x ∨ x′;Q,d)

+

∣∣∣∣∣∣∣∣
1
1
1
0

∣∣∣∣∣∣∣∣

T ∣∣∣∣∣∣∣∣
0 0 0 0
0 0 Q32 0
0 Q32 0 0
0 0 0 0

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
1
1
1
0

∣∣∣∣∣∣∣∣
(6)

��
Therefore, the objective function of Problem 1 is submodular. This well known

result is offered to improve our exposition. Alternatively, one could verify the
conditions of Topkis’s (1978) Lemma 3.1.

Proposition 2. The net cost function of Equation (1) has the antitone differences
property:

x ≤ y,B ≤ B′ ⇒ (
cTy − yTBy

) − (
cTx − xTBx

)
≥ (

cTy − yTB′y
) − (

cTx − xTB′x
)

(7)

Proof. It suffices to show:

xTBx−yTBy ≥ xTB′x−yTB′y ⇔ yT(B′−B)y−xT(B′−B)x ≥ 0 (8)

Breaking down the vectors x,y and the matrix B′ − B = ∆B into their
components, and noting that ∀i, j (x)i ≤ (

y
)
i
,∆Bij ≥ 0 one obtains:

yT (∆B)y − xT (∆B)x =
∑
i,j

∆Bij

((
y
)
i

(
y
)
j
− (x)i (x)j

)
≥ 0 ��

Let us now consider the impact of changes in benefit arc capacities on the optimal
solution. It may be intuitive that nonnegative changes in benefit arc capacities only
of the CBN will result in a new minimum cut that contains all cost arcs obtained
using the original benefit parameters. This important fact was established by Topkis
(1978), and follows directly from his results as we now note.

The parameter set of Problem 1 is {c ≥ 0,B ≥ 0}. Consider the effect of the
following parametric change:

y′ = arg min{0,1}
{
cTy − yTB′y

}
(9)

Proposition 3. B′ ≥ B ⇒ y∗ ≥ x∗

Proof. Note that {0, 1}K
, the space the decision vectors are constrained in, is a

lattice. In addition, the parameter B ∈ �K·Kbelongs to a partially ordered set.
Thus, according to Theorem 6.1 in Topkis (1978), after the parametric change in
(9), the optimal vector for the original parameter set is no greater than the new
optimal vector, provided that the following two conditions hold. First, the objective
function is submodular, which is true by Proposition 1. And second, the antitone
differences property holds, which is true by Proposition 2. ��

Thus, if B is the most conservative benefit estimate and B’ is an upward revision
of B, then all work prescribed by x∗will be prescribed also by maintenance plan y∗.
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y∗may be computed faster if x∗is known by computing y∗ − x∗only. This
process may be extended so that the optimal maintenance plan is computed in a
stepwise fashion. That is start with a very conservative estimate of benefits, revise
them upwards in steps, and in the process increment the optimal maintenance plan.
Brumelle and Granot (1993) elaborate on this approach.

The total value, V, of risk reduction (typically the net present value of expected
liability reduction) and the associated annual budget, W, are given as:

V (x) = xT


 Br 0 0

Bd 0 0
0 0 0


x (10)

W (x) = cTx − xTDx = xT(c − Dx) (11)

Of particular interest is finding a budget limit W , which is not exceeded by the total
cost of maintenance under a maintenance plan x.

W (x) = cTx − xTDx = W (12)

Fortunately, Problem 1 need not be solved under constraint (12), but its Lagragian
relaxation defines the solution to the budgeting problem. In fact, if we formulate
the Lagrangian relaxation of (12) in Problem 1, we obtain:

(Prob. 4) x∗ = arg min
{
cTx − xTBx + λ

(
W (x) − W

)}
where λ ∈ R+

We can interpret λ as the network operator’s cost of capital. Varying λ from zero
to some upper bound gives rise to a feasible solution x∗(λ) and an optimal budget
W(x∗(λ)) for each value λ (the constant W in Prob. 4 has no effect on the solution
value, of course). This approach yields the efficient frontier in a natural way to
increasing cost of capital and avoids problems of budgeting inefficiency arising from
out of frontier solutions and related duality gaps associated with Problem 1. From a
policy perspective, it is the preferred approach and the one we follow. Reformulating
Problem 4 by multiplying with γ = 1/(1 + λ), the results of Proposition 3 become
very clear in terms of the cost of capital approach embodied in Prob. 4.

(Prob. 5) x∗
γ = arg min

{
cTx − xT (D + γ (B − D))x

}
where γ ∈ (0, 1]

Proposition 4. γ < γ′ ⇒ x∗
γ ≤ x∗

γ′ and W
(
x∗

γ

) ≤ W
(
x∗

γ′
)

Proof. The first part follows immediately from Proposition 3. For the second we
use the optimality of x∗

γ to show that:

W (x∗
γ′) − γx∗T

γ′ (B − D)x∗
γ′ = cTx∗

γ′ − x∗T
γ′ (D + γ(B − D))x∗

γ′

≥ W (x∗
γ) − γx∗T

γ (B − D)x∗
γ ⇒ (13)

W (x∗
γ′) − W (x∗

γ) ≥ γ[x∗T
γ′ (B − D)x∗

γ′ − x∗T
γ (B − D)x∗

γ ] ≥ 0

The last part of (13) follows from the fact that B − D > 0 and from the first
part of Proposition 4. ��

Hence, solving for successively higher γ, the optimal management of the net-
work requires higher budgets also. It is a very convenient property of our solution
process that as increasing values of γ (decreasing for the cost of capital) are tried
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Fig. 4. Overview of solution in the absence of NTD (replacement cost = 1, contiguity discount
= 0, setup discount = 0). Top panels show the effect of choosing successively lower benefit-
cost ratios. Thick lines denote segments in the optimal maintenance plan

out the optimal maintenance list is expanded and is not altered radically. The lat-
ter property is often referred to as the “Nestedness Property.” Furthermore, due
to cost structure submodularity, as γ values increase one conveniently obtains the
cost-benefit frontier with few calculations.

4 Illustrative example

The example described in Figure 1 and in Figure 2 is worked on using the proposed
method that prescribes first to transform Problem 1 to a maximum flow problem
and then to solve using an established algorithm. Particular attention is paid to the
tradeoffs in efficiency and equity as the benefit-cost ratio varies.

Figure 4 depicts the geographic distribution of the optimal maintenance list
when NTD are not taken into account and the cost of capital is zero (non-binding
budget constraint). 14 out of 180 (7.8%) segments are in the maintenance list. From
the 14 segments in the maintenance list, 11 are contiguous to another maintenance
list arc (78.6%). Having so many contiguous arcs despite the absence of NTD can be
explained by the spatial dependencies in the risk structure. The reader is reminded
that the risk of each segment is the average risk of its surrounding neighborhoods.
Even though neighborhood risk was simulated as geographically independent, seg-
ment risk by construction has an obvious dependence on geographic proximity.
As high risk segments are contiguous, segments in the optimal maintenance list
are also contiguous. This geographic dependence in segment risk is often a very
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Fig. 5. Overview of solution when maintenance cost structure includes NTD (replacement
cost = 1, contiguity discount = 0.05, setup discount = 0.15). Top panels show the effect of
choosing successively lower benefit-cost ratios. Thick lines denote segments in the optimal
maintenance plan. The brackets in regions 1 and 4 denote that setup discounts apply

realistic assumption. When NTD are added to the maintenance cost structure the
pattern of contiguous maintenance list segments will be more pronounced.

In addition, Figure 4 depicts two panels with the equity and efficiency tradeoffs
as the cost of capital increases and in turn total budget decreases. In this “knapsack”
problem, optimal maintenance lists obtained by varying λ lie on the benefit cost
efficiency frontier. A property that will also apply after NTD are added. The equity
tradeoff is studied using a simple metric, the difference between the minimum risk
planned for elimination (using the maintenance budget) and the maximum risk of
segments outside the maintenance list. The minimax points lie on an increasing
curve situated above the identity line (thin line in top left panel of Fig. 4). Thus, the
minimum eliminated risk is higher than the maximum residual risk. This property
makes it easier for the network operator to explicate its maintenance policy.

In the same format as in Figure 4, Figure 5 depicts the results one obtains after
NTD are taken into account. 34 out of 180 segments are now scheduled for mainte-
nance. In addition, setups are prescribed for regions 1 and 4, where neighborhood
risk is put in brackets. Now all but one segments in the maintenance list are contigu-
ous to another maintenance list segment. With respect to efficiency, tradeoffs are
clear as all solutions generated by varying λ belong to the benefit-cost efficiency
frontier. Figure 6 verifies the “Nestedness Property”, of the optimal maintenance
list as cost of capital increases and total budget decreases. Note, however, that risk
rank does not define entry order to the optimal solution as λ increases.
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Fig. 6. Successive optimal set augmentation as benefit / cost ratio decreases (nestedness
property). Labels denote segment risk rank (e.g., 1 is the highest risk segment). All segments
with equal B/C ratio enter the solution together

With respect to equity, note in Figure 5 that the minimax risk points form a
curve that is still increasing, but now crosses the identity line. Lower risk segments
are scheduled for maintenance, due to their being contiguous to other segments or
on the regions where special setups are prescribed. At the same time, higher risk
segments that are geographically isolated are left unmaintained. This might create
friction with residents of neighborhoods exposed to the higher residual risks. Equity
tradeoffs are clear in the decision process we propose, so network operator managers
may take them into account. Consider two options to influence residual risk distri-
bution. First, enforce maintenance of segments with very high risk independent of
whether or not they enter the optimal (most efficient) maintenance list. And second,
choose points on the minimax curve that have low disparities between eliminated
and non-eliminated risks. For instance, choose the point (Min Removed: 0.85, Max
Residual, 1.03) over the point (Min Removed: 0.85, Max Residual, 1.09). Alter-
natively, network operator managers may opt for making clear the shared benefits
from the increased efficiencies due to NTD.
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High Contiguity Discount Scenario 
(Replacement Cost = 1, Contiguity Discount = 0.2, Setup Discount = 0.005)

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

 0.7  0.3  0.1  0.3  0.6  0.3  1.2  1.1  0.3  0.9

 0.4  0.4  0.9  0.9  0.6  0.9  0.9  0.6  0.6  0.3

 0.8  0.2  0.2  0.5  0.8  0.7  1.2  1.2  0.8  0.6

 0.4  0.4  0.7  0.8  0.7  1.0  0.7  0.8  1.2  0.9

 0.9  0.5  0.6  0.2  0.9  1.0  1.1  0.9  0.3  0.7

 0.5  0.7  0.9  0.8  0.5  0.6  0.3  0.2  0.4  0.4

 0.6  0.5  0.6  0.5  0.4  0.7  0.9  0.2  0.3  0.3

 0.4  0.4  0.6  0.6  0.5  0.7  0.9  0.4  0.6  0.8

 0.5  0.7  0.6  1.0  1.1  0.7  0.9  0.8  0.2  0.7

 1.0  0.9  1.2  1.1  0.6  0.7  0.1  0.6  0.4  0.1
*

REG 1

*

REG 3

*

*

*

*

*

REG 2 

*

REG 4 

*

Low Contiguity Discount Scenario 
(Replacement Cost = 1, Contiguity Discount = 0.01, Setup Discount = 0.005)
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Fig. 7. Effect of varying contiguity discount magnitude. Bold segments to be maintained

Experiments were conducted with different cost parameters for discount and
contiguity. Figure 7 shows the effect of going to high (top) and low (bottom) con-
tiguity discounts magnitude. High contiguity discount leads to the optimal main-
tenance list forming two big clusters of segments. Regarding equity, we found in
this scenario high disparity between eliminated risk (min: 0.71) and residual risk
(max: 0.93). When contiguity discounts are lower the segments in the maintenance
list are not as well connected. With respect to equity, disparities exist but are not
as pronounced. Figure 8 shows the effect of going to high (top) and low (bottom)
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High Setup Discount Scenario 
(Replacement Cost = 1, Contiguity Discount = 0.01, Setup Discount = 0.3)
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Low Setup Discount Scenario 
(Replacement Cost = 1, Contiguity Discount = 0.05, Setup Discount = 0.01)
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Fig. 8. Effect of varying setup discount magnitude. Bold segments to be maintained

setup discount magnitudes. High setup discounts lead to an optimal maintenance
list prescribing setups in 3 out of 4 regions. With respect to equity, disparities are
also very high (Min Eliminated: 0.68, Max Not Eliminated, 0.93).

All the scenarios above were tested in a small network of 180 segments and
4 regions, which generated a CBN of about 500 nodes and 1,200 arcs. Finding
the Pareto frontier using a conventional Linux server and unoptimized code was
acheived in less than a second. The Pareto frontier of a larger version of this network
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Table 1. Comparison of solutions obtained by the proposed method to solutions obtained
using common general purpose solvers. Maximum net benefit is rarely approached by general
purpose solvers

NTD Proposed method Minos Loqo Donlp2
scenario

Base 2.7550 2.6970 2.7550 2.6970
(−2.1%) (−0.0%) (−2.1%)

High contiguity 3.8340 3.7309 3.7869 3.7868
(−2.7%) (−1.2%) (−1.2%)

High setup 8.3690 8.0892 8.3096 8.0892
(−3.3%) (−0.7%) (−3.3%)

(of similar size to what may be encountered in practical applications) with roughly
6,000 segments and about 18,000 CBN nodes was calculated in less than 10 minutes
on the same conventional machine.

Finally, we compared our solutions to the solutions obtained by commonly
used general purpose mathematical programming solvers. These solvers assume
convexity and search for a local optimum which often is an interior point. In Prob-
lem 1, one searches for the minimum of a concave function which lies always on
the boundaries. This property of Problem 1 poses testing challenges to general pur-
pose solvers as can be seen in Table 1. The best performance was obtained by the
solver Loqo in all three scenarios considered, but in most cases general purpose
solvers failed to find the optimal solution which is always obtained by the proposed
procedure.

5 Conclusions

Network topology dependencies apply to physical asset maintenance of the net-
work industries and have a wide range of applications, including natural gas, oil,
and water pipelines as well as railroad, highway, underground cable and sewer net-
works. Changes in the regulatory environment of network industries are expected
to increase incentives for efficiency in maintenance and therefore drive decision
makers away from crude heuristics and towards methodologically sound decision
processes. The problem of optimal infrastructure network maintenance under net-
work topology dependencies is formulated and solved by a procedure that is com-
putationally efficient, facilitates sensitivity analysis, and avoids manipulability.

The latter attributes of the proposed maintenance planning process are essential
for success in implementing any prioritization procedure for infrastructure main-
tenance. Firstly, infrastructure networks are large in size and comprised by a vast
number of elements. Therefore, computational efficiency is a requirement. Sec-
ondly, risk estimates for the failure of network sections are rarely robust to problem
parameters and are typically given within ranges of uncertainty. Sensitivity analy-
sis is thus a necessary element of maintenance prioritization. Under the proposed
solution, the most frequently occurring parametric uncertainties may be analyzed
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very efficiently. Finally, prioritization of physical risks that may involve loss of
life, serious injuries, and significant economic disruption is a decision likely to be
challenged by many and diverse parties. The proposed selection process produces
exact solutions, which may be replicated by independent analysts working with the
same problem parameters. Near optimal solutions may be close in the objective
function range, but far apart in a geographic sense. Thus heuristic procedures, not
producing the same solution every time they are applied, may be seen as arbitrary
and manipulable. By contrast, our solution framework generates nested solutions
that do not vary radically after parametric changes. Thus, our approach provides
both a logical structure and intuitively appealing and explicable results.

Our work stresses the contribution of Operations Research and Management
Science not only in developing quantitative analysis procedures for decision sup-
port, but also in integrating decision support systems with organizational and in-
terorganizational decision processes. This integration is not a trivial matter and
requires in-depth knowledge of the problem context and of quantitative analysis.
An essential part of this integration is managing complexity and transparency. In our
paper we permit solution process complexity when transparency in not a require-
ment in order to achieve computational efficiency. By contrast, when transparency
is required, for instance when risk equity is questioned, tradeoffs are made as clear
as possible using sensitivity analysis.

Optimization procedures are designed to solve problems. They may, however,
generate problems in their implementation, raising questions of manipulability, for
example, if applied inappropriately. These side effects of quantitative decision pro-
cesses are not unpredictable and are often avoidable. Considerable effort has been
allocated so that the solution procedure fits the risk management problem in hand.
It is often difficult to legitimate physical risk allocation to a multitude of affected
stakeholders. For network maintenance problems involving risk to the public, it is
important that procedures used be able to accommodate and transparently display
the results of budget restrictions, equity considerations and appropriate cost factors.
The procedure described here appears to satisfy these requirements.
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