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Abstract. Busan is one of the busiest seaports in the world where millions of con-
tainers are handled every year. The space of the container terminal at the port is so
limited that several small container yards are scattered in the city. Containers are
frequently transported between the container terminal and container yards, which
may cause tremendous traffic problems. The competitiveness of the container ter-
minal may seriously be aggravated due to the increase in logistics costs. Thus,
there exist growing needs for developing an efficient fleet management tool to re-
solve this situation. This paper proposes a new fleet management procedure based
on a heuristic tabu search algorithm in a container transportation system. The pro-
posed procedure is aimed at simultaneously finding the minimum fleet size required
and travel route for each vehicle while satisfying all the transportation requirements
within the planning horizon. The transportation system under consideration is static
in that all the transportation requirements are predetermined at the beginning of the
planning horizon. The proposed procedure consists of two phases: In phase one, an
optimization model is constructed to obtain a fleet planning with minimum vehicle
travel time and to provide a lower bound on the fleet size. In phase two, a tabu
search based procedure is presented to construct a vehicle routing with the least
number of vehicles. The performance of the procedure is evaluated and compared
with two existing methods through computational experiments.
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1 Introduction

Busan is one of the busiest seaports in the world, which handles about 10 million
twenty-foot equivalent units (TEUs) of containers, more than 90 % of the total
container volumes exported from and imported to Korea. The container terminal
area in Busan is so limited that all the containers cannot be stored in on-dock
container yards. Hence, a significant amount of the containers are stored and handled
in off-the-dock container yards (ODCYs) located near the port container terminal.
The containers are moved by container trucks between the container terminal yard
and the ODCYs. The container transportation within the city causes tremendous
traffic problems in the port city and increases the logistics cost which may aggravate
the competitiveness of the container terminal.

Figure 1 shows a simple container transportation environment under consid-
eration. Import containers are unloaded from a container vessel entering the port,
and placed at a marshalling area in the container terminal. Then the containers are
moved to on-dock container yards, ODCYs, rail container yards, inland container
depots, and local coastal port yards. The flow of the export containers would be
reversed. Each container to be delivered has its own destination. For example, in
Figure 1, seven containers are to be moved from ODCY3 to the seaport container
terminal and 21 containers from seaport container terminal to ODCY3. A container
is delivered by a single vehicle and a vehicle carries only a single container at a
time. Each container will not be split during the travel and, thus is considered a
transportation unit load.

This paper deals with a static transportation problem in which all the trans-
portation jobs are ready to be picked up at the beginning of a planning horizon.
It is assumed that the number of containers to be moved between two locations
is determined at the beginning of the planning horizon, and travel times between
locations as well as loading and unloading times are deterministic and known in
advance. At the beginning of the planning horizon (e.g., one shift), several identical
vehicles are ready at a location. This transportation environment is referred to as
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Fig. 1. An example of container transportation
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a tractor-trailer transportation system (Bodin et al., 1983) or a static dial-a-ride
problem with multiple vehicles of single capacity.

It is desirable to satisfy all the transportation requirements within the planning
horizon with the minimum number of vehicles or fleet size. The fleet size can be
found if the total vehicle travel time in the planning horizon is known. The lower
bound on the required fleet size is the total vehicle travel time divided by the length
of the planning horizon or time period available for a vehicle within the planning
horizon. The total vehicle travel time consists of empty travel time, loading time,
loaded travel time, and unloading time. Among these, the loaded travel time can
be found using a from-to chart indicating transportation requirements between
locations and travel time matrix. The loading and unloading times can be estimated
from the number of loadings and unloadings performed in the planning horizon.
The fleet size can thus be determined by the empty travel time. However, estimation
of the empty travel time is a complex task since it requires information about vehicle
routing.

This paper presents a two-phase fleet sizing and vehicle routing procedure. The
objective of the procedure is to provide a multiple vehicle routing to complete all
the transportation requirements with the minimum fleet size. Phase one uses an
optimization model to produce a lower bound on the required fleet size, and phase
two applies a tabu search based heuristic to generate vehicle routing along with an
appropriate fleet size.

2 Previous research works

Many existing research works on freight transportation deal with how to determine
the sequence of vehicle’s visit to the request locations, which is closely related to the
well-known traveling salesman problem (TSP), Multiple TSP, and general vehicle
routing problems. Readers are referred to Laporte and Osman (1995), Crainic and
Laporte (1998) and Chao (2002) among others. The vehicle routing problem in
container transportation is slightly different from these research works in that a
location may be visited as many times as the number of containers to be delivered,
and a container should be delivered to a specific destination once loaded. Thus, it is
similar to the single-capacity pickup-delivery transportation problem with sequence
dependency. The transportation capacity constraint that a vehicle can move only a
single container at a time makes the current problem more difficult to solve than
the TSP which is known to be NP-hard. This implies that the optimal solution is
computationally infeasible to obtain as problem sizes increase.

Most research works on container transportation systems focus on the design
and operation of logistics within seaport container terminals. For vehicle operation
problems in container terminals, Kim and Bae (1999) address assignment problems
of container-delivery tasks to vehicles during ship operation in automated container
terminals. Their work is later extended to the case of multiple quay cranes in Bae
and Kim (2000). Grunow et al. (2004) present a priority-rule based dispatching
procedure for a container terminal where automated guided vehicles (AGVs) with
multiple-load capability are used as container transporters. They conclude through
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numerical experiments that the use of dual load capabilities of the vehicles signif-
icantly improves the performance of the transportation system with respect to the
total lateness and empty vehicle travel times. Kozan and Preston (1999) present
a genetic algorithm based scheduling procedure for multimodal seaport container
terminals to determine the optimal storage strategies and container handling sched-
ules. They examine the effect of the number of containers, handling equipment,
storage capacities and policies, and container terminal layout through simulation
experiments. Kim and Kim (1999) present a routing procedure for a straddle car-
rier in port container terminals. An integer programming model is formulated and
a heuristic is presented to solve the real world problem in an efficient way. Bish et
al. (2001) develop a vehicle-scheduling-location heuristic to assign each container
to a yard location and dispatch vehicles to the containers so as to minimize the
time spent to download all the containers from the ship. Queueing network models
(Legato and Mazza 2001) and simulation models (Gambardella et al. 1998;Yun and
Choi 1999; Shabayek and Yeung 2002) are also applied to design and analyze the
container terminal operations.A variety of decision problems at container terminals
are classified and extensively reviewed in Vis and de Koster (2003).

Determining the fleet size is the most fundamental decision in a transportation
system whose capacity is directly related to the number of available vehicles. De-
termining the optimal number of vehicles for a particular system requires a tradeoff
between the investment costs of the vehicles and the potential penalties associated
with not meeting all the demands. Beaujon and Turnquist (1991) present a non-
linear mathematical model to optimize the fleet size and vehicle allocation in a
multi-period transportation planning environment. The model is transformed to a
minimum cost network flow problem with a nonlinear objective function that can be
solved by using yet another proposed solution procedure based on the Frank-Wolfe
algorithm. Du and Hall (1997) address fleet sizing and empty vehicle redistribution
for a one-to-many (or hub-and-spoke) transportation structure. Terminals are clas-
sified into surplus and shortage terminals based on the balance of the incoming and
outgoing transportation requirements. A proper fleet size is determined based on
the inventory control theory. It is assumed that operating costs are incurred for an
excessive number of vehicles while shortage costs are charged for an insufficient
number of vehicles. Vis et al. (2001) present a model and an algorithm to determine
the necessary number of AGVs at an automated container terminal. A network flow
based model and a polynomial time algorithm are developed to solve the problem
in which containers are available for transport at known time instants. Another re-
search arena of fleet sizing for a single-capacity transportation system is the use
of AGV systems in automated manufacturing systems. Maxwell and Muckstadt
(1982) propose a mathematical model to determine the minimum number of AGVs
for a given number of transportation requests during a time window. Each location
is associated with a net flow of vehicles which is defined as the difference between
the numbers of incoming and outgoing deliveries. Flow balances of locations have
to be achieved by empty vehicle movements. The model gives the lower bound
on the number of vehicles needed in the system. Rajotia et al. (1998) improve the
model of Maxwell and Muckstadt by imposing one more constraint that only a
small portion of transportation requests from a location can be served by vehicles



Fleet sizing and vehicle routing for container transportation 197

being idle at the same location due to the randomness of the vehicle requests. For
fleet sizing in a dynamic transportation environment, Kobza et al. (1998) present a
model based on a discrete Markov chain and Koo and Suh (2002) present a queue-
ing theory based model to estimate the vehicle waiting time and determine the fleet
size in a dynamic transportation environment.

Most existing fleet sizing procedures for static transportation environments
ignore vehicle routing in determining the fleet size. For fleet sizing and vehicle
routing problems for container transportation, Ko et al. (2000) present a fleet sizing
algorithm using an insertion algorithm. Given a planning horizon, they assign trans-
portation orders to a vehicle one by one. When the completion time of a vehicle is
larger than a predefined planning horizon, an additional vehicle is introduced and
the procedure is repeated.

3 Two-phase fleet sizing and vehicle routing procedure

Figure 2 shows the overall procedure for fleet sizing and vehicle routing proposed in
this paper. The procedure consists of two phases. In phase one, given the containers
to be transported between locations and the travel times between locations, an
optimization model is developed to generate a fleet planning with the minimum
empty vehicle travel time. Since the model does not consider routing for each
vehicle, actual empty travel times would be larger than those obtained from the
optimization model. The minimum fleet size resulting from this optimization model
may be regarded as a lower bound on the number of vehicles required. Given
the fleet size, a tabu search based algorithm is developed to obtain the vehicle
routing in phase two. Finally, the makespan (equivalent to the time taken until all
the transportation jobs are finished) of the current solution is compared with the
predetermined makespan limit. If not satisfactory, the procedure increases the fleet
size by one and continues until the makespan constraint is satisfied. The two-phase
procedure is described in more detail in the following sections.

3.1 Phase one: optimization model to obtain the lower bound on fleet size

This section presents an optimization model to obtain the lower bound on the fleet
size required. The fleet size depends on the total vehicle travel time required, which
consists of empty travel time, loading time, loaded travel time, and unloading time.
As discussed in the previous section, loading time, loaded travel time, and unloading
time may easily be obtained when the transportation requirements and travel time
between the locations are known. However, empty travel time is dependent on how
to select the container to be delivered next when a vehicle becomes free. The lower
bound on the fleet size, denoted by Nmin, can be obtained by dividing the total
vehicle travel time by the length of planning horizon or the available time of a
vehicle (e.g., a shift). In order to reduce the fleet size required, the empty vehicle
travel time must be minimized. The optimization model proposed by Maxwell and
Muckstadt (1982) is applied to obtain the lower bound on the fleet size. Following
notations will be used in the model:
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Fig. 2. Two-phase fleet sizing and vehicle routing procedure

xij the number of empty vehicle trips that should be made from location i to
location j

vij the number of containers to be delivered from location i to location j (or
equivalently, the number of loaded vehicle trips that should be made from
location i to location j)

taij loaded vehicle travel time from location i to location j, which represents the
time spent to load a container on a vehicle, move it from location i to location
j, and unload it at location j

tbij empty vehicle travel time from location i to location j

Let us take location i for identifying the vehicle trip frequency during a shift. It can
be observed that

∑
j vij is the number of containers to be picked up at location i

during the shift. This means that
∑

j vijempty vehicles are needed at location i to
move the containers. Similarly,

∑
i vij is the number of containers to be delivered to

location j, and
∑

i vijvehicles will become empty after they unload the containers.
For locations which do not allow overnight parking for vehicles, the total vehicle
flow into the location within the shift is equal to the total vehicle flow out. The net
flow for location i, denoted by nf(i), is the difference between the total number
of containers to be delivered in and the total number of containers to be picked up
from there, that is, nf(i) =

∑
j vji − ∑

j vij . Since there may be requirements on
the number of vehicles available at the beginning of a shift or required at the end of
the shift, the net flow for location i must be adjusted to satisfy these requirements.
For example, if fi vehicles are available at the beginning of the shift and gi vehicles
are required at the end of the shift, the net flow for location i is as follows:

nf(i) =
(∑

j
vji + fi

)
−

(∑
j
vij + gi

)
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In the above equation, the first term on the right hand side indicates the number
of vehicles available at location i during a shift while the second term indicates
the number of vehicles required at location i during the shift. Hence, the net flow
represents the number of empty vehicle trips into or out of the location. The locations
with positive net flows would have empty vehicle trips available to be assigned to
other locations with negative net flows. Following is the optimization model to find
the number of empty vehicle trips from location i to location j:

Min
∑

i

∑
j
xijt

b
ij (1)

Subject to
∑

j
xij = nf(i), if the net flow for location i is non-negative (2)

∑
k
xki = −nf(i), if the net flow for location i is negative (3)

xij is a non-negative integer (4)

The objective is to minimize the total empty vehicle travel time. The total vehicle
travel time, denoted by z, is then obtained by adding the total empty vehicle travel
time and the total loaded travel time, that is, z =

∑
i

∑
j vijt

a
ij +

∑
i

∑
j xijt

b
ij .

If h hours are available during the planning horizon per vehicle, at least �z/h�
vehicles are required to satisfy the transportation requirements, where �x� is the
smallest integer greater than or equal to x.

The optimization model yields the minimum number of vehicles required. How-
ever the model may not directly be applied to real world situations for the following
reasons: First of all, it does not consider individual transportation requirements dur-
ing the planning horizon. In addition, if the vehicle parking location at the beginning
of the planning horizon is the same as the parking location at the end, the net flow
of this location will be zero and there will thus be no vehicles starting from the
parking location. Consequently, no vehicle trips will be made during the planning
horizon, and the actual empty vehicle travel time will be underestimated. The fleet
size obtained from the above optimization model will only be used as the lower
bound on the fleet size in phase two, where vehicle routing and fleet sizing are
solved simultaneously.

3.2 Phase two: tabu search based fleet sizing and vehicle routing

This section provides a vehicle routing and fleet sizing heuristic based on a tabu
search (TS) algorithm. TS is a general improvement heuristic first presented by
Glover (1989). It explores the solution space repeatedly moving from a solution to
its best neighbor. The search process has the mechanisms that allow the objective
function to deteriorate in a controlled manner and escape from local optima. Starting
from an initial solution, an admissible move leads to the next solution with the
minimum cost. If this solution is a local minimum, a non-improving perturbation
may be accepted. To prevent cycling in the course of the search, the reverses of
a certain number of moves that have recently been performed are forbidden and
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recorded in a constantly updated tabu list. TS has been successfully implemented
in a variety of combinatorial problems such as production scheduling (Franca et
al. 1996), vehicle routing problem (Nanry and Barnes 2000, Breedam 2001, and
Osman and Wassan 2002), and traveling salesman problem (Gendreau et al. 1999).
See Glover (1997) and Osman and Laporte (1996) for an extensive literature review
and detailed descriptions on tabu search.

Vehicles pick up containers at a yard and deliver them to another yard. They have
a series of transportation jobs to be performed.The main problem is an assignment of
containers to vehicles in which all the transportation requirements may be scheduled
on identical vehicles with the objective of minimizing makespan. Empty vehicle
travels are incurred for each transportation demand, and depend on the sequence of
transportation jobs. In our TS implementation for solving fleet sizing and vehicle
routing, the fleet size generated in phase one is used as the initial solution, which
is then improved through the TS based improvement procedure. The procedure
uses the fleet size as the primary decision criterion and makespan as the secondary
decision criterion to plan the vehicle routing with the minimum number of vehicles.
Note that, with the same number of vehicles, the shorter the makespan is, the more
efficiently vehicles are utilized. A shorter makespan can be realized by shorter
empty vehicle travel times and transportation load balance among the vehicles. A
neighborhood solution is obtained by removing a transportation job from the busiest
vehicle (that is, the vehicle with the longest completion time) and inserting it in a
vehicle tour with the shortest completion time. As such, the makespan may further
be reduced. The transportation jobs should be completed within the predetermined
time limit (e.g., 480 minutes for one shift).

The initial vehicle routing follows a greedy solution procedure often used in
container transportation business. When a vehicle completes a transportation job,
it selects a job which is the nearest to the vehicle. The procedure inherently yields
a solution with fairly short empty travel time and makespan.

Initial vehicle routing

Step 0: The lower bound on fleet size Nmin, container transportation requirements,
and travel times between locations tij are determined.

Step 1: Choose n containers at random and assign them to each vehicle.
Step 2: Select a vehicle with the least C(Vi), where C(Vi) is the time taken for

vehicle Vi to leave a depot, perform transportation jobs for all the containers
assigned, and return to the depot.

Step 3: Select one from unassigned containers that yields the least empty vehicle
travel time when it is appended to the route of the selected vehicle. Append
it to the last job of the selected vehicle. Tie breaker is the longest-loaded-
vehicle-time-first rule. This rule is selected because the longest processing
time (LPT) rule is known to perform well in parallel machine scheduling
with the objective of minimizing makespan.

Step 4: Repeat Step 3 until all the transportation jobs are assigned.

Now we have an initial solution where each vehicle has its own route. The next step
uses the concept of TS to improve the current solution.
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TS Solution improvement

Step 0: Set the iteration counter c=0.
Step 1: Select the busiest vehicle V ∗ (that is, the vehicle with the largest C(Vi))

in the current solution.
Step 2: Internal insertion. This step polishes the route of V ∗ by moving individual

transportation jobs forward or backward in the same route. For each trans-
portation job assigned to V ∗, a sequence change operation is performed
(i.e., a job is deleted from the sequence of V ∗ and inserted in a different po-
sition of the sequence of the same vehicle). For example, in Figure 3, trans-
portation job jto be moved right after job p and right before job q is removed
from the sequence and inserted back to a position between job r and job s.
Then the completion time is reduced by (tpj +tjq +trs)−(tpq +trj +tjs).
The relocation of the job sequence resulting in the largest reduction in com-
pletion time is selected and the current solution is changed. The insertion
process in this step is called internal insertion process. If we have at least
one vehicle with larger C(Vi) than C(V *), then go to Step 1. Otherwise
go to Step 3.

Step 3: External insertion. This step attempts to reduce the makespan by moving a
transportation job of V ∗ to another vehicle route with the least completion
time. Suppose jobs i, j, and k are consecutive jobs on the route of V *.
Calculate sj = (tij + tjk − tik) for each transportation job j, where sj is
the empty vehicle travel time reduced by the removal of job j in V ∗. Since
less vehicle travel times are preferred, select job j∗ to be removed from V ∗,
where j∗ = max(sj), unless the move is in the tabu list. The selected job
j∗ is inserted in the tabu list. Now identify a vehicle that has the smallest
C(Vi), and insert j∗ in this vehicle tour in a way that the completion time of
the selected vehicle increases least. The insertion process in Step 3 is called
external insertion process. Figure 4 shows the external insertion operation,
where shaded and white areas indicate loaded and empty vehicle travels,
respectively. One of the transportation requirements of vehicle #3 (V ∗) is
removed from the current route and inserted in the route of vehicle #1 which
has the smallest completion time. The figure shows that the makespan is
reduced after the external insertion process.

Step 4: Update the incumbent solution if the makespan of the current solution is
less than that of all the solutions so far. Update iteration counter (c = c+1)
and tabu list. If c has not reached the predetermined iteration limit or the
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maximum number of iterations without improvement has not been reached,
go to Step 1.

As seen in Figure 2, the makespan of the incumbent solution is then checked. If the
makespan of the incumbent solution exceeds the predefined planning horizon, the
fleet size is increased by one and phase two should be repeated. If the makespan
lies within the planning horizon, the incumbent solution is final.

4 Computational experiment

A sample test problem is adopted from Ko et al. (2000) where the container trans-
portation environment is almost the same as in this paper. Tables 1 and 2 show
from-to matrices for container transportation requirements and vehicle travel times,
respectively.

The AMPL modeling tool (Fourer et al. 1993) and CPLEX solver are used
to solve the optimization model. Since the optimization problem is similar to the
classical transportation problem, solutions are found quite fast. The optimization
model produces empty vehicle travel frequencies between locations as shown in
the following:
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Loaded vehicle travel time: 4,620 minutes
Empty vehicle travel time: 2,550 minutes
Total vehicle travel time: 7,170 minutes
Empty vehicle travel frequency

E → A: 6 vehicles
E → B: 28 vehicles
E → C: 17 vehicles
H → A: 33 vehicles
I → A: 1 vehicle

Minimum fleet size: �7, 170/480� = �14.9� = 15

Table 1. Container transportation requirements

To
A B C D E F G H I

From

A – 15 47 2
B – 28
C – 22 5 2
D –
E 3 10 – 1
F –
G –
H 21 2 –
I 4 –

Table 2. Vehicle travel time matrix

To
A B C D E F G H I

From

A – 50 30 35 40 35 30 30 30
B 50 – 30 35 40 35 30 35 35
C 30 30 – 5 10 25 30 35 35
D 35 35 5 – 5 20 25 30 30
E 40 40 10 5 – 15 20 25 25
F 35 35 25 20 15 – 10 15 15
G 30 30 30 25 20 10 – 5 5
H 30 35 35 30 25 15 5 – 5
I 30 35 35 30 25 15 5 5 –

Suppose each vehicle can operate for 480 minutes per shift. At least 15 vehicles
(the smallest integer greater than or equal to 7,170/480) are required to satisfy
all the transportation requirements within the shift. If a vehicle finishes all the
transportation jobs, it may not need to travel empty to somewhere else. However
the optimization model counts this unnecessary empty vehicle travel, which results
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in an increase in vehicle travel time. In order to tackle this problem, two nodes, J
and K, are introduced where J is the location at which all the vehicles are parked
at the beginning of the planning horizon while K is the location for the vehicles
to be parked at the end of the time period. The new locations could be real sites
such as depots or artificial locations for preventing additional empty vehicle travels.
If they are artificial locations, the travel time between the existing locations and
the artificial sites is set to zero. In our experiments, it is assumed that 15 vehicles
are parked at an artificial location J at the beginning and they are returned to an
artificial location K after they finish their transportation jobs. The optimization
model again produces empty vehicle travel frequencies as follows. Now, it can be
seen that the lower bound on the fleet size is 14.

Loaded vehicle travel time: 4,620 minutes
Empty vehicle travel time: 1,950 minutes
Total vehicle travel time: 6,570 minutes
Empty vehicle travel frequency

E → B: 19 vehicles
E → C: 17 vehicles
E → K: 15 vehicles
H → A: 33 vehicles
I → A: 1 vehicle
J → A: 6 vehicles
J → B: 9 vehicles

Minimum fleet size: �6, 570/480� = �13.7� = 14

Based on the lower bound on the fleet size, the tabu search based algorithm
yields a vehicle routing. The tabu tenure (i.e., the time period for which a move is
prohibited) is set to three after some preliminary experiments. That is, the reverse
move is prohibited for three periods after a move is performed. If the tabu tenure is
too small, the probability of cycling increases. On the other hand, if it is too large,
there is a possibility that the search space is too restricted, which may degrade
the performance of the algorithm. The maximum number of iterations is set to
500. With 14 vehicles, the algorithm produces a solution with 500 minutes of the
makespan and 6,965 minutes of total travel time. The total travel time is larger than
the result obtained from the optimization model in phase one by 395 minutes. Since
the makespan exceeds the predetermined time limit of 480 minutes, we increase
the fleet size by one and run the experiment again. As a result, with 15 vehicles,
total vehicle travel time and makespan are 6,740 and 460 minutes, respectively. The
container transportation requirements can thus be met with 15 vehicles.

The heuristic is coded in the Visual Basic programming language. Figure 5
shows a screen capture of the experimental result when 15 vehicles are used. For
example, the final solution of the tabu search based procedure generates the route
of the first vehicle as follows:

Depot – 2 → 5 – 2 → 5 – 3 → 5 → 9 → 8 – 1 → 8 – 1 → 8 – 1 → 8 → 1 → 5
– 3 → 5 – 3 → 5 – Depot.
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Fig. 5a,b. A screen capture of the implemented system of the tabu search based algorithm

Here, ‘→’ indicates the loaded vehicle travel between two locations while
‘–’ denotes empty vehicle travel. It can be observed that the first vehicle oper-
ates 460 minutes during the planning horizon, 300 minutes for loaded travels and
160 minutes for empty travels.

The performance of the proposed two-phase heuristic (TSH) is compared with
two existing methods, the insertion algorithm based heuristic (INS) of Ko et al.
(2000) and a greedy procedure (GRD). In INS, given a planning horizon, trans-
portation jobs are assigned to a vehicle on by one. INS first selects a vehicle for
scheduling. A transportation job is then randomly selected and assigned to the vehi-
cle. Among all the transportation jobs which are not assigned, a job which increases
the vehicle travel time the least is selected and inserted in the route of the vehi-
cle. The assignment procedure is repeated until the total travel time of the vehicle
exceeds the planning horizon, when a new vehicle is introduced and the assign-
ment procedure is repeated. GRD makes a myopic decision to select transportation
jobs. When a vehicle becomes free, it selects the nearest job. The first stage of the
proposed procedure uses GRD in order to obtain an initial solution.

Table 3 shows the makespan and total vehicle travel time when 15 vehicles
are used. TSH completes all the transportation jobs within 460 minutes while INS
and GRD requires 495 and 500 minutes, respectively. It is observed that TSH also
produces the vehicle routing with the least total vehicle travel time.
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Table 3a,b. Performance of the three heuristics

Method Makespan (min.) Total vehicle travel time (min.)
TSH 460 6740
INS 495 6860
GRD 500 7000
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Fig. 6a,b. Change of makespan over different fleet sizes

Figure 6 compares the makespans of the three heuristics against the fleet size.
As expected, with more vehicles, the makespan decreases for all the heuristics. If
the makespan is restricted to only 480 minutes per shift, TSH requires 15 vehicles
while INS and GRD requires more vehicles, 16 and 17, respectively. It can also be
observed that, with 14 vehicles, TSH requires 20 minutes of overtime while INS
and GRD needs 40 and 45 minutes, respectively.

In this paper, the travel time between two locations is assumed to be fixed.
However, this assumption is often invalid in practice since the containers usually
travel through congested streets. As pointed out in Park et al. (2000), a lognormal
or triangular distribution may often be adequate to model the travel time between
locations. The performance of the proposed procedure with stochastic travel times
is investigated by assuming a triangular distribution with variations ranging from
5 % to 25 %. When the mean travel time between two locations is 50 minutes with
a time variation of 20%, the travel time follows a triangular distribution with mode
50, minimum 40, and maximum 60. The experiments are repeated 10 times for
each method, and the results are summarized in Table 4. As the variation increases,
the makespans of TSH and INS slightly increase. The makespan of GRD seems
insensitive to the travel time variations. Overall, the proposed procedure performs
well even when the travel time variations are large.

The performance of the proposed procedure under various conditions is also
investigated by running experiments with 40 problem instances. The average make-
spans of the three heuristics, TSH, INS and GRD are summarized in Table 5. TSH
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Table 4a,b. Makespan comparison under probablistic travel times

Method
Travel time variation

0% 5% 10% 15% 20% 25%
TSH 500.0 503.8 507.7 511.5 515.5 519.7
INS 540.0 543.7 547.5 551.2 555.0 558.8
GRD 580.0 577.1 577.0 577.4 578.3 577.4

Table 5a,b. Comparison of three methods with 40 different cases

Method Fleet size Makespan Total vehicle travel time
TSH 18.2 464.0 8405.3
INS 21.3 479.1 9607.4
GRD 18.2 534.1 9105.8

requires 18.2 vehicles on average to satisfy the transportation requirements within
480 minutes while INS requires 21.3 vehicles. GRD is experimented with the same
fleet size as in TSH, and it is found that its makespan is 534.1 minutes, 70.1 minutes
larger than that of TSH.

5 Conclusions

This paper proposes a new heuristic procedure for fleet sizing and vehicle routing in
a static container transportation environment. The heuristic consists of two phases.
The first phase determines the lower bound on the fleet size by using an optimization
model and the second phase constructs a vehicle routing by applying the concept of
tabu search. The proposed procedure has been compared with two existing methods
through computational experiments. It has been observed that the new procedure
consistently provides good quality solutions in terms of makespan and total vehicle
travel time.

A heuristic tabu search algorithm is applied in the second phase to solve the
container transportation problem discussed above. It may also be meaningful to
investigate the application of other meta-heuristics such as simulated annealing
and genetic algorithm to this problem. Finally, a container transportation problem
is investigated in a static environment in which all transportation requirements are
ready to be picked up at the beginning of the planning horizon. However, this
may not usually be the case in the real world since containers may arrive in the
middle of the planning horizon. Then, the fleet sizing and vehicle routing problems
should be addressed from different perspectives. These subjects may provide a good
opportunity for further studies.
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