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Abstract. In customer order driven production, decisions on the acceptance of
customer orders usually have to be based on variable costs and contribution margins
(abbreviated CM), since in the short term only these quantities can be influenced. If
we assume that customer orders arrive according to a stochastic process and that the
decisions on order acceptance have to be made on each order separately, a customer
order usually should be accepted only if its contribution margin exceeds a positive
lower bound. This paper shows by means of a stochastic model that, under certain
assumptions, this lower bound on the contribution margin can be determined using
full costing, provided that the available capacity (constant over time) and the arrival
process are balanced. This insight justifies, to a certain extent, the use of full costs
to support decisions on the short-term production volume, which is a behaviour that
can be observed in practice rather frequently. We also demonstrate the extension
of the modelling approach to state-dependent lower bounds on the contribution
margin.
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1 Description of the problem

Master production scheduling is an important planning problem in industry, since
the master production schedule (MPS) determines both the cash flow of the enter-
prise and the material flow through the entire logistic chain. For customer order
driven production, the MPS consists of the accepted customer orders and their
quoted due dates. This makes order acceptance and due date setting important de-
cision problems in manufacturing planning and control for this type of production
(for a discussion of the decision structure, see Kingsman, 2000).

In order to maximize its profit, the firm has to decide on acceptance or rejection
of an order based on its contribution margin (in the following abbreviated CM),
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its capacity requirement and the state of the manufacturing system. Thus we have
to develop decision rules supporting the acceptance/rejection decision based on
these pieces of information. In this paper we deal with decision rules for order
acceptance/rejection where the decision is based mainly on contribution margin
and capacity requirement of the orders, and we model the manufacturing system
as a single-stage queueing system. Thus we rely on research that can be found in
cost accounting and in operations research literature.

For deterministic situations, rules for deciding on order acceptance in order
to maximise the contribution margin are described extensively in cost accounting
literature (e.g., Coenenberg, 1997). An order is to be accepted if its contribution
margin exceeds the opportunity costs of accepting the order. Exact calculation of
the opportunity costs requires information on all available orders and leads to a
model that considers all orders and all relevant restrictions simultaneously.

We restrict our attention to the stochastic case: If the orders arrive according
to a stochastic process and the decision on acceptance/rejection must be made
immediately, the acceptance decision can only be based on decision rules that
maximize, e.g., the expected profit per period. These decision rules usually impose
lower bounds on the contribution margin of the orders. Optimal values for the
lower bound of the contribution margin can be derived from stochastic models, as
described, e.g., in Wijngaard and Miltenburg (1997), Carrizosa et al. (1998) [see
also the Revenue Management approach (Harris/Pinder, 1995), which is based on
similar logic]. Two observations are crucial in this respect:

– The optimal lower bound on the CM highly depends on the current situation
(state of the manufacturing system, expectations on future orders and their prof-
itability). It can only be calculated by stochastic models requiring information
that is difficult to obtain and to express in quantitative terms.

– Empirical studies indicate that order acceptance decisions frequently are sup-
ported by full costing systems.1 This leads to the conclusion that managers
consider the allocated fixed costs as an estimate of the opportunity costs that
are difficult to measure (Zimmerman, 1979, p. 510f). The empirical work of
Wouters (1994) indicates that managers are aware of this interpretation of the
allocated fixed costs.

Thus an important aspect of order acceptance is the question in which cases and
to what extent order acceptance decisions based on full costs (including allocated
fixed costs) can be optimal.2

The purpose of this paper is twofold: First, we derive a model that shows
that under certain assumptions order acceptance based on full costs can indeed
be optimal if the lower bound on the contribution margin is independent of the
current state of the manufacturing system over a certain range (detailed explanation

1 See, e.g., Lange and Schauer (1996), Mills (1988), Govindarajan and Anthony (1983).
For a literature survey on this topic, see Wouters (1994).

2 We assume that information on costs is utilized optimally for the decision process (for
this problem, see Wiese, 1994). Furthermore we assume that decisions are made according
to expected values.
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below). Second, we show the extension of the applied modelling technique to state-
dependent lower bounds on the CM.

The paper is organized as follows: In Section 2 we describe the relevant litera-
ture and cast light on the motivation for our research. Section 3 presents the model
that proves the optimality of order acceptance decisions based on full costing under
certain assumptions. In Section 3.2 the acceptance decision is based only on the CM
of an order, Section 3.3 extends the analysis to simultaneous consideration of CM
and capacity requirement of the orders. In Section 4 we extend the modelling ap-
proached to state-dependent order acceptance rules. Section 5 presents conclusions
and topics for future research.

2 Relevant literature

The question of whether full costing can be used to support order acceptance de-
cisions has been treated in the literature in relation to two interrelated decision
problems which we term (1) deciding on the lower bound on the CM and (2)
pricing.

We define deciding on the lower bound of the contribution margin as follows:
For each customer order jthe contribution margin yj is known. We have to decide
on the CM lower bound that is required for accepting the order. If the CM is lower
than this lower bound then the order is rejected.

Miller and Buckman (1984) consider a service department that offers to satisfy
requests from the operating departments. The operating departments decide to have
the request satisfied by the service department if the benefit of the request is higher
than the variable costs associated with meeting the request plus the transfer price
that is charged by the service department. The transfer price is the decision variable
and is assumed to be independent of the state of the system. The service department
is modelled as an M/M/s/s queueing system (Erlang’s loss system with s parallel
servers). The service rate for one server µ is given, the number of parallel servers s is
a decision variable. The authors conclude that – provided the capacity s is optimal –
“ ... if the cost of capacity function C(s) is of the form a sα, then the expected value
of opportunity costs will be greater than or equal to α times the allocated capacity
costs based on straight-line depreciation and 100 percent utilization.” (Miller and
Buckman, 1987, p. 637). If α is close to 1, then the allocated fixed costs are a good
approximation of the average opportunity costs (see Miller and Buckman, 1987,
p. 633).

Dewan and Mendelson (1990) analyze a similar model that includes delay costs
and considers capacity as a continuous variable. For simultaneous optimization of
transfer price and capacity they conclude that if the service department is modelled
as an M/M/1 queueing system the optimal transfer price is equal to the marginal
capacity cost. Again, only for 100% utilization can the total capacity costs be
recovered (see Dewan and Mendelson, 1990, p. 1510), that is, the service department
is a “deficit center”. Stidham (1992) analyzes the properties of the optimal solution
for more general assumptions and develops an algorithm for solving the model.

Balachandran and Srinidhi (1990) show that under specific assumptions it is
optimal to charge each order the quotient of fixed costs per period and number of
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orders produced. The model assumes a specific nonlinear cost function, sufficient
capacity for accepting all arriving orders, and a single-server system.

Wijngaard and Miltenburg (1997) describe a model of packaging lines where
there is some overcapacity that can be used for accepting extra sales opportunities.
The model shows that “the minimum reward per unit of capacity ... that is required
before an additional order is accepted is higher than the cost of increasing the
capacity ...” (p. 17f).

In contrast to deciding on the lower bound on the CM, we define the pricing
problem as the decision on the price of products and services, depending on product
type, capacity requirement, etc.

Banker and Hughes (1994) analyze a model which assumes that expected de-
mand for each product is linear in its price. Actual demand is random. One property
of the optimal solution is that “given the knowledge of the demand parameters .....,
the optimal price of each product is a function only of the activity based cost”
(Banker and Hughes, 1994, p. 488). Jahnke and Chwolka (1999) conclude from
their model that in the scenario under consideration full costs are a sensible base
for pricing decisions (p. 3). They also consider the case where there is no precise
knowledge of the functional relationship between price and demand. Göx (2002)
analyzes pricing and capacity planning of a monopolist firm for uncertain demand.
The model optimizes the decisions depending on the types of capacity restrictions
(short-term capacity expansion possible or not possible) and on the time of the
availability of demand information. Pavia (1995) uses a multi-product model to
show that it can be optimal to allocate no fixed costs to certain product types.

Karmarkar and Pitbladdo (1993) consider a model where firms compete on a
market with linear relationship between price and demand. They do not find support
for the suggestion that allocation of overhead costs is a means of rationing scarce
capacity (p. 1042).

We can conclude that whether order acceptance and pricing should be based on
full costing depends strongly on the assumptions made. For the decision problem
that primarily interests us, that of setting the minimum contribution margin (or the
combination of the minimum contribution margin and capacity) for a stochastic
arrival of orders, most research work concludes that, inasmuch as each order is to
be charged its proportionate share of capacity costs, these capacity costs relate to
100% capacity utilization. A job j that requires cj hours of capacity is charged cj

hours of capacity (compare the numerical example in Dewan and Mendelson, 1990,
p. 1510).3 Since stochastic systems under the usual premises can never be utilized
to 100%, the capacity costs can never be fully recovered. Full costing that charges
all arising costs to jobs that were actually processed or to actual hours of work
thus proves unsuited for the computation of minimum contribution margin. With
the exception of the work of Balachandran and Srinidhi (1990), which is based on
very specific premises, to our knowledge no model has been formulated by which
such a (usual) full costing system actually yields the optimal minimum contribution
margin.

3 Note the different result in Wijngaard and Miltenburg (1997).
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This is the first goal of the present paper. In the next section we employ a
stochastic model to demonstrate that – given certain assumptions, in particular pro-
portional capacity costs, stochastic arrival of orders, and optimal tuning of available
capacity to the characteristics of the arrival process – order acceptance on the basis
of full costing (which charges to the jobs the fixed costs of capacity in relation to
the actual mean capacity utilization) represents the optimal behavior.

The model is developed in the next section.

3 The model

3.1 Structure of the model

We consider a manufacturing system which we model as a single-stage, multiple-
server queueing system. Capacity is constant over time. Customer orders arrive
according to a Poisson process with arrival rate λ [orders per time unit]. Acceptance
or rejection of an order does not influence the arrival of other orders. The decision
on acceptance or rejection must be made immediately.

Each customer order j is characterized by its contribution margin (CM) yj and
by its capacity requirement cj . The expected total required capacity (λc with c =
average capacity requirement of an order) can exceed the available capacity. At
the time of arrival each customer knows the waiting time and hence the delivery
time (= flow time) of the order; that is, due date setting has been performed by the
manufacturer. If the waiting time or flow time exceeds a certain limit, the order
is withdrawn. Thus in the single-server case the customer can indirectly observe
the remaining work at the server which is – for a single-server system and FCFS
service discipline – the promised waiting time. This model of customer behaviour
and due-date setting requires queueing models with a limit on the waiting time (or
flow time) where an order enters the queue if the waiting time (or flow time) is
below a certain limit and otherwise is lost. To our knowledge no general results
are available for this type of queueing system (for an analysis of the heavy traffic
case, see Kushner, 2001; Plambeck et al., 2000; overview of controlled queueing
networks in Stidham, 2002, p. 207 f). So we approximate the system using a finite-
capacity queueing system: If at the time of arrival there are (r − 1) or less orders
in the system, the customer accepts the resulting waiting time, otherwise the order
is lost.

If management maximizes the expected CM per period, it encounters the deci-
sion problem of order acceptance: It can be optimal to reject an order even in the
case of idle capacity if the arrival of more profitable orders can be expected.4 We
have to derive decision rules that maximize the expected CM per period.

The system under consideration is depicted in Figure 1.
CM and capacity requirement of the orders (random variables Y and C) follow

a two-dimensional distribution with probability density function fY,C(y, c). Since
the acceptance of the orders is based only on CM and capacity requirement, the

4 For simplicity we ignore the costs of waiting time (for this aspect, see Banker et al.,
1988).
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acceptance/rejection decisions split the Poisson arrival process and the accepted
orders arrive according to a Poisson process with rate λa. For the accepted orders
the customer decides on placing or withdrawing the order according to the rule
described above. The decision rule employed by the customer and the way the
work centre is operated lead to a finite-capacity queueing system (M/G/s/r system)
with arrival rate λa and throughput λeff . The difference λa − λeff is the rate
of lost orders that arrive when the system is full (Lst = r). If we assume that
the available capacity (modelled as a continuous variable) is subject to long-term
changes by investment decisions (the available capacity is a decision variable, but it
is constant over the planning horizon considered in our model), we have to analyze
three topics:

– The rule for order acceptance/rejection that maximizes the expected CM per
period for given capacity,

– the combination of acceptance/rejection rule and capacity that maximizes the
expected profit per period (expected CM less capacity costs),

– the extent to which the optimal decisions can be approximated using simple
decision rules. As derived from our literature review, especially the quality of
decisions based on full costs has to be evaluated.

We start our analysis using the most straightforward decision rule.

3.2 Decision rule: lower bound on the contribution margin

3.2.1 Formulation of the model

The CM of the customer orders is a random variable Y with probability distribution
function FY (y) and density function fY (y). The capacity required for an order is
independent of the CM with mean c. We have to decide on the lower bound on
the CM ymin, that must be attained for an order to be accepted. The model can be
formulated as follows:

The rate of accepted orders λa is the fraction of the arriving orders λ for which
the CM exceeds ymin:

λa = λ(1 − FY (ymin)) (1)

The distribution of the CM of the accepted orders is the conditional distribution
of the CM given that the order meets the requirements for acceptance. We term the
probability density function fY |Accept(y):

fY |Accept(y) = 0 for y < ymin

fY |Accept(y) =
fY (y)

1 − FY (ymin)
for y ≥ ymin (2)

Hence the expected CM of an accepted order E[Y |Accept]:

E[Y |Accept] =
∫ v

ymin

y fY |Accept(y)dy (3)

with v the maximum CM (maximum value of the distribution).
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Since the decision of the customer to place or to withdraw an order is indepen-
dent of the CM, the expected total CM per period E[YP ] is then:

E[YP ] = E[Y |Accept]λeff (4)

λeff can be calculated from λa using finite-capacity queueing models. In the fol-
lowing we shall not need the precise functional relationship between λeff and λa.
We assume that the ratio of λa and λeff is a function of the traffic intensity ρ and
is independent of the processing time distribution:

λeff = λah(ρ) (5)

with

ρ =
λa

µ
(6)

µ = service rate of one server.

h(ρ) is the fraction of the accepted orders that are actually placed by the customer
if the traffic intensity is ρ.

The following conditions must hold:

h(0) = 1
lim

ρ→∞ h(ρ) = 0

The assumptions that must be satisfied in order to obtain a factor h(ρ) that is
independent of the processing time distribution can be described as follows:

For the Poisson arrival process which we assume throughout the paper the
probability that the system is full (all places occupied) pr is also the probability
that a customer finds all places occupied,5 which means:

h(ρ) = 1 − pr.

h(ρ) (or pr, respectively) is independent of the processing time distribution in the
following cases:

– for exponentially distributed service times and one server (M/M/1/r system;
Neumann, 1977, p. 396),

– for Erlang’s loss system M/G/s/s (Tijms, 1994, p. 326),
– for the M/M/s/r model if ρ < s (Papadopoulos et al., 1993, p. 365).

This restricts the model to exponentially distributed service times if a queue
is allowed, which is a strong assumption. Furthermore, in Section 3.3 we shall
assume that the capacity requirement of an order is an element of the acceptance
rule, which means that the service time distribution of the accepted orders depends
on the acceptance rule and cannot be subject to assumptions. So we have to analyze
the general model M/G/s/s+N (s places at the servers and N places in the queue).

It can be shown that for this model the probability that a customer finds all
places occupied (ps+N ) depends on the service time distribution (Tijms, 1994,

5 ”PASTA” (Poisson arrivals see time averages) property; see Buzacott and Shantikumar
(1993, p. 54), Tijms (1994, p. 73 ff.).
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p. 327; Seelen et al., 1985). The simulation results described in Tijms (1994, p.
327) for a M/G/s/s+N system with s = 5 and N = 6 and 10 places in the queue
indicate only a weak dependence of h(ρ) on the coefficient of variation of the
service time distribution (the throughput changes by less than 5% if the coeffi-
cient of variation increases from 0 to 2). Our numerical experiments indicate that
for an M/G/1/1 + N system the impact of the coefficient of variation can be
slightly higher, but the results derived in this paper seem to be rather insensitive to
this dependence. So we use Eq. (5) as an approximation for the queueing system
M/G/s/s + N .

The service rate µ for one server depends on the capacity requirement of the
orders (required standard hours of work) and on the capacity of the work centre. It
follows from our assumptions that the distribution of the capacity requirement per
order is independent of ymin. Thus the average capacity requirement per order is
constant, and we can express the capacity of the work centre as the service rate µ.
Like Dewan and Mendelson (1990) we assume that µ is a continuous variable. Fur-
thermore we assume that the fixed costs per period are proportional to the available
capacity, which is also the basis for activity-based costing (see Schneeweiss, 1998,
p. 278). Empirical studies only partly support this assumption [see Zugarramurdi
et al. (2002) and the studies cited there, which indicate that in many cases there are
economies of scale, and Kölbel and Schulze (1960)]6. We denote the fixed costs
per period for one unit of capacity as K. The total fixed costs per period Kfix are
then:

Kfix = Kµ . (7)

Numerical example 1. K is the fixed capacity costs per period for µ = 1 (that is,
capacity for serving one order per period is available). If the costs for this capacity
are K = 5 per period and the available capacity is µ = 120 orders per period,
then the fixed capacity costs per period are Kfix = 5 times 120 = 600. For a
multiple-server system the parameter K must be modified accordingly.

The expected profit per period E[G] is the difference between expected CM
and fixed costs:

E[G] = E[YP ] − Kfix (8)

3.2.1 Analysis of the model

First we analyze the optimal lower bound on the CM ymin for given capacity
(service rate) µ. The expected CM per period can be calculated by substituting (1)
to (3) and (5) into (4). This yields:

E[YP ] = λh(ρ)
∫ v

ymin

y fY (y) dy (9)

Analytical calculation of the optimal value for ymin hardly seems possible, but the
optimal solution for λ → 0 and λ → ∞ is given by the following

Theorem 1. For λ → 0 the optimal ymin approaches the minimum value of the
CM distribution.

6 For an overview of these cost relation functions, see Wildemann, 1982, p. 131 ff
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For λ → ∞ the optimal ymin approaches the maximum value of the CM
distribution.

Proof. The proof is given in Missbauer (2000).

If the arrival rate is very low, nearly all orders (we assume positive CM) can be
accepted. For an arrival rate approaching infinity only the most profitable orders
should be accepted.

Now we analyze the applicability of full costing, which requires assumptions
about the available capacity. We assume that the available capacity is optimal for
arrival rate λ. For our model this means that µ and ymin have to be determined
simultaneously. The objective is maximization of the expected profit per period,
which can be calculated from (8) by substituting (7) for Kfix and (9) for E[YP ]:

E[G] = λh(ρ)
∫ v

ymin

y fY (y) dy − Kµ (10)

From this objective function we can derive the following

Theorem 2. Simultaneous optimization of ymin and µ for maximizing E[G] ac-
cording to (10) yields the following optimal value for ymin (denoted y∗

min):

y∗
min =

Kµ

λ (1 − FY (ymin)) h (ρ)
(11)

Proof. Appendix 1.

The denominator of (11) is the throughput λeff (Eqs. (5), (1)), the numerator
is the fixed costs Kfix (Eq. (7)). Hence the optimal lower bound on the CM y∗

min
is:

y∗
min =

Kfix

λeff
(12)

This means that the optimal lower bound on the CM can be calculated by full
costing; all fixed costs per period can be allocated to the produced orders. If the
variable costs of all orders are identical, the costs per order are the total costs divided
by the number of orders that are produced. In the case of non-identical variable costs
of the orders, equal amounts of fixed costs are allocated to each order.

Numerical example 2. We continue numerical Example 1 (Sect. 3.2.1) and assume
an M/M/1 system with r = 2 places in the system and arrival rate λ = 100. The
CM per order is normally distributed with mean = 10 and standard deviation = 3.
The formulas for the M/M/1/r system (Neumann, 1977, p. 396) yield

h(ρ) =

{
1−ρr

1−ρr+1 , ρ /= 1
r

r+1 , ρ = 1
(13)

Using numerical methods to maximize the expected profit per period (10), we
obtain the following optimal values: y∗

min = 6.6146, µ∗ = 65.4747, E[G] =
203.555, Kfix = 327.373 and λeff = 49.4928. y∗

min can be calculated with
Eq. (12). Since λeffy∗

min = Kfix, all fixed costs can be allocated to the orders.
The objective function is depicted in Figure 2.

By assumption, the decision rule derived here allocates the fixed costs to the
orders without considering their capacity requirement. In the next section we relax
this assumption.
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Fig. 2. Solution to numerical Example 2: E[G] as a function of ymin for the optimal value
of µ

3.3 Decision rules encompassing contribution margin and capacity requirement

3.3.1 Formulation of the model

Again we assume a Poisson arrival process of orders. CM yj and required capacity
cj per order follow a two-dimensional distribution with probability density function
fY,C(y, c). We consider only orders with non-negative CM, that is:

fY,C(y, c) = 0 if y < 0 or c < 0 .

This presents the decision problem of determining the subset of orders that has
to be accepted in order to maximize the expected profit per period. Thus we have
to decide on the conditions on CM and capacity requirement that must be satisfied
by the accepted orders. It is certain that if an order j with a CM yj and capacity
requirement cj is to be accepted, then an order i with yi ≥ yj and ci ≤ cj is to be
accepted as well. But the type of the restriction(s) defining the acceptance set and
the rejection set is not known.

In this paper we do not analyze the type of these restriction(s). We assume that
the subset of orders that are to be accepted is defined by one linear restriction, that
is, a linear combination of CM and capacity requirement of the orders. An order j
is to be accepted if it satisfies the following condition:

cj ≤ a + b yj (14)

a and b are the parameters of the decision rule and the variables that we have to
optimize. This is depicted in Figure 3.

We assume a linear decision rule partly for sake of simplicity. Furthermore,
decisions based on cost accounting systems usually follow linear rules, e.g., lower
bound on the CM or on the CM per unit of a bottleneck resource.

In the following we calculate the expected CM per period as a function of a and
b, and calculate the expected profit per period as a function of a, b and available
capacity. This will provide the basis for an analysis of the optimal rule for order
acceptance.

First we calculate the probability distribution of CM and capacity requirement
of the accepted orders as a function of a and b. Since b ≥ 0 (see above), the
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Fig. 3. Linear decision rule for order acceptance. The contour plot depicts the probability
density function fY,C(y, c)

proportion of accepted orders (Q) is (1 minus integral of the probability density of
the rejection set):

Q = 1 −
∫ ∞

0

(∫ (c−a)/b

0
fY,C(y, c) dy

)
dc (15)

Note that (c − a)/b is the inverse function of the acceptance restriction. The
integration variable c ranges from MAX[0; a] to∞. SincefY,C(y, c) is 0 for negative
values of y or c, we can write 0 instead of MAX[0; a].

The probability density function of the distribution of CM and capacity require-
ment of the accepted orders, denoted fY,C|Accept(y, c), is the conditional distribu-
tion given the acceptance restriction (14) is satisfied:

fY,C|Accept(y, c) = 1/QfY,C(y, c) if c ≤ a + b y (16)

fY,C|Accept(y, c) = 0 otherwise .

Now we can calculate the probability density functions of the CM of the ac-
cepted orders fY |Accept(y) and of the capacity requirement of the accepted orders
fC|Accept(c), which are the margin distributions of fY,C|Accept(y, c). We also cal-
culate the mean CM of the accepted orders E[Y |Accept] and the mean capacity
requirement of the accepted orders E[C|Accept]:

fY |Accept(y) =
∫ a+by

0
fY,C|Accept(y, c)dc (17)

fC|Accept(c) =
∫ ∞

(c−a)/b

fY,C|Accept(y, c)dy (18)

E[Y |Accept] =
∫ ∞

0
y fY |Accept(y) dy (19)



Optimal lower bounds on the contribution margin 509

E[C|Accept] =
∫ ∞

0
cfC|Accept(c) dc (20)

The parameters of the queueing model can be calculated as follows:
For given arrival rate λ the rate of accepted orders λa is (analogous to (1)):

λa = λQ (21)

The accepted orders arrive according to a Poisson process (see Sect. 3.2). The
throughput λeff follows (5). Note that now the distribution of the service times of
the accepted orders usually depends on the acceptance rule and (5) holds exactly
only if no queue is allowed. Otherwise (5) is an approximation (see Sect. 3.2).

Since the mean capacity requirement per order depends on the acceptance rule,
we define the capacity of one server L as a continuous variable and consider L as
the rate at which one unit of work content of the orders (e.g., one standard hour) is
processed (unit of measurement of L is, e.g., standard hours per hour). If L = 1, a
capacity requirement of c units of time (e.g., standard hours) means a service time
of c units of time, for L = 2 the service time is c/2, etc. The service rate is then:

µ =
L

E[C|Accept]
(22)

Numerical Example 3. We use the example of Section 3.2.1, where the service rate
is µ = 120 orders per period. If we assume the mean capacity requirement per order
E[C|Accept] = 7 hours of work, then we obtain from (22): L = 7∗120 = 840
[hours of work]. If capacity is doubled (to 1680), then µ doubles to 240. If the
capacity is 840 and E[C|Accept] increases from 7 to 9 then µ reduces to 840/9 =
93.33.

Calculation of the expected CM per period according to (4) and of the expected
profit per period according to (8) is the same as in Section 3.2. The fixed costs are
(analogous (7)):

Kfix = K L (23)

3.3.2 Analysis of the model

The expected profit per period E[G] can be calculated from (8) substituting (4)
for the expected CM per period and (23) for the fixed costs. In (4) we have to
substitute (19), (17), (16) and (15) for E[Y |Accept] and (5), (21), (15), (6), (22),
(20), (18) for λeff . After performing these substitutions, E[G] is a function of
a, b and L. Analytical calculation of the optimal values for the variables seems
extremely difficult, so we formulate a hypothesis about the optimal solution and
then try to prove it.

We formulate the following hypothesis: The optimal decision rule follows from
full costing. Hence we have to calculate the optimal values for the variables if the
hypothesis were correct.

A full costing system that allocates fixed costs according to the capacity re-
quirement of the orders usually will use hourly cost rates of the facilities: The total
fixed costs per period are divided by the total hours of work performed during this
period, which results in the cost rate per hour of work that is required from the
facility.
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In our model, a decision rule for order acceptance that accepts an order if the CM
is at least the allocated capacity costs obtained by hourly cost rates is represented
as follows:

Acceptance restriction for order j:

yj ≥ allocated fixed costs per hour of work · cj

⇒ yj

cj
≥ allocated fixed costs per hour of work

Acceptance restriction in the model:

cj ≤ a + byj

⇒ yj

cj
≥ 1

b
− a

b cj
(24)

The allocated fixed costs per hour of work is the same for all orders and hence
independent of cj (this is our hypothesis!). From this follows: a = 0. The allocated
fixed costs per hour according to (24) is then 1/b.

If this hypothesis is correct, the following optimal value for the allocated fixed
costs per hour 1/b results:

– The fixed costs per period are given by (23).
– The total work performed per period is the throughput (number of orders) λeff

according to (5), (21), (15) times the mean capacity requirement of an accepted
order E[C|Accept].

Thus the allocated fixed costs per hour of work in such a cost accounting system
are

allocated fixed costs per hour =
1
b

=
Kfix

λeffE[C|Accept]
(25)

Since E[C|Accept] = L/µ (from (22)), we can write:

allocated fixed costs per hour =
1
b

=
Kfix

λeff
L
µ

(26)

So we can formulate our hypothesis as follows: If the decision variables a, b
and L are determined so as to maximize the expected profit per period E[G], the
optimal values a∗, b∗ should be as follows:

a∗ = 0

b∗ =
λeff

L
µ

Kfix
(27)

From an analysis of the objective function (E[G] as a function of a, b and L) we
derive Theorem 3.

Theorem 3. Optimizing a and b simultaneously yields the optimal value a∗ = 0
independently of the available capacity L.

Proof. Appendix 2.

An order should be accepted if its CM per unit of work required exceeds a
certain lower bound.
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Theorem 4. If for a = 0 b and L are optimized simultaneously, the optimal value
b∗ is given by (27).

Proof. Appendix 3.

Stated more precisely: In Appendices 2 and 3 we prove that for the values a∗

and b∗ mentioned above the partial derivatives of the objective function are zero.
We cannot prove that the objective function is convex (this seems to be extremely
difficult) and thus cannot rule out local optima with certainty.

Theorems 3 and 4 mean that, provided the available capacity is adjusted opti-
mally, the lower bound on the CM per unit of work can be calculated by means
of full costing. Fixed costs are allocated to the orders according to the capacity
required from the resource.

Numerical Example 4. We assume that yj and cj follow a two-dimensional normal
distribution with E[Y ] = 10, E[C] = 8, σ[Y ] = 3, σ[C] = 2, coefficient of
correlation = 0.7. Using (13) (for the M/M/1/r-System) as an approximation and
using the data of Example 1 and 2 with r = 2 places in the system, we obtain
by numerical methods: a = 0, b = 1.23, L = 545.89. The fixed costs per unit
of time 1/b = 0.8124. Again, the total fixed costs can be allocated to the orders,
since the following equation holds: λeff

1
b E[C|Accept] = Kfix. The M/M/1/r-

approximation underestimates the throughput by 6% maximum, but the coefficient
of variation of fC|Accept(c) only varies between 0.4 and 0.25 over the relevant range
of b.

4 State-dependent lower bounds on the contribution margin

In this section we describe the extension of the modelling technique described
above to an order acceptance policy with state-dependent lower bounds on the CM.
Dynamic pricing problems frequently occur in practice, and extensive literature is
available on this topic, especially for cases when a given stock of items must be
sold by a deadline (for a survey, see Gallego and van Ryzin, 1994; Chatwin, 2000).
Since the aim of this section is the extension of our modelling approach, we do not
discuss this literature here.

4.1 Formulation of the model

We consider the problem of deciding on the lower bound of the CM. The assump-
tions are the same as in Section 3.2 with one modification: On arrival of an order
the number of orders in the system (denoted n) and the CM of the arriving order are
known. The order is accepted if its CM exceeds the state-dependent lower bound
ŷn, otherwise it is rejected (for a model with discrete customer classes, see Miller,
1969). The ŷn are independent of the capacity requirement cj . If r customers are
in the system, the customer withdraws the order. We model this behaviour as an
M/M/1 queueing system with impatient customers: Each arriving order enters the
system with probability πn with n being the number of customers in the system at
the time of arrival. With probability 1 − πn the customer is lost. Management has
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to decide on the ŷn, n = 0, ...., r − 1 (which determines the πn). The assumed
behaviour of the customers means that πr = 0.

The model can be derived as follows:
The fraction of accepted customers if n customers are in the system (denoted Qn)
is the fraction of customers with a CM exceeding the lower bound ŷn:

Qn = 1 − FY (ŷn) n = 0, ......, r − 1 (28)

Qr = 0

The fraction of orders that enter the system Q (orders placed by the customer
and accepted) is then (note the PASTA – property of the Poisson arrival process):

Q =
r−1∑
n=0

pnQn . (29)

Hence the throughput λeff :

λeff = λQ (30)

The state probabilities pn can be calculated from queueing models where the
arriving customers enter the system with a state-dependent probability Qn. For a
M/M/1 model the pn are (Neumann and Morlock, 1993, p. 676):

p0 =
1

1 +
∑∞

n=1 ρn
∏n−1

τ=0 Qτ

(31)

pn = ρn p0

n−1∏
τ=0

Qτ n = 1, ......, r (32)

Since Qn = 0 for n ≥ r, in Eq. (31) only the summands for n = 1 to r are
relevant, all other summands are zero. The traffic intensity is

ρ = λ/µ . (33)

For given values of λ, µ, and ŷn, which determines the traffic intensity ρ and
the Qn (Eq. 28), the Eqs. (29), (31) and (32) are a system of r + 2 equations in the
variables Q and pn(n = 0, ....., r). It can be solved by repeated substitution and
also yields the throughput λeff (Eq. (30)).

Next, we have to calculate the probability distribution of the CM of the orders
entering the system.

The probability density function of the CM of the orders entering the system if
n customers are in the system at the time of arrival (fY |(Enter, n)) is:

fY |(Enter,n)(y) = fY (y)
1−FY (ŷn) for y ≥ ŷn

= 0 for y < ŷn n = 1, ......, r − 1(34)

Expected CM of these orders (E[Y |(Enter, n)]):

E[Y |(Enter, n)] =
∫ v

ŷn

y fY |(Enter,n)(y) dy =
1

1 − FY (ŷn)

∫ v

ŷn

yfY (y) dy

n = 1, ......, r − 1 (35)
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The expected CM of an order entering the system E[Y |Enter] is the weighted
average of the E[Y |(Enter, n)] with pn times Qn as the weights:

E[Y |Enter] =
1∑r−1

n=0 pn Qn

r−1∑
n=0

pn Qn E[Y |(Enter, n)] (36)

The expected CM per period, fixed costs and expected profit per period are
calculated from (4), (7) and (8) with E[Y |Accept] = E[Y |Enter] according to
(36).

4.2 Solution of the model

Analytical solution of the optimization problems

max
ŷ0,....,ŷr−1

E[Yp] (37)

and

max
µ,ŷ0,....,ŷr−1

E[G] (38)

seems to be difficult and is a topic for future research. Therefore we use numerical
methods to extend our example introduced above.

Numerical example. We use the same data as in Example 2 and calculate µ, ŷ1, ŷ2
simultaneously according to (38). The optimal values are µ = 64.4991, ŷ0 =
4.7269, ŷ1 = 8.2457. The expected profit E[G] increases from 203.555 in Example
2 to 209.345. The expected number of orders that are accepted when n orders are
in the system is λQnpn. Thus all fixed costs can be allocated to the accepted orders
if the following equation holds:

λ

r−1∑
i=0

(ŷiQipi) = Kfix

For our numerical example this is the case. A general proof of this property is not
available at the moment.

5 Conclusions and directions for future research

In this paper we have shown that under certain assumptions the optimal lower
bound on the contribution margin of an order that is required to accept the order
can be determined by a full costing system provided that it is independent of the
state of the manufacturing system (as long as not all places in the queueing system
are occupied). The results lend support to the hypothesis that the acceptance of
full costing in practice is due to the fact that allocated fixed costs can be a good
estimate of the expected opportunity costs of accepting an order. But this result
only holds if a number of assumptions are satisfied, especially with regard to an
optimal balance of capacity and demand. Relaxing some of the assumptions and
performing sensitivity analyses if assumptions are violated remains to be done.
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Furthermore, we have demonstrated the extension of the applied modelling
technique to a state-dependent order acceptance policy. Further development of this
modelling approach should encompass simultaneous consideration of contribution
margin, capacity requirement and state of the manufacturing system, in order to
obtain optimal decisions or reasonable long-term decision rules. Modelling the
impact of order acceptance on the time-dependent state of the manufacturing system
is also required for solving other decision problems (e.g., due date assignment, order
release); thus future research must aim at integrating this type of models into the
research on optimal order acceptance policies.

We are aware of the limitations of the research methodology applied here, since
rejecting (or not acquiring) a customer order can have grave consequences on the
future behavior of customers; this can be modelled only to a limited extent. Thus the
decision problem considered here requires integration of OR models and research
on human behavior as well.

Appendix 1: Proof of Theorem 2

The partial derivatives of (10) with respect to ymin and µ yield the following
optimality conditions:

∂E[G]
∂ymin

= −yminλh(ρ)fY (ymin)−
λ2
(∫ v

y min yfY (y) dy
)

h′(ρ)

µ
fY (ymin)

= 0 (39)

∂E [G]
∂µ

= −K
λ2 (1 − FY (ymin))

(∫ v

y min y fY (y) dy
)

h′(ρ)

µ2 = 0 (40)

with ρ = λ
µ (1 − FY (ymin)); h′(ρ) is the first derivative of h(ρ) with respect to ρ.

We define the variable u:

u =
1
µ

λ2
(∫ v

y min
yfY (y) dy

)
h′(ρ) , (41)

because this factor can be found in (40) and in the second term of (39). Substituting
u into (40) yields

−K − 1 − FY (ymin)
µ

u = 0 (42)

and u is

u =
Kµ

−1 + FY (ymin)
. (43)

This can be used to simplify the second summand in (39). So we obtain from
(39):

−yminλh (ρ) fY (ymin) + fY (ymin)
Kµ

1 − FY (ymin)
= 0 (44)

Pulling out common factors and simplifying yields:

fY (ymin)
1 − FY (ymin)

[Kµ + yminλ (−1 + FY (ymin)) h (ρ)] = 0 (45)
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Ignoring the trivial solution ymin = f−1
Y (0), we obtain the solution

ŷmin =
Kµ

λ (1 − FY (ymin)) h (ρ)
(46)

��

Appendix 2: Proof of Theorem 3

The expected profit per period E[G] can be calculated as described in the text.
Simplification yields:

E[G] = −KL + λh (ρ)
∫ ∞

0
y

∫ a+by

0
fY,C (y, c) dc dy , (47)

with

ρ =
λ
∫∞
0 c

∫∞
−a+c

b
fY,C (y, c) dy dc

L
(48)

The partial derivative of E[G] with respect to a, divided by the constant λ:

∂E[G]
∂a

1
λ

= h(ρ)
∫ ∞

0
y fY,C(y, a + b y)dy + (49)

+
λ
(∫∞

0 y
∫ a+by

0 fY,C(y, c) dc dy
) (∫∞

0 c fY,C

(−a+c
b , c

)
dc
)
h′ (ρ)

b L

The partial derivative of E[G] with respect to b, divided by the constant λ:

∂E[G]
∂b

1
λ

= h(ρ)
∫ ∞

0
y2fY,C (y, a + by) dy + (50)

+
λ
(∫∞

0 y
∫ a+by

0 fY,C (y, c) dc dy
) (∫∞

0 c (−a + c) fY,C

(−a+c
b , c

)
dc
)
h′ (ρ)

b2 L

We define

u =
∫ ∞

0
y

∫ a+by

0
fY,C (y, c) dc dy (51)

This term can be found in both partial derivatives. Substituting u in (49) yields:

∂E[G]
∂a

1
λ

= (52)

= h (ρ)
∫ ∞

0
y fY,C (y, a + b y) dy +

λu
(∫∞

0 c fY,C

(−a+c
b , c

)
dc
)
h′ (ρ)

b L

Substituting u in (50) yields:

∂E[G]
∂b

1
λ

= h (ρ)
∫ ∞

0
y2 fY,C (y, a + b y) dy + (53)

+
λu
(∫∞

0 c (−a + c) fY,C

(−a+c
b , c

)
dc
)
h′ (ρ)

b2 L
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Letting (53) be zero yields the value for u provided b is optimal:

u = − b2Lh (ρ)
∫∞
0 y2 fY,C (y, a + b y) dy

λ
(∫∞

0 c (−a + c) fY,C

(−a+c
b , c

)
dc
)
h′ (ρ)

Substituting this into (52) yields simplified:

∂E[G]
∂a

1
λ

= h (ρ)

(∫ ∞

0
y fY,C(y, a + b y)dy − (54)

−b(
∫∞
0 c fY,C(−a+c

b , c)dc)
∫∞
0 y2 fY,C(y, a + b y)dy∫∞

0 c(−a + c)fY,C(−a+c
b , c)dc

)

We have to set this term to zero and calculate a from this equation. Since
h(ρ) > 0 for finite ρ, the term∫ ∞

0
yfY,C (y, a + b y) dy − (55)

−b
(∫∞

0 cfY,C

(−a+c
b , c

)
dc
) ∫∞

0 y2fY,C (y, a + b y) dy∫∞
0 c (−a + c) fY,C

(−a+c
b , c

)
dc

must be zero. Analytical solution of this equation hardly seems possible, so we try
to prove the theorem a = 0.

For a = 0, (55) is:∫ ∞

0
yfY,C (y, b y) dy − b

(∫∞
0 cfY,C

(
c
b , c
)
dc
) ∫∞

0 y2fY,C (y, by) dy∫∞
0 c2fY,C

(
c
b , c
)
dc

(56)

(56) can be analyzed as follows: fY,C( c
b , c) are the values of fY,C(y, c) for all

combinations of contribution margin and capacity requirement which meet the
restriction c = by. By substituting c = by, we transform both integrals with c as
integration variable in (56) into integrals with y as integration variable:∫ ∞

0
cfY,C

(c

b
, c
)

dc =
∫ ∞

0
b2yfY,C (y, by) dy (57)∫ ∞

0
c2fY,C

(c

b
, c
)

dc =
∫ ∞

0
b3y2fY,C (y, by) dy (58)

Substituting (57) and (58) into numerator and denominator, respectively, of the
fraction in (56) yields:∫ ∞

0
yfY,C (y, by) dy − b

(∫∞
0 b2yfY,C (y, by) dy

) ∫∞
0 y2fY,C (y, by) dy∫∞

0 b3y2fY,C (y, by) dy
(59)

Pulling out b2 and b3 from the integrals demonstrates that (59) is zero.

Appendix 3: Proof of Theorem 4

According to Theorem 3 we set a = 0.
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The partial derivative of E[G] with respect to b, divided by the constant λ:

∂E[G]
∂b

1
λ

= h (ρ)
∫ ∞

0
y2fY,C (y, by) dy + (60)

+
λ
(∫∞

0 y
∫ by

0 fY,C (y, c) dc dy
) (∫∞

0 c2fY,C

(
c
b , c
)
dc
)
h′ (ρ)

b2L

The partial derivative of E[G] with respect to L:

∂E[G]
∂L

= (61)

= −K −
λ2
(∫∞

0 y
∫ by

0 fY,C (y, c) dc dy
)(∫∞

0 c
∫∞

c
b

fY,C (y, c) dy dc
)

h′ (ρ)

L2

Again, u (term (51) from Appendix 2) is an element of both partial derivatives.
So we substitute

u =
∫ ∞

0
y

∫ by

0
fY,C (y, c) dc dy (62)

and calculate u for the optimal value of L (that is, ∂E[G]
∂L (from (61)) = 0):

u = − KL2

λ2
(∫∞

0 c
∫∞

c
b

fY,C (y, c) dy dc
)

h′ (ρ)
(63)

In (60) we substitute u from (62) for the first expression in parenthesis of the
numerator and obtain:

∂E [G]
∂b

1
λ

= h (ρ)
∫ ∞

0
y2fY,C (y, by) dy +

λu
(∫∞

0 c2fY,C

(
c
b , c
)
dc
)
h′ (ρ)

b2L
(64)

In (64) we substitute (63) for u and obtain:

∂E[G]
∂b

1
λ

= h (ρ)
∫ ∞

0
y2fY,C (y, b y) dy − (65)

− KL
∫∞
0 c2fY,C

(
c
b , c
)
dc

b2λ
∫∞
0 c

∫∞
c
b

fY,C (y, c) dy dc∫∞
0 c2fY,C

(
c
b , c
)
dc can be transformed into an integral with y as integration vari-

able (as in Appendix 2).
Pulling out b from the integral and simplifying yields:

∂E[G]
∂b

1
λ

=

(
h (ρ) − bKL

λ
∫∞
0 c

∫∞
c
b

fY,C (y, c) dy dc

)∫ ∞

0
y2fY,C (y, by) dy (66)

Since
∫∞
0 y2fY,C (y, by) dy cannot be equal to zero, the optimality condition

for b is:

h (ρ) − bKL

λ
∫∞
0 c

∫∞
c
b

fY,C (y, c) dy dc
= 0 (67)
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We have to prove that the optimal value for b resulting from (67) is equal to the
supposed value from Eq. (27):

b∗(supposed) =
λeff L

µKfix
. (68)

We denote the optimal value for b resulting from (67) as b∗. We obtain from
(67):

b∗ =
λh (ρ)

∫∞
0 c

∫∞
c
b

fY,C (y, c) dy dc

KL
. (69)

Performing the respective substitutions for µ, Kfix and λeff in (68) demon-
strates that b∗ (69) is equal to b∗ (supposed) (68), which is the reciprocal of the
fixed costs per unit of capacity. This completes the proof. ��
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Göx R (2002) Capacity planning and pricing under uncertainty. Journal of Management
Accounting Research 14: 59–78

Harris FHdeB, Pinder JP (1995) A revenue management approach to demand management
and order booking in assemble-to-order manufacturing. Journal of Operations Manage-
ment 13: 299–309

Jahnke H, Chwolka A (1999) Preis- und Kapazitätsplanung mit Hilfe kostenorientierter
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rechnung. Kostenrechnungspraxis 4: 202–208

Miller BL (1969) A queueing reward system with several customer classes. Management
Science 16(3): 234–245

Miller BL, Buckman AG (1987) Cost allocation and opportunity costs. Management Science
33(5): 626–639

Mills RW (1988) Pricing decisions in UK manufacturing and service companies. Manage-
ment Accounting 1988: 38–39

Missbauer H (2000) Die Vollkostenrechnung als Basis der operativen Programmplanung bei
Auftragsfertigung. Working paper, University of Innsbruck

Neumann K (1977) Operations Research Verfahren, Vol. II. Carl Hanser, München Wien
Neumann K, Morlock M (1993) Operations Research. Carl Hanser Verlag, München Wien
Papadopoulos HT, Heavey C, Browne J (1993) Queueing theory in manufacturing systems

analysis and design. Chapman & Hall, London
Pavia TM (1995) Profit maximizing cost allocation for firms using cost-based pricing. Man-

agement Science 41(6): 1060–1072
Plambeck E, Sunil K, Harrison JM (2000) A multiclass queue in heavy traffic with throughput

time constraints: asymptotically optimal dynamic controls. Working Paper, Stanford
University

Schneeweiss Ch (1998) On the applicability of activity based costing as a planning instru-
ment. International Journal of Production Economics 54: 277–284

Seelen LP, Tijms HC, Van Hoorn MH (1985) Tables for multi-server queues. North-Holland,
Amsterdam

Stidham S (1992) Pricing and capacity decisions for a service facility: stability and multiple
local optima. Management Science 38(8): 1121–1139

Stidham S (2002) Analysis, design, and control of queueing systems. Operations Research
50: 197–216

Tijms HC (1994) Stochastic models: an algorithmic approach. Wiley, New York
Wiese H (1994) Das Theorie-Praxis-Paradox der Kostenrechnung aus verhandlungstheo-

retischer Sicht. Zeitschrift für betriebswirtschaftliche Forschung 6: 525–537
Wijngaard J, Miltenburg GJ (1997) On the cost of using capacity flexibility – a dynamic

programming approach. International Journal of Production Economics 53: 13–19
Wildemann H (1982) Kostenprognosen bei Großprojekten. Poeschel, Stuttgart
Wouters MJF (1994) Decision orientation of activity based costing. International Journal of

Production Economics 36: 75–84
Zimmerman JL (1979) The costs and benefits of cost allocation. The Accounting Review

LIV(3): 504–521
Zugarramurdi A, Parin MA, Carrizo GA, Gadaleta L, Lupin HM (2002) Investment and

production costs for fishmeal plants in developing and developed countries. International
Journal Of Production Economics 76(1): 53–59


