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Abstract. This paper models a call center as a Markovian queue with multiple
servers, where customer balking, impatience, and retrials are modeled explicitly.
The resulting queue is analyzed both in a stationary and non-stationary setting.
For the stationary setting a fluid approximation is proposed, which overcomes the
computational burden of the continuous time markov chain analysis, and which is
shown to provide an accurate representation of the system for large call centers
with high system load. An insensitivity property of the retrial rate to key system
parameters is established. The fluid approximation is shown to work equally well
for the non-stationary setting with time varying arrival rates. Using the fluid approx-
imation, the paper explores the retrial phenomenon for a real call center. The model
is used to estimate the real arrival rates based on demand data where retrials cannot
be distinguished from first time calls. This is a common problem encountered in
call centers. Through numerical examples, it is shown that disregarding the retrial
phenomenon in call centers can lead to huge distortions in subsequent forecasting
and staffing analysis.
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1 Introduction

This paper is motivated by the problem of a major European telecommunications
service provider’s call center. The call center is managed as a cost center, and
minimizing the staffing costs associated with this call center is an important business
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concern. At the same time, the mobile telephony market within which this call center
operates is a highly competitive one, and providing good service to customers
constitutes a competitive necessity. Good service is measured in many different
ways, but fundamentally it implies meeting the needs of the customers in the best
possible way. For a call center, this involves at a very basic level matching the
capacity of the center to uncertain demand.

The operations of the call center in question can be described as follows. There
are a certain number of servers that answer customer calls. When a customer call
arrives, it will be served immediately if a server is available. If all servers are busy
with other calls, the customer will be put on hold, and will be asked to wait until
a server becomes available. The call center may choose to announce an expected
waiting time to the customer at this point. Some customers are patient enough to
wait for a server to become available, while others will hang-up or abandon after
waiting for some time or immediately upon hearing the waiting time announcement.
Management would like to limit the time customers wait for service, and as a result
whenever the number of customers waiting to be served exceeds a threshold value,
the call will automatically be disconnected and the customer will be asked to call
back later. A portion of these customers will redial and try to access the call center.
Customers do not like waiting, being disconnected, or attempting a call several
times, so from a customer service standpoint management tries to determine the
number of servers and the disconnection or blocking threshold such that costs are
minimized while certain service levels are satisfied. The use of queueing models
as the basis for this type of analysis is common in call centers. However before any
optimization can be performed using such queueing models, basic data pertaining
to call arrivals and their characteristics are necessary to model the performance of
the system.

Call centers track detailed information pertaining to calls. The total number
of calls attempted, blocked, or abandoned can all be viewed in a typical database
for thirty minute intervals over several years. This data, along with data pertaining
to call lengths, abandonment time lengths, waiting time lengths can be used to
estimate arrival processes, abandonment behavior, and service processes. Only one
type of data is not available, which also constitutes the main motivation of this paper.
Looking at the historical call data, the company is unable to tell what proportion
of calls during a given thirty minute interval are first attempts or primary calls
and what proportion consists of customers who are redialing or retrying to receive
service, having abandoned or been blocked in an earlier attempt. This implies
that when historical data is used to estimate arrival rates, and staffing levels are
determined by embedding the resulting queuing model in an optimization problem,
the resulting numbers may be distorted due to historical errors in staffing levels. If
in a given period the staffing was done such that realized demand heavily exceeded
capacity, this would generate a lot of retrials in subsequent thirty minute intervals.
However, not being able to distinguish between first time attempts and retrials, the
forecasting method would treat this as an increase in arriving calls, rather than an
artifact of the bad staffing decision in an earlier period, potentially leading to future
bad dimensioning decisions. Given the importance of staffing costs, the call center
would like to determine to what extent this type of interaction between staffing and
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forecasting is taking place, and whether one can extract the first time attempts from
the total number of calls using the historical data and a queueing model. These two
basic questions have motivated the ensuing analysis.

We model such a system as an M/M/C+M queue with retrials and balking,
where the +M denotes exponential abandonments. The following section provides
a review of the literature and positions our model with respect to models that have
appeared earlier. Section 3 formulates the model. In Section 4, we consider systems
where parameters like the arrival rates are not time-dependent and the system can be
approximated by a stationary analysis in a single time period. We analyze the system
using both a continuous time Markov chain analysis and a fluid approximation. The
latter approach is shown to overcome the computational difficulties associated with
the Markov Chain analysis. It is illustrated how one can estimate the proportion
of calls that are first attempts, using this model and the rate of total observed call
arrivals. Subsequently, in Section 5 the assumption about a stationary single period
is relaxed. In the multiple period setting, the system is analyzed using the fluid
approximation. We illustrate that this approximation performs well in terms of
representing the performance of such a system by comparing it to simulation. The
interaction between staffing and retrials are explored through the help of numerical
examples that are partially based on real data. The paper ends with concluding
remarks in Section 6.

2 Literature review

There is a rapidly growing literature on queueing models that address call center
design and management problems. An excellent survey of this literature can be
found in Gans, Koole, and Mandelbaum [12]. Herein, we only describe some work
that is of immediate relevance to the model being considered.

Queueing models for call centers differ in the types of customer behavior that
they model. As described in the previous section, a customer that is not served
can balk, i.e. leave the system immediately, can abandon or renege, i.e. leave the
system after waiting for some time, and in both cases can decide to call back in
order to access service. Motivated by call centers Baccelli and Hebuterne [6] and
Brandt and Brandt [9] treat the case with general impatience times, and characterize
performance of such systems. General impatience times are analyzed in the context
of telecommunication systems in Boxma and de Waal [7]. Focusing on exponential
abandonment times Akşin and Harker [2] and Garnett et al. [13] treat impatience
within specific call center applications.

There is an extensive literature on so called retrial queues (Yang and Tem-
pleton [22]; Falin [10]; Falin and Templeton [11]). Most of the models in this
literature do not consider abandonment behavior. Hoffman and Harris [16] incor-
porate abandonments and retrials in a model which is also motivated by the problem
of estimating real arrivals as in our case. We attempt to make this estimation more
precise herein. Similarly, Mandelbaum et al. [19] consider multi-server systems
with abandonments and retrials and propose a fluid approximation for their analy-
sis. Their model differs from the one herein in that balking behavior is not modeled
and the queues are of infinite capacity. Through an insensitivity property that we
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are able to show, we illustrate that the approximation we have developed for infinite
capacity systems also works well when there is no balking and queue capacity is
finite. De Véricourt and Zhou [20] consider retrials that are generated by quality
problems associated with call content. We restrict ourself to retrials that are due to
a mismatch in demand and capacity.

Artalejo [5] considers a multi-server system with balking and retrials. Cus-
tomers that find all servers busy are assumed to balk or quit the system with a
probability that depends on the number of customers waiting in the queue. This
model does not consider abandonment behavior. The systems modeled by Whitt
[21] combine balking and abandonment behavior. The objective of the paper is to
compare the performance of two systems: one in which state information is com-
municated to the customers, and another where no information is provided. In the
system with no information, a proportion of the customers balk while the remaining
may abandon later. In the system where state information is communicated, cus-
tomers balk with a higher probability such that all reneging is replaced by balking.
Our model resembles the case that provides information to customers upon arrival,
however in our system customers can balk, renege, and try to call back later. We
model retrials explicitly. Hui and Tse [17] have performed an experimental analysis,
in order to analyze the growing practice of announcing some form of waiting time
or state related information to customers in call centers or other service systems.
They show that the appropriate information depends on waiting times, where one
would like to communicate the position in the queue for long waiting times, the
expected duration of the wait for medium waiting times, and no information for
very short waiting times. In our analysis, we assume that expected waiting times
are announced, which is a practice being considered by the motivating call center.
Armony and Maglaras [4] consider the impact of expected waiting time announce-
ment on the option of postponed or call-back service, rather than a retrial by the
customer.

With the exception of Mandelbaum et al. [19], all of the models described so
far assume systems with stationary parameters, or systems that can be analyzed
as a single period stationary system. Given the inherent transient nature of the
interaction between staffing and retrials that we would like to study, we also consider
systems with nonstationary arrivals as studied by Green et al. [15] and Green and
Kolesar [14]. Rather than using a pointwise stationary approximation, we propose
a fluid approximation and illustrate under what conditions this constitutes a precise
estimate of real performance. The use of fluid approximations for the analysis of
call centers is not new. In addition to Mandelbaum et al. [19], Altman et al. [3] and
Jimenez and Koole [18] have analyzed fluid approximations and their application
to call center problems.

In this paper, we extend the analysis in Aguir et al. [1] to a multi-period set-
ting and propose a fluid approximation to evaluate system performance both in
the single period and multi-period settings. To summarize, we combine balking,
abandonment, and retrial behavior of customers in call centers, thereby bringing
together different features of earlier studied models. Our aim is to explore the issue
of estimating primary call demand from historical data, as in Hoffman and Harris
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[16], and to explore the impact of the retrial phenomenon on call center performance
as being done for the case of impatience in Garnett et al. [13].

3 The model

Let us consider the following model of a call center that has C Customer Service
Representatives (CSR)’s. Service times (including the talk time and the after talk
wrap-up time) are assumed to be exponentially distributed with rate µ. First-attempt
calls arrive to the system according to a Poisson process with rate λ. These calls
will be alternately labeled as primary calls. Customers who can access a free CSR
at the time of arrival are immediately served and depart the system. Customers
who cannot access a free CSR at the time of arrival may balk immediately with
probability β. These balking customers reattempt their call with probability p after
an exponentially distributed amount of time with rate δ. In practice p may not be
a constant probability for subsequent reattempts, however for tractability purposes
this will be assumed herein. Customers who join the queue (with probability 1−β)
abandon if they cannot access a CSR within a delay that is exponentially distributed
with rate θ1. Abandoning customers are assumed to have identical retrial behaviour
as balking customers; they reattempt their call with probability p and after an
exponentially distributed amount of time with rate δ. It should be noted that data
from the motivating call center supports the assumption that the retrial probability
for both balking and abandoning customers is approximately equal. In accordance
with the ”retrial queueing” literature, we refer to the pool of customers that are
waiting to repeat their call as the orbit. Note that, under the above assumptions the
time that a customer spends in the orbit is exponentially distributed with rate δ. A
summary of the notation can be found below:

λ: Arrival rate of first-attempt (primary) calls
λo: Total call arrival rate (observed call rate)
C: Number of CSRs
µ: Service (talk and wrap-up) rate
β: Instantaneous balking probability for customers who cannot access a free CSR

at the time of arrival
θ1: Abandonment rate of customers who join the queue
p: Retrial probability for balking or abandoning customers
δ: Retrial rate for balking or abandoning customers

In reality all of these parameters may be time dependent. We address the fluc-
tuations in the arrival rate and the number of CSRs in the second part of this paper.
The fluctuations in the other parameters are milder and are not modeled here.

Finally, it is important to note that the total call arrivals to the center are consti-
tuted of two separate flows: primary (first-attempt) calls (with rate λ) and repeated
calls (retrials). We denote by λo (where λo ≥ λ), the total call arrival rate (also
referred to as observed call rate).

Let us now adapt this model to the more general case where customers are
informed about their anticipated waiting times at the time of arrival. Whitt [21]
presents a thorough explanation of the model and the underlying assumptions.
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In this case, customers are announced their anticipated waiting time before
accessing a CSR. The precise information announced to the customer may be
an estimate of the expected waiting time or a related measure. In any case, the
announced information is based on the actual number of customers waiting in the
queue in front of the arriving customer. As explained by Whitt [21], the customer
balking behaviour is then a function of the number of customers waiting in the
queue. Let r(k) (k ≥ C) be the probability that an arriving customer balks when
there are k−C waiting customers in the queue. This represents the probability that
the announced waiting time exceeds customer expectations. This probability can
be expressed as:

r(k) = β + (1 − β)P (T < Sk) (1)

In this equation T is a random variable that represents the patience threshold
of the customer and Sk is a random variable that represents the time between the
arrival of a customer and the time this customer accesses a CRS. Since service
times are exponential, Sk has an Erlang distribution with k − C + 1 stages each
with rate Cµ. As in Whitt [21], it is helpful to approximate P (T < Sk) in equation
(1) by P (T < E[Sk]) where:

E[Sk] =
k − C + 1

Cµ

If we now assume that the patience threshold T is exponentially distributed
with rate θ1, we reach:

r(k) = 1 − (1 − β)e−θ1
k−C+1

Cµ (2)

The above analysis assumes that, a customer deciding to join the queue does
not abandon thereafter. We may assume that customers joining the queue may
still abandon with rate θ where the new abandonment rate is less than the initial
(uninformed) abandonment rate θ1. The above analysis is then approximately valid,
if θ is small enough not to modify Sk significantly. Finally, note that a system where
waiting times are not announced is just a special case of the more general model,
with r(k) = β.

4 Stationary analysis

4.1 The stochastic model

Under the previously stated assumptions, a Markov chain can be employed to model
the call center with repeated calls. Let the state of the system be (m, n), (m, n ≥ 0),
where m represents the number of customers in the real system (those in service
plus those who are in the queue) and n represents the number of customers in
the orbit who repeat their call with (exponential) rate δ. Unless the real queue has
finite buffers, both m and n are unbounded. For numerical solution purposes, we
approximate the unbounded system by a truncated system where m is truncated at
K1 and n is truncated at K2.



The impact of retrials on call center performance 359

0,0 1,0 2,0 C,0 K1,0C+1,0 K1-1,0λ

µ

λ

2 µ

λ(1-pC)

C µ+(1-p)θ

λ(1-pK1-1)

C µ+(K1-C)(1-p)θ

0,1 1,1 2,1 C,1 K1,1C+1,1 K1-1,1λ

µ

λ

2 µ

λ(1-pC) λ(1-pK1-1)

0,2 1,2 2,2 C,2 K1,2C+1,2 K1-1,2λ

µ

λ

2 µ

λ(1-pC) λ(1-pK1-1)

0,K2-1 1,K2-1 2,K2-1 C,K2-1 K1,K2-1C+1,K2-1 K1-1,K2-1λ

µ

λ

2 µ

λ(1-pC) λ(1-pK1-1)

0,K2 1,K2 2,K2 C,K2 K1,K2C+1,K2 K1-1,K2
λ

µ

λ

2 µ

λ(1-pC) λ(1-pK1-1)

δ δ

2
δ

2
δ

K
2 δ

K
2 δ

C-1,0

C-1,1

C-1,2

C-1,K2-1

C-1,K2

λ

C µ

δ

2
δ

K
2 δ

λ

C µ

λ

λ

C µ

C µ

λ

C µ

C µ+(1-p)θ

C µ+(1-p)θ

C µ+(1-p)θ

C µ+(1-p)θ

p.θ

p.θ

p.θ

δ(1-p
C )

2.δ(1-p
C )

K
2 .δ(1-p

C )

C µ+(K1-C)(1-p)θ

C µ+(K1-C)(1-p)θ

C µ+(K1-C)(1-p)θ

C µ+(K1-C)(1-p)θ

(1
-p

)p
C
.δ

p.
p C

.λ

p.
p C

.λ

2(
1-

p)
p C

.δ

p.
p C

.λ

K
2(

1-
p)

p C

δ

K
2(

1-
p)

p K
1.

δ

p.
p K

1.

λ

2(
1-

p)
p K

1.

δ

p.
p K

1.

λ

p.
p K

1.

λ

(1
-p

)p
K

1.

δ

(K
1 -C)p.θ

(K
1 -C)p.θ

(K
1 -C)p.θ

δ(1-p
K1-1 )

2.δ(1-p
K1-1 )

K
2 .δ(1-p

K1-1 )

0,0 1,0 2,0 C,0 K1,0C+1,0 K1-1,0λ

µ

λ

2 µ

λ(1-pC)

C µ+(1-p)θ

λ(1-pK1-1)

C µ+(K1-C)(1-p)θ

0,1 1,1 2,1 C,1 K1,1C+1,1 K1-1,1λ

µ

λ

2 µ

λ(1-pC) λ(1-pK1-1)

0,2 1,2 2,2 C,2 K1,2C+1,2 K1-1,2λ

µ

λ

2 µ

λ(1-pC) λ(1-pK1-1)

0,K2-1 1,K2-1 2,K2-1 C,K2-1 K1,K2-1C+1,K2-1 K1-1,K2-1λ

µ

λ

2 µ

λ(1-pC) λ(1-pK1-1)

0,K2 1,K2 2,K2 C,K2 K1,K2C+1,K2 K1-1,K2
λ

µ

λ

2 µ

λ(1-pC) λ(1-pK1-1)

δ δ

2
δ

2
δ

K
2 δ

K
2 δ

C-1,0

C-1,1

C-1,2

C-1,K2-1

C-1,K2

λ

C µ

δ

2
δ

K
2 δ

λ

C µ

λ

λ

C µ

C µ

λ

C µ

C µ+(1-p)θ

C µ+(1-p)θ

C µ+(1-p)θ

C µ+(1-p)θ

p.θ

p.θ

p.θ

δ(1-p
C )

2.δ(1-p
C )

K
2 .δ(1-p

C )

C µ+(K1-C)(1-p)θ

C µ+(K1-C)(1-p)θ

C µ+(K1-C)(1-p)θ

C µ+(K1-C)(1-p)θ

(1
-p

)p
C
.δ

p.
p C

.λ

p.
p C

.λ

2(
1-

p)
p C

.δ

p.
p C

.λ

K
2(

1-
p)

p C

δ

K
2(

1-
p)

p K
1.

δ

p.
p K

1.

λ

2(
1-

p)
p K

1.

δ

p.
p K

1.

λ

p.
p K

1.

λ

(1
-p

)p
K

1.

δ

(K
1 -C)p.θ

(K
1 -C)p.θ

(K
1 -C)p.θ

δ(1-p
K1-1 )

2.δ(1-p
K1-1 )

K
2 .δ(1-p

K1-1 )

Fig. 1. The transition diagram of the Markov chain

Let us now describe the transition rates of the Markov chain. Let Q(m,n)(m′,n′)
be the transition rate from state (m, n) to state (m′, n′), m, m′ = 0, 1, . . . , K1, n,
n′ = 0, 1, . . . , K2. The non-zero transition rates are as follows:

Q(m,n)(m+1,n) =

{
λ for 0 ≤ m < C, 0 ≤ n ≤ K2

λ(1 − r(m)) for C ≤ m < K1, 0 ≤ n ≤ K2

Q(m,n)(m−1,n) =

{
mµ for 0 < m ≤ C, 0 ≤ n ≤ K2

Cµ + (m − C)(1 − p)θ for C < m ≤ K1, 0 ≤ n ≤ K2

Q(m,n)(m+1,n−1) =

{
nδ for 0 ≤ m < C, 0 < n ≤ K2

nδ(1 − r(m)) for C ≤ m < K1, 0 < n ≤ K2

Q(m,n)(m−1,n+1) = (m − C)pθ for C < m ≤ K1, 0 ≤ n < K2

Q(m,n)(m,n+1) = p r(m)λ for C ≤ m ≤ K1, 0 ≤ n < K2

Q(m,n)(m,n−1) = n(1 − p) r(m)δ for C ≤ m ≤ K1, 0 < n ≤ K2

Figure 1 depicts the state transition diagram of the above Markov chain.
There does not seem to be a special structure and hence no easy analytical so-

lution for the above Markov chain. Standard numerical methods are employed to
obtain a numerical solution for the stationary distribution by truncating the state
space. Because our objective is to find an accurate approximation for the infinite
state-space problem, in the implementation we experiment with increasing trunca-
tion limits K1 and K2 until further increases do not affect the stationary distribu-
tion. Once this is done, the performance measures of interest follow. Let πm,n ,
m = 0, , . . . , K1, n = 0, 1, . . . , K2, be the stationary probability of being in state
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(m, n) and let Tr be the stationary retrial rate (number of repeated calls per unit
time). The retrial rate is given by:

Tr =
K2∑
n=1

nδ

K1∑
m=0

πm,n (3)

The retrial rate can hence be obtained using the numerical solution of the Markov
chain and expression (3) but this computation is numerically intensive and rather
time consuming. The next subsection proposes an approximate procedure for this
computation.

Below, we propose an alternative expression for Tr based on the stationary
flow balance of the system (similar to Hoffman and Harris [16]). The result is
summarized in the following proposition:

Proposition 1 Let E[B] be the average number of busy servers. The retrial rate,
Tr of the system can be expressed as:

Tr =
p

1 − p
(λ − E[B] µ) (4)

Proof. Let us consider the stationary flows in the system. The total incoming flow,
λo is composed of two streams, the primary arrivals and the retrials. We then have
λo = λ + Tr. The outgoing flow is composed of three streams, let us denote the
outgoing flow due to abandonments by A, and the one due to balking by R. The
outgoing flow due to service completions is given by the average effective service
rate E[B] µ.

In the stationary equilibrium, the outgoing flow must be equal to the incoming
flow which implies:

λo = A + R + E[B] µ (5)

In addition the average flow into and out of the orbit must also be equal. A call that
joins the orbit is either due to an abandonment or due to balking. The inflow to the
orbit is then: p(A + R). Since the departure rate from the orbit is Tr, we can write:

Tr = p(A + R). (6)

Using the flow balance into and out of the orbit (equations (5) and (6):

λo =
Tr

p
+ E[B]µ (7)

Since λo = λ + Tr, equation (7) enables us to write:

λ + Tr =
Tr

p
+ E[B] µ

which yields the result. ��
Figure 2 represents the outgoing and incoming flows used in the above proof.

Although proposition 1 does not facilitate the exact computation of the retrial
rate (E[B] still has to be computed), it suggests a way of estimating it from real
data. If p, λ, µ and E[B] are known, Proposition 1 provides a simple estimator
for Tr. It may also be employed as the basis of approximate techniques such as
the ones in Hoffman and Harris [16]. We postpone, however, the discussion of an
approximation based on this proposition to the next subsection where a different
approach is presented.
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Effective service 

rate : E[B].µ
Call Center

Total arrival 

rate : λo

Outgoing flow due 
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Outgoing flow due 

to balking: R

Fig. 2. The incoming and outgoing flows

4.2 The fluid approximation

Although the stochastic model of the preceding subsection can be used to numer-
ically calculate the performance measures related to retrials, it is computationally
burdensome. Below, we introduce a simple approximation that replaces the tran-
sition rates of the Markov chain by deterministic flow rates. Because the resulting
model is a deterministic continuous flow model, the approximation is referred to as
the fluid approximation. Mandelbaum et al. [19] obtain such an approximation as
a formal limit of a related stochastic model and show through numerical examples
that the approximation is accurate.

In order to describe the approximation, let us begin by replacing the discrete
state space of the original stochastic model by a continuous state space. In the
approximate model, the state is represented by (x1(t),x2(t)), where x1(t) is the
(continuous) level of the real buffer and x2(t) the (continuous) level of the orbit at
time t. Under this continuous deterministic approximation, the total arrival rate to
the system is given by:

λo(t) = δx2(t) + λ(t) (8)

The incoming flow to x1(t) depends on λo(t) and the balking rate at time
t. Using the deterministic approximation, the rate of increase in x1(t) is then :
(1 − r (x1(t))) λo(t), where r(x) represents the balking probability when the real
buffer’s level is x. To define this probability, we extend the previous definition
(equation 2) to a continuous state space as follows:

r(x) =

{
1 − (1 − β)e−θ1

x−C+1
Cµ if x ≥ C

0 otherwise
(9)

The buffer level x1(t) decreases through service completions and abandon-
ments. With the approximation, the rate of decrease in x1(t) due to service com-
pletions and abandonments is equal to :

µ Min (x1(t), C) + θ Max (x1(t) − C, 0) .

We can now express the total rate of change of x1(t) as follows :

dx1

dt
= (1 − r (x1(t))) λo(t) − µMin (x1(t), C) − θMax (x1(t) − C, 0) (10)
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An identical reasoning leads to following differential equation for the rate of
change in x2, the level of the orbit:

dx2

dt
= p (r (x1(t)) λo(t) + θ Max (x1(t) − C, 0)) − δx2(t) (11)

Replacing λo(t) by the right-hand side of equation (8), we can obtain
(x1(t),x2(t)) as the solution of the following differential system:


dx1

dt
= (1 − r (x1(t))) (δx2(t) + λ(t)) − µ Min (x1(t), C)

−θ Max (x1(t) − C, 0)

dx2

dt
= pr (x1(t)) (δx2(t) + λ(t)) − δx2(t) + θp Max (x1(t) − C, 0)

(12)

In particular, in the stationary regime we have:

lim
t→∞

dx1(t)
dt

= lim
t→∞

dx2(t)
dt

= 0 (13)

which enables us to obtain the stationary buffer levels x1 and x2 as follows:


lim
t→∞ x1(t) = x1

lim
t→∞ x2(t) = x2

It is easy to see that, if the average load ρ (= λ/Cµ) is less than or equal to
1, the stationary level of the orbit, x2, is zero. In this case, the approximation can
provide no information about the retrial rate of the system. Let us focus on the
more interesting case where ρ > 1. In this case, it can be verified that x1 ≥ C.
This enables us to write: Min (x1, C) = C and Max (x1 − C, 0) = x1 −C. In the
stationary regime, the system (12) then becomes:{

(1 − r(x1)) (δx2 + λ) = Cµ + θ (x1 − C)

δx2 = pr(x1) (δx2 + λ) + θp (x1 − C)

⇔
{

p (δx2 + λ) = pCµ + θp (x1 − C) + pr(x1) (δx2 + λ)

δx2 = pr(x1) (δx2 + λ) + θp (x1 − C)

which finally leads to:{
p (δx2 + λ) − δx2 = pCµ

δx2 = pr(x1) (δx2 + λ) + θp (x1 − C)
(14)

The above expression enables us to obtain the stationary buffer levels. The
stationary level of the real buffer is the solution of:

(λ − p Cµ) r(x1) + θ(1 − p)(x1 − C) = λ − Cµ (15)

Equation (15) can be solved using standard numerical methods to determine the
value of x1. On the other hand, it turns out that there is a simpler solution for x2.
Interestingly, x2 does not depend on θ, the customer patience threshold rate. This is
a useful property since the other parameters (C, µ, λ, δ and p) are easier to estimate
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in practice. Another useful consequence of the above property (insensitivity to θ)
is that the same insensitivity is also true for the stationary retrial rate. Moreover,
this finding is also true for the stochastic model of the previous subsection. This
result is presented in the following proposition:

Proposition 2 i. The retrial rate, Tr(fluid), obtained through the fluid model does
not depend on θ
ii. The fluid approximation for the retrial rate is asymptotically correct for the
stochastic model (i.e. there exists λ such that Tr(stochastic)−Tr(fluid) < ε, (ε > 0))
as λ increases.

Proof. From equations (14), the stationary level of the orbit, x2 is given by:

x2 =
p

1 − p

λ − Cµ

δ
. (16)

Now, noting that Tr(fluid) = δx2, we obtain:

Tr(fluid) =
p

1 − p
(λ − Cµ) (17)

which does not depend on θ.
In order to prove part ii., consider the expression for Tr(stochastic) given in

Proposition 1 (equation 4) for the stochastic model. We can express:

Tr(stochastic) − Tr(fluid) =
µp

1 − p
(C − E[B])

A direct sample path comparison indicates that E[B] is increasing in λ. This implies
that for any desired difference ε, there exists a λ which makes (C − E[B]) <
((µp)/(1 − p))ε. ��

Proposition 2 suggests the following: the approximation for the retrial rate given
by equation (17) must be accurate for overloaded call centers. In fact, the error of
the approximation is due to replacing C by E[B] in the corresponding formula for
the stochastic model. For overloaded systems, E[B] is reasonably close to C. As
mentioned before, the approximation does not provide any useful information when
λ ≤ Cµ. Nevertheless for large call centers, the retrial phenomenon is essentially
due to overload. Indeed in a large call center that is not overloaded it is well known
(see for example Borst et al. [8]) that both blocking and waiting will occur at a
minimum level, resulting in a negligible potential for retrials.

In the next subsection, we assess the accuracy of this approximation under var-
ious conditions. The convergence rate of the fluid approximation is an important
issue, which is explored through the numerical examples in the following subsec-
tion.

4.3 Numerical assessment for the fluid approximation

In order to assess the performance of the fluid approximation, we show via numerical
examples that the error between the retrial rate δ · x2 (given by equation (17)) and
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the exact retrial rate(given by equation (3)) diminishes rapidly as a function of the
number of servers and system load. In other words, the retrial rate obtained through
the stochastic model (exact) will be compared to that obtained by the fluid model
(approximation). The exact retrial rates were obtained through a numerical solution
of the corresponding Markov Chain.

4.3.1 A call center with balking

Consider first the case where the system load ρ is set to 133% and the number
of servers C is varied. Since ρ = λ/Cµ, λ is also varied proportionally in or-
der to ensure a constant system load. The results of the comparison between the

Table 1. The comparison of the approximation with respect to the actual retrial rate for
ρ = 1.33

C Tr δx2 (fluid) % Error

5 0.69 0.50 27.86
10 1.20 1.00 16.96
15 1.70 1.50 11.71
20 2.19 2.00 8.64
25 2.68 2.50 6.64
30 3.17 3.00 5.26
35 3.66 3.50 4.26
40 4.15 4.00 3.52
45 4.64 4.50 2.94
50 5.13 5.00 2.49

Fig. 3. Percentage error of the fluid approximation for the retrial rate as a function of the
number of servers C for ρ = 133 %
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two models is given in Table 1. In this table and in the remaining parts of this paper
a unit of time is taken to be one minute. As such, µ = 0.3 implies a service rate of
0.3 calls per minute. Using the results in Table 1 we can calculate the error made by
the fluid approximation as a relative percentage of the exact (stochastic) retrial rate
Tr (i.e. percentage error=(| Tr(fluid)-Tr(stochastic)|/Tr(stochastic))× 100). This
error is shown in Figure 3 as a function of the number of servers.

We observe that for a system load fixed at 133 % , the precision of the fluid
approximation increases as a function of the number of servers. For fifty servers
the error is already less than 2.5 % . For small number of servers, the error rate

Table 2. The comparison of the approximation with respect to the actual retrial rate for
C = 40

ρ Tr δx2 (fluid) % Error

100 % 0.98 0.00 100.00
110 % 1.76 1.20 31.96
120 % 2.72 2.40 11.69
130 % 3.78 3.60 4.69
140 % 4.90 4.80 2.01
150 % 6.05 6.00 0.91
160 % 7.23 7.20 0.42
170 % 8.42 8.40 0.20
180 % 9.61 9.60 0.10
190 % 10.80 10.80 0.05
200 % 12.00 12.00 0.02
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Fig. 4. Percentage error of the fluid approximation for the retrial rate as a function of the
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can be higher than 25 % . Given these results, one would clearly prefer the fluid
approximation for large centers as the one being analyzed in the example, given
the simplicity of the analytical evaluation that needs to be performed.

Next, we look at an example where the number of servers C is fixed at 40, and
we vary the system load by increasing the primary arrival rate λ. Table 2 compares
the retrial rates obtained by the stochastic and fluid models. As before, Figure 4
shows the evolution of the percentage error as a function of the system load. The
figure confirms that the precision of the fluid approximation increases rapidly as a
function of the system load. This is not surprising by Proposition 2 which states
that the fluid approximation asymptotically leads to an exact result. Note that the
number of servers in this example represents a small call center in reality. A further
observation to be made is in the case of ρ = 100%. For this case, the error of
the fluid approximation is seen to be 100%. This is not surprising, given the fact
that the fluid approximation completely ignores the stochasticity in the system and
predicts zero retrials. The consolation is that in this particular case the retrial rate
of the stochastic system is very small (0.98 per minute) as observed in Table 2.

The two examples illustrate that the performance of the fluid approximation
improves with higher system load and higher number of servers. In a setting where
both effects are combined, the convergence to high levels of precision occurs even
faster. As a result, we conclude that for medium to large sized call centers with
a heavy system load, the fluid approximation constitutes an effective means to
evaluate the retrial rate. Similar to some recent results in Jimenez and Koole [18],
it may be possible to show this property of scale economies formally using fluid
limits. This is identified as a direction for future research.

4.3.2 A call center without balking

Proposition 2 states another interesting feature of the fluid approximation. Accord-
ingly, the approximate retrial rate obtained by the approximation does not depend
on the balking function r(k). The latter can take another form than that in (2).
Using this property, we will next analyze the performance of the approximation for
another system, given by a balking function r1(k) of the form:

r1(k) =

{
0 if k < K1

1 otherwise
,

with K1 integer and strictly larger than C. In practice many call centers restrict the
length of the queue of waiting customers to a finite length, in order to avoid long
delays in the queue, thereby preferring to block a customer rather than seeing them
abandon. The artificial balking probability r1(k) allows us to indirectly model an
M/M/C/K1 + M call center, that models the impatience of customers in a finite
queue of length K1, where abandoning calls will retry with a probability p after a
time that is exponentially distributed with rate δ. This new system does not allow
for balking. Furthermore, it constitutes a special case of the generic model, and as
a result we expect the fluid approximation to work well for this case as well.

In order to verify this claim, we compare the fluid approximation to the stochas-
tic model for this new system. We consider two examples, one in which the waiting
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Table 3. The comparison of the approximation with respect to the actual retrial rate for
ρ = 1.33 and for varying buffer sizes

K1 = C + 5 K1 = C + 10

C Tr δx2 (fluid) % Error Tr δx2 (fluid) % Error

5 0.59 0.50 15.43 0.58 0.50 14.36
10 1.09 1.00 8.22 1.07 1.00 6.34
15 1.59 1.50 5.42 1.55 1.50 3.49
20 2.08 2.00 3.96 2.04 2.00 2.19
25 2.58 2.50 3.07 2.54 2.50 1.50
30 3.08 3.00 2.48 3.03 3.00 1.09
35 3.57 3.50 2.06 3.53 3.50 0.83
40 4.07 4.00 1.75 4.03 4.00 0.65
45 4.57 4.50 1.51 4.52 4.50 0.52
50 5.07 5.00 1.32 5.02 5.00 0.43
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Fig. 5. Percentage error of the fluid approximation for the retrial rate as a function of the
number of servers C for ρ = 133 % in a system with finite queue capacity

space is restricted to 5 customers (K1 = C + 5) and another to 10 customers
(K1 = C + 10). The parameters and results obtained by the two models are tab-
ulated in Table 3 for a system load of 133%. Figure 5 graphs the error for both
systems. We note that even for a system with finite queue length, the precision of
the fluid approximation improves rapidly as a function of the system size. In fact
the precision is higher compared to the case with infinite waiting room and balking



368 S. Aguir et al.

Table 4. The comparison of the approximation with respect to the actual retrial rate for
C = 40 and for varying buffer sizes

K1 = C + 5 K1 = C + 10

ρ Tr δx2 (fluid) % Error Tr δx2 (fluid) % Error

100 % 0.81 0.00 100.00 0.72 0.00 100.00
110 % 1.60 1.20 25.16 1.50 1.20 19.92
120 % 2.59 2.40 7.40 2.51 2.40 4.36
130 % 3.69 3.60 2.46 3.64 3.60 1.03
140 % 4.84 4.80 0.91 4.81 4.80 0.26
150 % 6.02 6.00 0.37 6.00 6.00 0.07
160 % 7.21 7.20 0.16 7.20 7.20 0.02
170 % 8.41 8.40 0.08 8.40 8.40 0.01
180 % 9.60 9.60 0.04 9.60 9.60 0.00
190 % 10.80 10.80 0.02 10.80 10.80 0.00
200 % 12.00 12.00 0.01 12.00 12.00 0.00
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Fig. 6. Percentage error of the fluid approximation for the retrial rate as a function of the
number of the system load ρ for C = 40 in a system with finite queue capacity
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as modeled previously. Similar results are obtained for the case where we fix the
number of servers C = 40 and vary the system load, as demonstrated by Table 4
and Figure 6.

5 Analysis of the non-stationary system

In most cases, the parameters that we use to model a call center, vary over time. In
the case of arrivals, this represents a changing desire or need by customers to call a
center during the day, and is modeled as non-stationary arrivals. It is quite common
to have beginning or end of the day peaks in call centers that do not operate twenty
four hours a day. Similarly, for twenty four hour a day operational call centers arrival
rates clearly vary between the day and night. The number of servers will also vary
throughout a day, partially in response to changing arrival rates, and partially as a
result of workforce scheduling requirements and constraints. Call center staffing
problems typically treat a day as consisting of multiple time periods, during which
the number of servers remains constant. In this section, we are going to consider
such a period to be of length thirty minutes, also representing the planning period
for most call centers.

Consider now any such period during the day with duration T . During this
period, the parameters of the system λ(t), C, µ, θ, p, δ and r(x) remain constant.
We assume that the period begins with a real queue of size x0

1 and an orbit of size
x0

2. The system of differential equations


dx1

dt
= (1 − r (x1(t))) (δx2(t) + λ(t)) − µ.Min (x1(t), C)

−θ Max (x1(t) − C, 0)

dx2

dt
= p r (x1(t)) (δx2(t) + λ(t))

−δx2(t) + θ p Max (x1(t) − C, 0)

(18)

allows us to evaluate the evolution of the queue within the period being considered.
In particular, we can compute the size of the real queue xT

1 as well as the size of
the orbit xT

2 at the end of the period with duration T .
Since an analytical calculation is not possible, we resort to a numerical analysis.

The following algorithm describes how the equations in (18) can be used to evaluate
the system for multiple planning periods like the one described above. The basic
idea is to link the periods together by setting the appropriate initial levels x0

1 and
x0

2 for each period.

Algorithm for multi-period analysis

– Step 1: Initialization: x0
1 = x0

2 = 0. Using the differential equations in (18)
determine x1(t) and x2(t) for 0 ≤ t ≤ T , with the corresponding period’s
parameter values(C, λ, . . . ). Let xT

1 = x1(T ) and xT
2 = x2(T ).

– Step 2: Initialization: x0
1 = xT

1 and x0
2 = xT

1 . Using the differential equations
in (18) determine x1(t) and x2(t) for T ≤ t ≤ 2T . Let xT

1 = x1(2T ) and
xT

2 = x2(2T ).
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– Step i, i ≥ 3 : Initialization: x0
1 = xT

1 and x0
2 = xT

1 . Using the differential
equations in (18) determine x1(t) and x2(t) for (i − 1)T ≤ t ≤ (i)T . Let
xT

1 = x1(iT ) and xT
2 = x2(iT ).

– Continue until i = n.

5.1 Numerical examples

A numerical example that uses data from the telecommunication service provider’s
call center is presented next. The retrial rate throughout one day of operations at this
call center is determined using the proposed algorithm and the expression δx2(t)
for the retrial rate. These calculations were performed using a standard multi-step
finite approximation method. This is compared to a discrete-event simulation of
the system in question in order to validate the fluid approximation. The simulations
were performed using the discrete event simulation software Arena 5.0. For the
simulation experiments, we collected data in intervals of 2.5 minutes and performed
10000 replications. Below, we report the average retrial rate for each interval over
these 10000 replications for all of the systems considered. We also calculated the
standard deviation of the retrial rate over the replications for assessing the accuracy
of the estimates. The standard deviations for each interval vary during the day and
range from 2-5% (of the average value) for peak periods to 5-12% for periods
that generate few retrials. The standard error of the estimator of the mean (standard
deviation of the sample/

√
sample size) is hence extremely small (i.e. under 0.12%).

The comparisons are made for three systems, which we can view as the current
system (System 1), the current system under higher arrival rates (System 2), and
a system where the total number of servers have been distributed equally between
the periods in a day (System 3). Common parameters for the example are tabulated
in Table 5. Table 6 tabulates the arrival rates and number of servers for each system
for a particular day. The total cumulative number of servers for all three systems is
3135.

Figure 7 compares the case of System 1 and 2. For both systems, the simulation
results practically coincide with the numerical analysis. The only interval where
they are slightly separated is between 15:30 and 16:30. Notice that the lowest
utilization (ρ = λ/Cµ) (between 0.95 and 1.04) for both systems happens during
the interval 14:30 and 16:30. Between 14:30 and 15:30 there are still calls in the
orbit, so the actual utilization that the system will experience will be higher. As
a result, during this interval the approximation still works well. In the subsequent
time period, the system will experience the low utilization rates, and in this case

Table 5. The parameters that are constant during the day for the analyzed systems

µ θ δ p β θ1

0.3 0.5 0.1 0.6 0.2 1
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Table 6. The parameters that vary during the day for the analyzed systems

Period System 1 System 2 System 3

start end C λ C λ C λ

09:00 09:30 86 68 86 110 175 68
09:30 10:00 114 75 114 110 175 75
10:00 10:30 177 101 177 115 175 101
10:30 11:00 180 87 180 100 174 87
11:00 11:30 197 82 197 94 174 82
11:30 12:00 192 80 192 89 174 80
12:00 12:30 169 73 169 75 174 73
12:30 13:00 155 74 155 78 174 74
13:00 13:30 169 67 169 72 174 67
13:30 14:00 124 74 124 80 174 74
14:00 14:30 140 70 140 80 174 70
14:30 15:00 238 68 238 71 174 68
15:00 15:30 231 72 231 70 174 72
15:30 16:00 235 69 235 67 174 69
16:00 16:30 215 67 215 64 174 67
16:30 17:00 214 69 214 73 174 69
17:00 17:30 163 69 163 74 174 69
17:30 18:00 136 73 136 88 174 73
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Evolution of the Retrial rate
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Fig. 8. Comparison of simulation results and numerical analysis results for Systems 1 and 3

the numerical analysis is no longer as precise. We observe that System 2 has higher
retrial rates compared to System 1, though the qualitative pattern of the retrial
curves for both systems resemble each other.

Figure 8 compares System 1 and 3. Recall that both of these systems have
identical arrival rates, and the difference comes from the distribution of the total
number of servers during the day. Once again, there is a good fit between the
numerical analysis and simulation curves. In fact, since the redistribution of servers
results in utilization rates that are higher than one in each period, we observe
that the approximation results coincide with the simulation for all periods. This
time the shape of the retrial rate curve is visibly different. The example illustrates
the importance of staffing decisions on the resulting retrial phenomenon. Indeed,
improved staffing can lead to a lower and less variable retrial rate curve.

5.2 Estimating primary calls from observed calls

Once x1(t) and x2(t), 0 ≤ t ≤ T , have been determined, one can evaluate the
observed call rate for the entire horizon using the relation

λo(t) = λ + δx2(t). (19)

The average rate of observed calls is then given by

λ̄o =
1
T

T∫
0

λo(t) dt
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Evolution of the primary calls
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Fig. 9. Evolution of the primary call rate λ as a function of the observed call rate λo

and is calculated using the expression

λ̄o(λ) = λ +
δ

T

T∫
0

x2(t) dt (20)

In many call centers, managers have information about the observed calls λo, and
not about the primary calls λ. Thus, one would like to obtain an estimate for λ
using λo. This can be done by a numerical inversion of Equation (20), using the
differential equations in (18). In order to find the rates for the entire day, it is
sufficient to link the periods together, using the end values of a period for the initial
values in the next.

Figure 9 illustrates an example where λ has been determined with a knowledge
of λo for a case that is representative of a real call center. In particular, the same
parameters given in Table 5 have been used, along with the number of servers as
tabulated for Systems 1 and 2 in Table 6. The arrival rates that were treated as
primary calls in the previous numerical example, were taken as the observed arrival
rates here. Using these parameters, the primary arrival rate that is obtained is shown
in the figure. We observe that one can have huge differences between the two arrival
rates as shown for the beginning of the day in the example. These periods represent
cases where the arrivals exceed service capacity, which results in an accumulation
of retrial calls. As service capacity is increased, the two curves come closer together
coinciding once the capacity is sufficient to satisfy both incoming primary calls and
retrials from before. For this particular example, we note that the primary calls curve
represents a relatively flat curve. If one were to use the observed calls to determine
staffing needs, it is clear that one would end up with a system where capacity varies
much more than necessary throughout the day, and mismatches between demand
and supply occur.
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6 Concluding remarks

We have analyzed the phenomenon of retrials in a call center with abandonments
and balking. The system is analyzed both for a single-period and a multi-period
setting. For the single period setting a fluid approximation is proposed to estimate
the retrial rate in the system. This approximation results in an easy to compute ana-
lytical expression for the retrial rate. Using this analytical expression, we illustrate
an insensitivity of this rate to key parameters such as the abandonment rate, the
individual retrial probability, and the balking probability distribution. This insen-
sitivity property allows us to use the same approximation for models that have an
finite buffer. It is shown through numerical examples that the fluid approximation
works very well for large call centers that have a utilization that is greater than
one. For ρ less than one, the approximation is not appropriate. One may be able to
use it coupled with a good approximation of the expected number of busy servers.
This will be explored in future research. However note that we are less interested
in systems with ρ less than one, since these will lead to much lower number of
retrials, that will have an insignificant impact on system performance.

The fluid approximation is also shown to provide an effective method of anal-
ysis in the multi-period setting. The retrial probability can no longer be estimated
using an analytical formula, and numerical analysis is required. A comparison with
simulation illustrates the effectiveness of the method. Using data that resembles the
call center in question, numerical examples illustrate that the retrial phenomenon
can be substantial and will have an important effect on performance analysis and
subsequent system optimization if not taken into account. By comparing systems
with different arrival rates and allocation of staff across time periods, it is shown
that there is a significant impact on the retrial rate both of arrival rates and staffing
distribution. Thus having the wrong arrival rate estimate or improper allocation
of staff across time periods will have an effect on the retrials that are generated.
Furthermore, it is shown that the shape of the observed arrivals call pattern can be
qualitatively different from the shape of the primary calls curve, emphasizing the
importance of explicitly modeling retrial behavior in non-stationary systems. This
is an important conclusion for call center managers, since typical call center models
and software used by call centers ignore the retrial phenomenon. For call centers
that operate under moderate or low utilization this will not pose a problem, however
for call centers that operate under heavy utilization this will lead to distortions that
increase operational costs. We further show how one can estimate the rate of first
attempts using the historical data on total call volumes. While future software may
make it possible for call centers to track retrials directly, this result is still useful in
cleaning up historical data.

In this paper we have demonstrated that there is a strong and significant interac-
tion between staffing and retrials, and as a result that retrials can have an important
impact on call center performance. In Aguir et al. [1] it is illustrated how one may
think about staffing in the presence of retrials in a single period setting. In future
work, we would like to consider staffing schemes for the multi-period setting, that
explicitly account for retrials in a call center.
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