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Abstract. Combinatorial optimization problems are often too complex to be solved
within reasonable time limits by exact methods, in spite of the theoretical guaran-
tee that such methods will ultimately obtain an optimal solution. Instead, heuristic
methods, which do not offer a convergence guarantee, but which have greater flex-
ibility to take advantage of special properties of the search space, are commonly a
preferred alternative. The standard procedure is to craft a heuristic method to suit
the particular characteristics of the problem at hand, exploiting to the extent possi-
ble the structure available. Such tailored methods, however, typically have limited
usefulness in other problems domains.

An alternative to this problem specific solution approach is a more general
methodology that recasts a given problem into a common modeling format, per-
mitting solutions to be derived by a common, rather than tailor-made, heuristic
method. Because such general purpose heuristic approaches forego the opportunity
to capitalize on domain-specific knowledge, they are characteristically unable to
provide the effectiveness or efficiency of special purpose approaches. Indeed, they
are typically regarded to have little value except for dealing with small or simple
problems.

This paper reports on recent work that calls this commonly held view into
question. We describe how a particular unified modeling framework, coupled with
latest advances in heuristic search methods, makes it possible to solve problems
from a wide range of important model classes.
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Introduction

The optimization folklore strongly emphasizes the unproductive consequences of
converting problems from a specific class to a more general representation, since
the “domain-specific structure” of the original setting then becomes invisible and
can not be exploited by a method for the more general problem representation.
Nevertheless, there is a strong motivation to attempt such a conversion in many
applications to avoid the necessity to develop a new method for each new class.
We demonstrate the existence of a general problem representation that frequently
overcomes the limitation commonly ascribed to such models. Contrary to expec-
tation, when a specially structured problem is translated into this general form, it
often does not become much harder to solve, and sometimes becomes even easier
to solve, provided the right type of solution approach is applied.

Our research over the past few years has revealed that this unified approach is
surprisingly successful for a wide range of important problems, often surpassing the
performance of established special-purpose methods for particular problem classes.
As such, this unified approach holds great promise as a practical method for solving
a variety of important problems.

The unified model

The model with this appealing property is the unconstrained quadratic binary pro-
gramming problem, accompanied by the device of introducing quadratic infeasi-
bility penalty functions to handle constraints. Not only is this model capable of
representing many “special case” problem classes, but it can be advantageously
exploited by adaptive memory (tabu search) metaheuristics and associated evolu-
tionary (scatter search) methods. Computational outcomes disclose the effective-
ness of this combined modeling and solution approach for problems from a diverse
collection of challenging settings.

The unconstrained quadratic program can be written in the form:

UQP : min f(x) = xQx

where Q is an n by n matrix of constants and x is an n-vector of binary variables.
UQP is notable for its ability to represent a significant variety of important prob-
lems. The applicability of this representation has been reported in diverse settings
such as spin glasses and circuit board layout (De Simone et al. [11], Grotschel
et al. [19] and Palubeckis [33]), financial analysis (Laughunn [30], McBride and
Yormak [31]), computer aided design (Krarup and Pruzan [29]), traffic manage-
ment (Gallo et al. [13], Witsgall [40]), machine scheduling (Alidaee, Kochenberger,
and Ahmadian [1]), cellular radio channel allocation (Chardaire and Sutter [9]),
molecular conformation (Phillips and Rosen [37]) and the prediction of epileptic
seizures (Iasemidus et al. [25]. Moreover, many satisfiability problems (Hammer
and Rudeanu [21], Boros and Hammer [5], Boros and Prekopa [7]) as well as combi-
natorial optimization problems pertaining to graphs such as determining maximum
cliques, maximum cuts, maximum vertex packing, minimum coverings, maximum
independent sets, and maximum independent weighted sets are known to be capable
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of being formulated by the UQP problem (see for instance Boros and Hammer [5],
Bourjolly et al. [8], Hammer et al. [20] as well as Du and Pardalos [12], Pardalos
and Rodgers [34, 35], and Pardalos and Xue [36]).

The application potential of UQP is substantially greater than this, however,
due to reformulation methods that enable certain constrained models to be re-cast
in the form of UQP. Hammer and Rudeanu [21], Hansen [22], and Hansen et al.
[23] show that any quadratic (or linear) objective in bounded integer variables and
constrained by linear equations can be reformulated as a UQP model. Nonetheless,
few applications of this idea appear in the literature. Our purpose here, based on
extensive experience with a wide variety of problems, is to establish that such
reformulation into the UQP format is not merely a representational novelty, but a
unified framework of practical consequences.

Transformation to xQx

Many practical combinatorial optimization problems can be modeled as constrained
optimization problems of the form

min x0 = xQx

subject to

Ax = b, x binary

The foregoing model accommodates both quadratic and linear objective functions
since the linear case results when Q is a diagonal matrix (observing that x2

j = xj

when xj is a 0-1 variable). Problems with inequality constraints can also be put into
this form by introducing so-called slack variables to convert the inequalities into
equations, and representing these bounded slack variables by a binary expansion.
These constrained quadratic optimization models are then converted into equivalent
UQP models by adding a quadratic infeasibility penalty function to the objective
function as an alternative to explicitly imposing the constraints Ax = b. The general
approach to such re-casting, which we call transformation # 1, is given below:

Transformation 1. We choose a positive scalar P , to yield

x0 = xQx + P (Ax − b)t (Ax − b)
= xQx + xDx + c

= xQ̂x + c

where the matrix D and the additive constant c result directly from the matrix mul-
tiplication indicated. We can drop the additive constant, whereupon the equivalent
unconstrained version of our constrained problem becomes

UQP (PEN) : minxQ̂x, x binary

From a theoretical standpoint, a suitable choice of the penalty scalar P can always
be chosen so that the optimal solution to UQP (PEN) is the optimal solution to
the original constrained problem (Hammer and Rudeanu [21). From a practical
standpoint, however, experience has shown that penalty-based conversions in other
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settings have uniformly proved to be highly unstable, engendering numerical diffi-
culties and poor solution performance when the penalties are large, and producing
invalid representations of the original problem when the penalties are smaller. Find-
ing a proper trade-off between penalty size (and the design of a method to exploit
the penalized representation) has turned out to be feasible only in the case of linear
and convex programming domains, where penalty considerations are much sim-
pler than in combinatorial optimization. By contrast, however, our experience with
penalty-based representations of the UQP model for combinatorial optimization
problems has shown them to be easy to work with and highly robust. As reported in
[27], valid and computationally stable penalty values can be found without difficulty
and a wide range of such values work well.

In addition to the modeling possibilities introduced by Transformation 1, a very
important special class of constraints that arise in many applications can be handled
by an alternative approach, given below.

Transformation 2. This approach is convenient for problems with considerations
that isolate two specific alternatives and prohibit both from being chosen. That is,
for a given pair of alternatives, one or the other but not both may be chosen. If xj

and xk are binary variables denoting whether or not alternatives j and k are chosen,
the standard constraint that allows one choice but precludes both is:

xj + xk ≤ 1

Then, for a positive scalar P , adding the penalty function Pxjxk to the objective
function is a simple alternative to imposing the constraint in a traditional manner.
For problems with a linear objective function, the scalar P (with respect to transfor-
mation # 2) can be chosen as small as the largest objective function coefficient [5].
This penalty function has sometimes been used by to convert certain optimization
problems on graphs into an equivalent UQP model as referenced in the previous
section. Its potential application, however, goes far beyond these settings as demon-
strated in this paper. Variable upper bound constraints of the form xij ≤ yi can be
accommodated by Transformation 2 by first replacing each yi variable by 1 − y′

i,
where y′

i is the complementary variable that equals 1 when yi = 0 and equals 0
when yi = 1. The opportunity to employ this modeling device in the context of
Transformation 2 makes it possible to conveniently model a variety of additional
problem types.

The constraint associated with Transformation # 2 appears in many important
applications which leads us to single it our here as an important alternative to Trans-
formation # 1. We note, however, that many other problem specific special cases
exist that can be employed to quickly yield quadratic equivalent representations.
We illustrate this later in the paper when we discuss results we have obtained for
the max 2-SAT problem.
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Examples

Before highlighting some of the problem classes to which we have successfully
applied the foregoing transformation approaches, we give two small examples from
classical NP-hard problem settings to provide concrete illustrations.

Example 1. Set Partitioning. The classical set partitioning problem is found in
applications that range from vehicle routing to crew scheduling [26, 32]. As an
illustration, consider the following small example:

min x0 = 3x1 + 2x2 + x3 + x4 + 3x5 + 2x6

subject to

x1 + x3 + x6 = 1
x2 + x3 + x5 + x6 = 1
x3 + x4 + x5 = 1
x1 + x2 + x4 + x6 = 1

and x binary. Applying Transformation 1 with P = 10 gives the equivalent UQP
model:

UQP (PEN) : minxQ̂x, x binary

where the additive constant, c, is 40 and

Q̂ =




−17 10 10 10 0 20
10 −18 10 10 10 20
10 10 −29 10 20 20
10 10 10 −19 10 10
0 10 20 10 −17 10
20 20 20 10 10 −28




Solving UQP (PEN) by the Tabu Search method of Glover et al. [17, 18] we
obtain an optimal solution x1 = x5 = 1, (all other variables equal to 0) for which
x0 = 6. In the straightforward application of Transformation 1 to this example,
it is to be noted that the replacement of the original problem formulation by the
UQP (PEN) model did not involve the introduction of new variables. In many
applications, Transformation 1 and Transformation 2 can be used in concert to
produce an equivalent UQP model, as demonstrated next.

Example 2. The K-Coloring Problem.
Vertex coloring problems seek to assign colors to nodes of a graph such that adjacent
nodes are assigned different colors. The K-coloring problem attempts to find such
a coloring using exactly K colors. A wide range of applications, ranging from
frequency assignment problems to printed circuit board design problems [10, 39],
can be represented by the K-coloring model.

Such problems can be modeled as satisfiability problems using the assignment
variables as follows:

Let xij to be 1 if node i is assigned color j, and to be 0 otherwise.
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Since each node must be colored, we have

K∑
j=1

xij = 1 i = 1, ..., n (1)

where n is the number of nodes in the graph. A feasible coloring requires that
adjacent nodes are assigned different colors. This is accomplished by imposing the
constraints

xip + xjp ≤ 1 p = 1, ..., K (2)

for all adjacent nodes (i, j) in the graph.
This problem can be re-cast into the form of UQP by using Transformation 1 on

the assignment constraints of (1) and Transformation 2 on the adjacency constraints
of (2). No new variables are required. Since the model of (1) and (2) has no explicit
objective function, any positive value for the penalty, P , will do. The following
example gives a concrete illustration of the re-formulation process.

Consider the following graph and assume we want find a feasible coloring of
the nodes using 3 colors.

5 2 

4 3 

1 

Our satisfiablity problem is that of finding a solution to:

xi1 + xi2 + xi3 = 1 i = 1, 5 (3)

xip + xjp ≤ 1 p = 1, 3 (4)

(for all adjacent nodes i and j)
In this traditional form, the model has 15 variables and 26 constraints. To recast

this problem into the form of UQP , we use Transformation 1 on the equations of
(3) and Transformation 2 on the inequalities of (4). Arbitrarily choosing the penalty
P to be 4, we get the equivalent problem:

UQP (Pen) : minxQ̂x
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where the Q̂ matrix is:

Q̂ =




−4 4 4 4 0 0 0 0 0 0 0 0 4 0 0
4 −4 4 0 4 0 0 0 0 0 0 0 0 4 0
4 4 −4 0 0 4 0 0 0 0 0 0 0 0 4
4 0 0 −4 4 4 4 0 0 4 0 0 4 0 0
0 4 0 4 −4 4 0 4 0 0 4 0 0 4 0
0 0 4 4 4 −4 0 0 4 0 0 4 0 0 4
0 0 0 4 0 0 −4 4 4 4 0 0 0 0 0
0 0 0 0 4 0 4 −4 4 0 4 0 0 0 0
0 0 0 0 0 4 4 4 −4 0 0 4 0 0 0
0 0 0 4 0 0 4 0 0 −4 4 4 4 0 0
0 0 0 0 4 0 0 4 0 4 −4 4 0 4 0
0 0 0 0 0 4 0 0 4 4 4 −4 0 0 4
4 0 0 4 0 0 0 0 0 4 0 0 −4 4 4
0 4 0 0 4 0 0 0 0 0 4 0 4 −4 4
0 0 4 0 0 4 0 0 0 0 0 4 4 4 −4




Solving this unconstrained model, xQ̂x, yields the feasible coloring:

x11, x22, x33, x41, x53, = 1 all other xij = 0

This approach to coloring problems has proven to be very effective for a wide
variety of coloring instances from the literature. Later in this paper we present
some computational results for several standard k-coloring problems. An extensive
presentation of the xQx approach to a variety of coloring problems, including a gen-
eralization of the K-coloring problem considered here, is given in Kochenberger,
Glover, Alidaee, and Rego [28].

Solution approaches to UQP

Due to its computational challenge and application potential, UQP has been the
focus of a considerable number of research studies in recent years, including both
exact and heuristic solution approaches. Recent papers report on the branch and
bound (exact) approaches as well as a variety of modern heuristic methods including
simulated annealing, genetic algorithms, tabu search, and scatter search (see [27]
for references to these and other works). Each of these approaches exhibits some
degree of success. However, the exact methods degrade rapidly with problem size,
and have meaningful application to general UQP problems with no more than 100
variables. (A notable exception to this for the Ising spin glass problem is discussed in
[11].) For larger problems, heuristic methods are usually required. Several proposed
heuristics, including the DDT method of Boros, Hammer, and Sun [6] and the “one-
pass” procedures of Glover, Alidaee, Rego, and Kochenberger [16] have proven to
be effective in certain instances. Two methods we have found to be particularly
successful for a wide variety of problems are based on tabu search [14, 17, 18] and
on the related evolutionary strategy scatter search [15]. In the following section we
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highlight our tabu search approach which was used to produce the computational
results referenced later in this paper.

Although not pursued by us here, we note that an alternative approach is to solve
UQP as a continuous non-linear optimization problem within the unit cube. This
allows other heuristic/approximation methods based on continuous optimization
methodologies to be applied (see [4, 7, 38]).

Tabu search overview

Our TS method for UQP is centered around the use of strategic oscillation, which
constitutes one of the primary strategies of tabu search. The variant of strategic
oscillation we employ may be sketched in overview as follows.

The method alternates between constructive phases that progressively set vari-
ables to 1 (whose steps we call “add moves”) and destructive phases that progres-
sively set variables to 0(whose steps we call “drops moves”). To control the
underlying search process, we use a memory structure that is updated at critical
events, identified by conditions that generate a subclass of locally optimal solutions.
Solutions corresponding to critical events are called critical solutions.

A parameter span is used to indicate the amplitude of oscillation about a critical
event. We begin with span equal to 1 and gradually increase it to some limiting
value. For each value of span, a series of alternating constructive and destructive
phases is executed before progressing to the next value. At the limiting point, span
is gradually decreased, allowing again for a series of alternating constructive and
destructive phases. When span reaches a value of 1, a complete span cycle has been
completed and the next cycle is launched.

Information stored at critical events is used to influence the search process
by penalizing potentially attractive add moves (during a constructive phase) and
inducing drop moves (during a destructive phase) associated with assignments of
values to variables in recent critical solutions. Cumulative critical event information
is used to introduce a subtle long term bias into the search process by means of
additional penalties and inducements similar to those discussed above. A complete
description of the framework for the method is given in Glover, Kochenberger,
Alidaee, and Amini [17].

Computational experience

Our results of applying the tabu search and associated scatter search metaheuristics
to combinatorial problems recast in UQP form have been uniformly attractive in
terms of both solution quality and computation times. Although our methods are
designed for the completely general form of UQP , without any specialization to
take advantage of particular types of problems reformulated in this general repre-
sentation, our outcomes have typically proved competitive with or even superior to
those of specialized methods designed for the specific problem structure at hand.
Our broad base of experience with UQP as a modeling and solution framework
includes a substantial range of problem classes including:
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Quadratic assignment problems
Capital budgeting problems
Multiple knapsack problems
Task allocation problems (distributed computer systems)
Maximum diversity problems
P -median problems
Asymmetric assignment problems
Symmetric assignment problems
Side constrained assignment problems
Quadratic knapsack problems
Constraint satisfaction problems (CSPs)
Discrete tomography problems
Set partitioning problems
Set packing problems
Warehouse location problems
Maximum clique problems
Maximum independent set problems
Maximum cut problems
Graph coloring problems
Number partitioning problems
Linear ordering problems
Clique partitioning problems
SAT problems

We are currently solving problems via UQP with more than 35,000 variables
in the quadratic representation and are working on enhancements that will permit
larger instances to be solved. For each of the problem classes listed above we have
considerable computational experience showing that this approach consistently
produces high quality solutions within very modest computational time. Below we
present some representative results for two of the problem classes. Details of our
experience with other problems will be presented in future papers.

K-coloring results

Earlier in the paper we presented a small example of the 3-coloring problem. To
test the potential attractiveness of the UQP modeling and solution approach to K-
coloring problems, 15 standard test problems from the literature were recast into
the form of UQP and solved by our tabu search method. Table 1 gives a description
of the problems and presents the results. All computations were carried out on a
1.7 gigahertz PC.

The first four columns of Table 1 indicate the problem identifier along with the
size of the graphs and the number of colors (K) to be used. The last three columns
give the number of variables involved, whether or not a feasible coloring was found
utilizing K colors, and the time our tabu search method took to find a solution.
Note that feasible colorings (solutions) were quickly found in all 15 cases. In fact,
the solutions shown in Table 1 are known to be optimal.
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Table 1. K-coloring test problems from http://mat.gsia.cmu.edu/COLOR/instances.html

# # # xQx xQx xQx

ID Vertices Edges K Variables feasible Time

Myciel3 11 20 4 44 Yes < 1 sec
Myciel4 23 71 5 115 Yes < 1 sec
Myciel5 47 236 6 282 Yes < 1 sec
Myciel6 95 755 7 665 Yes < 1 sec
Myciel7 191 2360 8 1528 Yes < 1 sec
Anna 138 493 11 1518 Yes 47 sec
David 87 406 11 957 Yes 1 min, 13 sec
Huck 74 301 11 814 Yes 2 sec
Jean 80 254 10 800 Yes < 1 sec
Games120 120 638 9 1080 Yes < 1 sec
Queen5 5 25 160 5 125 Yes < 1 sec
Queen6 6 36 290 7 252 Yes < 1 sec
Queen7 7 49 476 7 343 Yes < 1 sec
Queen8 12 96 1368 12 1162 Yes < 1 sec
Queen8 8 64 728 9 576 Yes < 1 sec

Max 2-SAT results

Several authors (Hammer and Rudeanu [21], Hansen and Jaumard [24], Boros and
Hammer [5]) have established the connection between SAT problems and nonlinear
penalty functions. The special case of Max 2-SAT is particularly well suited for this
approach as it leads naturally to an xQx representation. Our experience, as shown
below, indicates that this is a very attractive way to approach this class of problems.

For a 2-SAT problem, a given clause could have zero, one, or two negations, each
with a corresponding (classical) linear constraint. Each linear constraint, in turn,
has an exact quadratic penalty that serves as an alternative to the linear constraint.
The three possibilities and their constraint/penalty pairs are:

(a) No negations:
Classical constraint: xi + xj ≥ 1
Exact Penalty: (1 − xi − xj + xixj)

(b) One negation:
Classical constraint: xi + x̄j ≥ 1
Exact Penalty: (xj − xixj)

(c) Two negations:
Classical constraint: x̄i + x̄j ≥ 1
Exact Penalty: (xixj)

It is easy to see that the quadratic penalties shown are zero for feasible solutions
and positive for infeasible solutions. Thus, these special penalties can be used to
readily construct a penalty function of the form of xQx (simply by adding the
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Table 2. Problems from Borchers and Furman [3]

Best
known xQx xQx Maxsat3 Maxsat

n m solution solution time solution time

50 100 4 4 < 1 4 0.4
50 150 8 8 < 1 8 1.5
50 200 16 16 < 1 16 116.2
50 250 22 22 < 1 22 652.4
50 300 32 32 < 1 32 8,763
50 350 41 41 < 1 NA > 12 hr
50 400 45 45 < 1 NA > 12 hr
50 450 63 63 < 1 NA > 12 hr
50 500 66 66 < 1 NA > 12 hr

100 200 5 5 < 2 5 3.2
100 300 15 15 < 2 15 13,770
100 400 29 29 < 2 NA > 12 hr
100 500 44 44 < 2 NA > 12 hr
100 600 ? 65 < 2 NA > 12 hr
150 300 4 4 < 3 4 4.1
150 450 22 22 < 3 NA > 12 hr
150 600 38 38 < 3 NA > 12 hr

penalties together) which we seek to minimize. We have found this approach to be
very effective on a variety of test problems. Table 2 shows the results we obtained
via this approach on a set of test problems from the literature.

Remarks.

1. All times in seconds unless noted otherwise.
2. Maxsat is an exact method developed by Borchers & Furman
3. Maxsat results obtained on IBM RS/6000-590
4. xQx results obtained on a 1.6 MHZ PC.
5. Each xQx run was for 50 SPAN cycles
6. Problem 100 600 was previously unsolved.

As shown in Table 2, by re-casting each Max 2-SAT instance into the form of
xQx and solving the resulting unconstrained quadratic binary program with our
Tabu Search heuristic, we were able to find best known solutions very quickly to all
test problems considered. By way of contrast, the method of Borchers and Furman
took a very long time on several problems and was unable to find best known results
for several instances in the allotted 12 hour time limit. In addition to the problems of
Table 2 above, we have successfully applied this approach to randomly generated
problems with as many as 1000 variables and more than 10,000 clauses where best
known results are found in roughly one minute of computation time.
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The results shown in Tables 1 and 2 above serve as strong evidence of the
attractiveness of the xQx approach for the problems considered. Considering both
solution quality and the time taken to produce these solutions, this approach is
very competitive with special purpose methods constructed specifically for vertex
coloring and max 2-Sat problems. We note in passing that similar performance
relative to special purpose methods has been obtained for the other problem classes
singled out earlier in the paper as well.

Summary

We have demonstrated how a variety of disparate combinatorial problems can be
solved by first re-casting them into the common modeling framework of the uncon-
strained quadratic binary program. Once in this unified form, the problems can be
solved effectively by adaptive memory tabu search metaheuristics and associated
evolutionary (scatter search) procedures.

Our findings challenge the conventional wisdom that places high priority on
preserving linearity and exploiting specific structure. Although the merits of such
a priority are well-founded in many cases, the UQP domain appears to offer a par-
tial exception. In forming UQP (PEN), we destroy any linearity that the original
problem may have exhibited. Moreover, any exploitable structure that may have
existed originally is “folded” into the Q̂ matrix, and the general solution proce-
dure we apply takes no advantage of it. Nonetheless, our solution outcomes have
been remarkably successful, yielding results that rival the effectiveness of the best
specialized methods.

This combined modeling/solution approach provides a unifying theme that can
be applied in principle to all linearly constrained quadratic and linear programs
in bounded integer variables, and the computational findings for a broad spectrum
of problem classes raises the possibility that similarly successful results may be
obtained for even wider ranges of problems. As our methods for UQP continue to
improve with ongoing research, the UQP model offers a representational tool of
particular promise.
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