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Abstract. The paper presents an overview on the preprocessing techniques of linear
programming. A new reduction technique is also introduced and the presolve is
extended to mixed integer and quadratic programming problems. Numerical results
are presented to demonstrate the impact of presolving in interior point and simplex
implementations. The demonstrative results are given on large-scale linear, mixed
integer and quadratic programming test problems.
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1 Introduction

It is widely recognized, that LP preprocessing is very important for solving large-
scale linear programming (LP) problems efficiently [4,9,11,2]. This is true for both
interior point and simplex algorithms. Although LP software and computers have
become much faster, LP models have increased in size. Furthermore, LP optimiz-
ers are used in interactive applications and in integer programming, where many
LPs have to be solved. More efficient algorithms and improved implementation
techniques are therefore still very important. All practical LP models are gener-
ated by computer programs either directly or within a modeling system. The model
generator derives the computer model from the mathematical model structure and
the model data. Sometimes several models are combined or submodels have to be
solved. Most model generators have very limited capabilities for data analysis. As
a consequence, there is usually a significant part of the model that is redundant. The
purpose of this paper is to present improved preprocessing techniques which offer
significant progress over recent published LP preprocessing techniques. Some of
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the larger Netlib problems [8] will be used for a comparison. In addition we will
present numerical results on other large problems and offer some insight into the
impact of LP preprocessing to sparsity aspects of factorizations used in interior
point and simplex algorithms. A comparison of the interior point code BPMPD
[18,17] and the simplex code MOPS [21,22] with and without the new LP pre-
processing will give additional insight into the importance of LP preprocessing for
interior point and simplex algorithms. Furthermore, it will be seen that there are
still models where efficient simplex codes are significantly faster than interior point
codes. A very important aspect which has been frequently overlooked in papers on
LP preprocessing is its impact on integer optimization problems (IP). Significant
algorithmic progress for solving IPs during the last decade is based on the notion
of tight linear programming relaxation [10,23,6]. The goal is to reformulate or
transform (IP) into an integer equivalent problem (IP’) such that the feasible region
of (LP’) is as small as possible. As a rough measure one can use the increase of
the LP objective function value z(LP’) compared to z(LP). A key role play cut-
ting planes (facets or faces of high dimensions) derived from (IP) which are added
resulting in an integer equivalent problem (IP’) with tighter (LP’) than (LP). The
result is, in general, a larger LP problem with more constraints. It is even more
important to remove redundancies because there is in general no impact on the
tight linear programming relaxation but the model reduced by preprocessing will
be re–optimized many times during the branch and bound algorithm. This effect
will be shown on some mixed integer optimization problems in Section 4. In Section
5 we will summarize how the described presolving techniques can be extended for
quadratic programming. We report numerical results which show that presolving
is also important for nonlinear optimization.

2 Preprocessing techniques for LP

Using matrix notation we may state an LP problem in the computational standard
form (LP):

min cT x,

b ≥ Ax ≥ b,

u ≥ x ≥ l,

(1)

and its dual,

max qT b − pT b + vT l − wT u,

AT y + v − w = c,

y + q − p = 0,

v, w, q, p ≥ 0

where l, u,c,x, v and w are n-vectors, b, b,y, p and q are m-vectors, and A is an
m×n matrix. The vectors b, b, l and u may contain elements that are plus or minus
infinity. I = {1, ..., m} and J = {1, ..., n} are the index sets of constraints and
variables which will be updated by the presolve and postsolve process. Note that
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(LP) supports all the specialities of practical model formulations such as fixed and
free variables and ranged constraints. The main goals of LP preprocessing are:

– eliminate as many redundant constraints as possible;
– fix as many variables as possible;
– transform bounds of single structural variables (either relaxing them during LP

preprocessing or tightening bounds during IP preprocessing);
– reduce the number of variables and constraints by eliminations;

After solving the preprocessed problem to optimality, a postsolve operation is
necessary to

– present a full primal–dual optimal solution of the original problem from the
primal–dual optimal solution of the preprocessed problem;

– create an optimal basis solution of the original problem from the optimal basis
solution of the preprocessed problem.

The postsolving process is performed in reverse order of the presolving steps
and computes the full solution corresponding to the previous presolving stage. Since
most of the LP preprocessing techniques are now well documented and understood
[4,11,2,9] we will only briefly present the standard techniques and concentrate
on those aspects which make the new preprocessing superior to other published
preprocessing techniques.

2.1 Tests based on primal and dual feasibility

The first group of presolving steps considered uses feasibility tests on the primal
and dual problem to detect redundancy. These steps fix variables at one of their
bounds or remove constraints but do not transform the problem algebraically.

2.1.1 Empty rows and columns. If row i has no nonzero entries then it can be
deleted from the problem unless bi < 0 or bi > 0. In the latter cases the problem is
primal infeasible. This reduction requires no postsolving operations, and an optimal
basis for the original problem can be obtained by including the ith slack variable
in the optimal basis of the presolved problem. Dual values are generated as:

yi = 0, pi = 0, qi = 0. (2)

Column j with no nonzero entries can be fixed at its lower or upper bound
depending on the sign of the cost coefficient. Dual infeasibility of the problem
may be detected if the appropriate bound is infinite. This step also does not require
postsolve operations, dual values vj and wj have to be set to zero.

2.1.2 Singleton rows. Singleton rows may be replaced by bounds on primal vari-
ables. The resulting new bound may be infeasible or fixes the variable at a bound.
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Let row i be a singleton row which has the nonzero entry in column j, then we
compute in the postsolve operation

yi=

(
cj −∑k∈I,k /=i akjyk

)
aij

, vi=wi=0, qi = max(0,−yi), pi= max(0, yi),

(3)

which gives the optimal dual values for the ith row. If column j is basic or it is
non–basic at one of its original bounds then the basis has to be extended with the
slack variable corresponding to the ith row. If column j is non–basic at a bound
introduced by the singleton row, then column j has to be included in the basis and
the dual values have to be recomputed as:

yi = 0, pi = 0, qi = 0,

vj = max

(
0,
∑
k∈I

akjyk − cj

)
, wj = max

(
0, cj −

∑
k∈I

akjyk

)
. (4)

2.1.3 Primal feasibility tests. The key of these techniques are lower resp. upper
row sums which are based on current lower and upper bounds of the primal variables.
Let us define

b
′
i =

∑
k∈J,aik>0

aikuk+
∑

k∈J,aik<0

aiklk, b′
i =

∑
k∈J,aik>0

aiklk+
∑

k∈J,aik<0

aikuk .

Primal infeasibility is detected if b′
i > bi or b

′
i < bi. If b′

i = bi or b
′
i = bi

then each variable, affected by constraint i, can be fixed at one of its bound. If
bi ≥ b

′
i ≥ b′

i ≥ bi then row i is redundant. In the postsolve we have to extend the
basis with the ith slack variable. Dual values for removed rows are computed as in
(2), for fixed columns as in (4).

2.1.4 Cheap dual tests. In this step we remove column j for which

if cj ≤ 0 and

{
bi = +∞ if aij > 0

bi = −∞ if aij < 0
i ∈ I,

if cj ≥ 0 and

{
bi = +∞ if aij < 0

bi = −∞ if aij > 0
i ∈ I.

(5)

In the first case variable xj is fixed at its upper bound while in the second case at
its lower bound. If the appropriate bound is not finite and cj /= 0 then the problem
is dual infeasible. Note that this test includes the removal of empty columns. If the
appropriate bound is not finite but cj = 0 then all constraints having nonzero entry
in column j can be removed, and the value of variable j is left undefined. In this
case the postsolve has to determine the most dominating row and to compute the
value of xj correspondingly. The optimal basis has to be extended with variable j
and with the removed rows except for the determined most dominating one. The
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dual values vj and wj are set to zero, the dual values corresponding to the most
dominating row are computed as in (3), for the other rows as in (2). In the other
case, if variable j is fixed at its bound, the dual values are computed as in (4).

2.1.5 Dual feasibility tests. Similarly to the primal feasibility tests, we use upper
and lower bounds on the dual variables, defined as

y
i
=

{
∞ if bi > −∞
0 if bi = −∞ , yi =

{
−∞ if bi < +∞
0 if bi = +∞

for computing upper and lower limits on dual constraints:

cj =
∑

i∈I,aij>0

aijyi
+

∑
i∈I,aij<0

aijyi, cj =
∑

i∈I,aij<0

aijyi
+

∑
i∈I,aij>0

aijyi.

Dual feasibility tests are then performed in two steps:

1. (weak dominance) If cj = cj (or cj = cj) then variable j can be removed from
the problem. We distinguish the following situations:
(a) If cj = cj and lj > −∞ (or cj = cj and uj < ∞) then variable j is fixed

at its lower (or upper) bound.
(b) If 0 /= cj = cj and lj = −∞ (or 0 /= cj = cj and uj = ∞) then the

problem is dual infeasible.
(c) If 0 = cj = cj and lj = −∞ (or 0 = cj = cj and uj = ∞) then

all constraints having nonzero entry in column j can be removed together
with column j and the value of variable j is left undefined. The postsolve
performs the same operations as in Section 2.1.4.

2. (strong dominance) At the beginning the bounds on the dual variables are tight-
ened by using the usual bound tightening technique. The dual tests are per-
formed after the bound tightening with the modified lower and upper limits.
Dual infeasibility is detected if cj > cj . Variable j can be fixed at its lower (or
upper) bound if cj > cj (or cj < cj), or dual infeasibility can be detected if
the bound is infinite. In the postsolve we have to perform the same operations
as in Section 2.1.4.

2.1.6 Duplicate rows. If i /= k and α are such that aij = αakj for j = 1, ..., m
then rows i and k are identical up to a scalar multiplier. Depending on the bounds
of the constraints we can detect either primal infeasibility or we can make row i
redundant by tightening the bounds of constraint k. In the postsolve, if row k is
basic or it is non–basic at one of its original bounds then we set the dual values as
in (2) and include in the basis rows. Otherwise, we set

yi =
ŷk

α
, qi = max(0,−yi), pi = max(0, yi),

yk = 0, qk = 0, pk = 0.

where ŷk is the optimal dual value in the presolved problem. If row k was basic in
the optimum of the presolved problem then we set row i as basic. Otherwise we set
row k basic and row i non–basic.
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2.1.7 Duplicate columns. If j /= k and α /= 0 are such that aij = αaik for
i ∈ I then columns j and k are identical up to a scalar multiplier. We consider the
following two cases:

1. If cj=αck then column j can be removed from the problem while the bounds
of column k may be widened. In the postsolve we have to compute the values
of xk and xj by solving an LP of two variables and one constraint:

αxj + xk = x̂k, (6)

uj ≥ xj ≥ lj , xk ≥ xk ≥ lk, (7)

where x̂k is the optimal value of variable k in the preprocessed problem. Dual
values are set as

vj = αvk, wj = αwk.

If k is non–basic in the presolved problem then we set j as non–basic. Otherwise
we set that variable as basic (and the other as non–basic) which is in the optimal
basis of problem (6–7).

2. If cj /= αck then one of the variables may be fixed at one of its bounds, or dual
infeasibility may be detected depending on the bounds of the variables and on
the relation of cj and ck. For the fixed variables we have to compute the dual
slack values as in (4).

2.2 Reductions based on eliminations

We consider another type of reduction which is based on an algebraic transformation
of the problem. The main point is the elimination of free variables. A key issue
is, therefore, to generate as many free variables as possible by relaxing redundant
finite bounds on structural variables. This relaxation is based on computing implied
bounds of variables as:

u′
j = min

i





bi − ∑

k∈J\{j}
aik>0

aiklk − ∑
k∈J\{j}
aik<0

aikuk


 /aij , aij > 0


bi − ∑

k∈J\{j}
aik<0

aiklk − ∑
k∈J\{j}
aik>0

aikuk


 /aij , aij < 0

l′j = max
i





bi − ∑

k∈J\{j}
aik<0

aiklk − ∑
k∈J\{j}
aik>0

aikuk


 /aij , aij > 0


bi − ∑

k∈J\{j}
aik>0

aiklk − ∑
k∈J\{j}
aik<0

aikuk


 /aij , aij < 0
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If u′
j < uj (or l′j > lj) then we tighten the bound as uj := u′

j (or lj := l′j)
and mark the bound which was tightened. Otherwise if uj = u′

j (or lj = l′j) we
relax the bound by setting uj := +∞ (or lj := −∞). This investigation may be
performed successively until no modification is available. During bound tightening
primal infeasibility can be detected if u′

j < l′j or variables can be fixed if u′
j = u∗

j or
l′j = l∗j where u∗

j and l∗j are the bounds of variable j before the tightening process.
At the end of the procedure we relax all bounds which were marked during the
bound tightening. It is easy to see that the above bound relaxation procedure can
not produce linearly dependent free variables. Therefore, the optimal primal–dual
or basis solution of the problem after bound relaxation will also be optimal primal–
dual or basis solution for the original problem. The elimination steps are then
performed by choosing pivots in columns corresponding to free variables. During
the elimination the constraint matrix, the upper and lower bounds of the constraints,
as well as the objective function have to be transformed. After the transformations
the row and column corresponding to the pivot position are removed from the matrix.
During the postsolve process the basis is extended by the eliminated variables. The
value of a primal variable corresponding to an eliminated column as well as the
value of the dual variable corresponding to the eliminated row can be determined
upon the primal and dual feasibility requirements: if variable j is eliminated by
pivoting on aij , then

xj =
bi −∑k∈J,k /=j aikxk

aij
, vj = 0, wj = 0, (8)

yi =

(
cj −∑k∈I,k /=i akjyk

)
aij

, qi = max(0,−yi), pi = max(0, yi). (9)

where bi is either bi or bi, depending on other tests mentioned later.

2.2.1 Singleton columns. A special case is a free singleton column which does
not require transforming the constraint matrix since the pivot column has no other
nonzero than the pivot. If the nonzero value of the free singleton column lies in
a non–equality row then after the elimination, the value of the remaining slack
variable has to be determined by the tests of empty columns. This test determines
also the value of bi for the postsolve operation in (8).

2.2.2 Doubleton rows. The next special elimination is the case of equality rows
having two nonzero entries. In such a case the bounds of one variable can be
tightened such that the bounds of the other variable becomes redundant while
preserving the feasible set of the problem, see [7]. The elimination introduces fill–
in in A in one column only. The number of nonzeros after the elimination of the
pivot row and column does not increase. Let row i be an equality (bi = bi) and a
doubleton with nonzero entries in columns j and k, and let column j be eliminated
while the bounds of column k may be tightened. In the postsolve xj is computed
as in (8). We consider the following three cases:
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1. Variable k has a value equal to one of its original bounds. In this case the
postsolve is the same as described at the beginning of section 2.2. Variable
k should be non–basic, and the basis can be extended by column j to cover row
i.

2. Variable k has a value equal to one of its bounds introduced by the bound
tightening. In this case we recompute the dual solution as

vk = 0, wk = 0,

yi =

(
ck −∑l∈I,l /=i aljyl

)
aik

, qi = max(0,−yi), pi = max(0, yi),

vj = max

(
0,
∑
l∈I

aljyl − cj

)
, wj = max

(
0, cj −

∑
l∈I

aljyl

)
.

Clearly, variable k is basic in the presolved problem but should be non–basic
in the postsolved problem. Furthermore, column j needs to have a value equal
to one of its bound. Therefore, we set variable j non–basic and include column
k in the basis.

3. Variablek has a value which is different from its original and introduced bounds.
Clearly, variable j has also a value which differs from its bounds. Therefore
we can set the dual values as in (9) and include column j in the basis.

2.2.3 General elimination of free variables. In this step we eliminate original and
generated free variables by pivoting. In each step of the elimination we search for
a pivot aij , where variable j is a free variable and row i is an equality (bi = bi) and
the pivot fulfills the conditions:

|aij | ≥ α max |akj | k ∈ I, and
(dj − 1) (ri − 1) ≤ β (dj + ri) ,

where dj is the number of nonzeros in column j and ri the number of nonzeros
in row i, α is a relative pivot tolerance and β is a relative fill–in tolerance. The
first condition ensures numerical stability while the second one prevents heavy
fill–in during the transformations. After the transformations column j and row i
are removed from the problem and the elimination is repeated until no more pivots
are available. Default values, which were also used in the numerical experiments,
α = 10−2 and β = 4.0.

2.3 Other reductions

2.3.1 Finding linear dependency. One trivial reduction is identifying linearly de-
pendent equalities (and linearly dependent free variables) in the problem. Such test
can be based on the Gaussian elimination and can be implemented efficiently [1].
This test can detect primal (or dual) infeasibility and can remove linearly dependent
equalities (and free variables) from the model. In the postsolve the optimal basis
has to be extended by the slack variables corresponding to the removed rows, dual
values are set as in (2).
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2.3.2 Improving sparsity in A. For the first time, Chang et al. proposed a hierar-
chical method to make the constraint matrix sparser [5]. The idea was later used
by Andersen et al. [3] and by Gondzio [9] in the context of interior point meth-
ods. The main motivation for this type of reduction is that later on the algorithm
works on a matrix with less nonzero values. Therefore, the iteration computational
effort is supposed to be lower. The sophisticated method of Chang et al. requires
significantly more computational effort than the simplified procedure proposed by
Gondzio which uses equality rows to eliminate at least one nonzero from other rows
with the same or a larger nonzero pattern. As postsolve, the dual variables have to
be modified by the inverse row transformations in reverse order.

2.4 LP preprocessing overview

The various preprocessing techniques are combined and executed in the following
order:

repeat
repeat

repeat
Singleton row tests
Singleton column tests
Primal feasibility tests
Cheap dual tests

until no more reduction is possible
Dual feasibility tests
Duplicate column tests
Duplicate row tests

until no more reduction is possible
Doubleton row elimination
Bound relaxation
Scale the model using geometric mean scaling
Finding linearly dependent rows
Elimination of free variables
Improving sparsity in A

until maximum number of passes reached or no more reduction is possible

Note that we collected tests which do not require substantial computational
effort to the innermost loop of the process. We observed that a significant part of
the total reduction is done in this loop, hence the more costly operations of the outer
loops are performed on a reduced model. The middle loop executes procedures of
moderate cost: for the dual feasibility tests we execute successive bound reduction
on the dual variables and shadow prizes, while duplicate row (and column) tests
require the numerical comparison of selected rows (and columns). In the latter case
the number of row (and column) comparisons is reduced by using hash buckets. In
the outermost loop we execute steps which require the algebraic transformations
of A, these are the most costly operations in our preprocessing scheme. In contrast
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Table 1. Problem size reduction by presolve

Problem Before presolve After presolve Presolve
name m n nz m n nz time

bn12 2324 3489 13999 1059 2233 10727 0.14

Cycle 1903 2857 20720 1023 2016 13561 0.06

80bau3b 2262 9799 21002 1965 8920 19461 0.08

degen3 1503 1818 24646 1404 1721 24077 0.03

greenbea 2392 5405 30877 1168 3213 23331 0.08

greenbeb 2392 5405 30877 1171 3208 23154 0.08

d2q06c 2171 5167 32417 1752 4768 30751 0.09

d6cube 415 6184 37704 402 5447 33830 0.16

dfl001 6071 12230 35632 3737 9618 32039 0.17

stocfor3 16675 15695 64875 8093 7139 59201 0.25

pilot87 2030 4883 73152 1868 4493 70564 0.11

pds-10 16558 48763 106436 8399 40491 98232 0.48

maros-r7 3136 9408 144848 2152 6578 80167 0.14

cre-b 9648 72447 256095 4975 31477 107592 0.44

ken-18 105127 154699 259826 46887 96783 233288 10.21

tough 217238 172158 997990 8429 34203 64128 8.55

dbic1 43200 226435 1038761 33688 140359 781948 1.94

gams 391609 295801 1270825 291708 197898 1158840 21.55

osa-60 10280 232966 1397793 10243 232965 839112 2.38

xs01 104376 450915 1864215 32143 374744 2316087 15.19

Solution times in seconds on a Pentium IV (2,2 GHz).

to the two inner loops, where the upper and lower row and column sums as well
the lower and upper bounds on the dual variables are kept consistent with the
reductions, we have to recompute them after the outermost loop due to the algebraic
modifications of A. This introduces an overhead when performing multiple passes
in the outermost loop. We observed that in the majority of cases, more than one pass
in the outermost loop gives no improvement on the overall execution time and may
decrease the numerical stability of the problem. Therefore we prefer to execute the
outermost loop only once.

3 Preprocessing benchmarks

Netlib models with more than 1500 rows were used to report numerical results with
the new preprocessing techniques and compare the results with those reported by
Gondzio for the code HOPDM [9]. Some larger real-life models were added just to
show that the techniques are even more important on larger models generated by
model generators or modeling systems. There are three major differences between
the presented presolve and the one described in [9]:
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Table 2. Problem reduction by presolve of HOPDM

Problem m n nz

bn12 1848 3007 12458

cycle 1380 2383 14061

80bau3b 1965 8736 19048

degen3 1503 1818 24363

greenbea 1848 3886 23112

greenbeb 1846 3876 23014

d2q06c 2010 4962 30259

stocfor3 15336 14382 55088

pilot87 1967 4595 70359

maros-r7 2152 6578 80167

– Gondzio suggests to use bound tightening on primal variables and to keep the
generated tighter bounds while in our presolving scheme the bounds are relaxed
after bound tightening (except for integer and non–linear variables). Gondzio’s
approach may open more possibilities in further primal presolve reductions but
limits the forthcoming dual presolve steps. Additionally, in this case obtaining
a basis solution of the original problem from a basis solution of the presolved
problem may require pivot steps during postsolve, which is undesirable. Our
approach may improve on the dual presolve steps, and it makes the derivation
of a basic solution possible without further pivoting during postsolve.

– We introduced advanced elimination techniques in connection with bound re-
laxation, this was not applied in [9].

– Gondzio introduced the ”weak dominance” during the dual presolve operation.
His supporting theorem, however, is not valid with the conditions given and this
step of his presolve may introduce incorrect reductions [19]. In our presolve we
use weak dominance in a mathematically correct way, as a separate step without
tightening the bounds on the dual variables. Furthermore, our implementation
exploits weak dominance to identify and remove redundant constraints from
the problem.

The results presented in Tables 1 and 2 show that our presolve does not perform
worse than that of [9], and in several cases it leads to significantly larger reductions.
The results suggest that keeping the tightened bounds after bound reduction cannot
improve significantly on the efficiency of the presolve, and that the elimination
techniques are especially important in several cases. There is a small inconsistency
between the original number of nonzeros reported by Gondzio and us. Gondzio
reports a smaller number of nonzeros for 80bau3b, greenbea, greenbeb and
pilot87. This explains why the preprocessed models according to Gondzio also
have a slightly smaller number of nonzeros.
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Table 3. Impact of preprocessing on some integer optimization problems

Problem Before preprocessing After preprocessing Solution time

name m n nz m n nz LP IP

dsbmip old 1656 1886 8373 1170 1799 7199 0.72 3.52

new 1033 1650 7687 0.25 1.79

oil old 5563 6181 39597 3187 3629 20286 3.01 233.41

new 1689 2132 15535 1.77 39.63

rentacar old 6803 9557 41842 2463 4385 26614 3.04 24.11

new 890 2709 21401 0.62 3.01

mod011 old 4481 10958 29840 4480 10957 22253 0.70 946.17

new 2163 8640 17227 0.67 388.20

waterx old 57023 68064 143643 19731 32856 57917 19.23 25.56

new 13553 23510 40630 4.77 6.62

Solution times in seconds on a Pentium IV (2,2 GHz).

4 LP preprocessing aspects for integer programming

One important aspect of LP preprocessing is its impact on mixed–integer opti-
mization problems. The design of the LP preprocessor has to take integer variables
into account if the preprocessed model is to be solved as an integer optimization
problem. The following modifications were implemented:

– A variable is flagged if it can only take integer values;
– Integer variables are not eliminated;
– If bounds of integer variables are reduced the new bounds are rounded to the

nearest integer in an obvious way; as a result other bounds may possibly be
reduced;

– During bound relaxation the bounds of integer variables are tightened and not
relaxed.

Several examples are used to show the impact of the improved LP preprocessing
to solve mixed-integer optimization problems with MOPS. The old LP preprocess-
ing is used for a comparison. The simplex engines and the mixed–integer module
are unchanged.

The purpose of those benchmarks is to show how LP-preprocessing influ-
ences the running time if everything else, in particular IP preprocessing, remains
unchanged. In an attempt to derive a strong linear programming relaxation IP-
preprocessing adds normally valid inequalities violated by the current LP-solution
and thus increases the size of the LP model.

Table 3 shows five MIP models with their original dimensions, the preprocessed
models with the old and the new LP preprocessing, the running times for solving
the initial LP and for solving the MIP model thereafter. The improvements are due
to tighter bounds derived for all variables and the reduced size of the IP model.
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5 Preprocessing aspects of quadratic programming

Convex quadratic problems (QP) were introduced as early as in the 1950s [12].
They represent an important class of linearly constrained optimization. Beyond
the classical portfolio optimization, quadratic problems arise in a wide variety of
applications, including least squares problems, regression analysis, data fitting, risk
management. In this section we deal with the quadratic programming problem in
the form:

min cT x + 1
2xT Qx,

b ≥ Ax ≥ b,

u ≥ x ≥ l,

(10)

and its dual in the Wolfe-sense:

max qT b − pT b + vT l − wT u − 1
2xT Qx,

AT y + v − w − Qx = c,

y + q − p = 0,

v, w, q, p ≥ 0

where Q ∈ Rn×n is symmetric positive definite and the other quantities are defined
as in Section 2. Numerical experiments showed that interior point methods are
perhaps the most powerful algorithms for solving QP problems [20], therefore we
consider the preprocessing techniques of QPs from the viewpoint of interior point
methods. From the viewpoint of primal feasibility, there are no differences between
(1) and (10). Thus the tests described in sections 2.1.1, 2.1.2, 2.1.3 and 2.1.6 may be
applied to QP without any changes. Dual variables corresponding to fixed variables
have to be computed in a slightly different way [13,14]. The duplicate column check
(Sect. 2.1.7) has to be extended to test that the appropriate columns of Q are also
identical with the same scalar multiplier. Note that the successful test requires that
Q is rank deficient. For presolving quadratic programming problems we introduce
upper and lower bounds on the gradient of the objective function, namely:

c∗ ≤ c + Qx ≤ c∗

where c∗ and c∗ may be computed as:

c∗
j = cj +

∑
k∈J,Qkj>0

Qkj li +
∑

k∈J,Qkj<0

Qkjui,

c∗
j = cj +

∑
k∈J,Qkj<0

Qkj li +
∑

k∈J,Qkj>0

Qkjui

Note that c∗ and c∗ may be tighter if the upper and lower bounds on primal
variables are tighter, therefore, it is advantageous to perform bound tightening on
variables having quadratic terms in the objective function before computing c∗ and
c∗.
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5.1 Cheap dual tests for QP

In this step we remove column j for which

if c∗
j ≤ 0 and

{
bi = +∞ if aij > 0

bi = −∞ if aij < 0
i ∈ I , (11)

if c∗
j ≥ 0 and

{
bi = −∞ if aij > 0
bi = +∞ if aij < 0

i ∈ I . (12)

Let γ denote c∗
j for case (11) and c∗

j for case (12). In the first case column j is
fixed at its upper bound while in the second case at its lower bound. If the appropriate
bound is not finite and γ /= 0 then the problem is dual infeasible. Note that this test
includes the removal of empty columns with quadratic terms in the objective. If
the appropriate bound is not finite γ = 0 then all constraints having nonzero entry
in column j can be removed, and the value of column j is left undefined. In this
case the postsolve requires determining the most dominating row and computing
the value of xj correspondingly. The optimal basis has to be extended with variable
j and with the removed rows except for the determined most dominating one. The
dual values vj and wj are set to zero, the dual values corresponding to the most
dominating row are computed as

yi =

(
cj + (Qx)j −∑k∈I,k /=i akjyk

)
aik

, qi = max(0,−yi), pi = max(0, yi)

while for the other removed rows as (2). In the other case, if variable j is fixed at
its bound, the dual values are computed as:

vj = max

(
0,
∑
k∈I

akjyk − cj − (Qx)j

)
, (13)

wj = max

(
0, cj + (Qx)j −

∑
k∈I

akjyk

)
. (14)

5.2 Dual feasibility tests for QP

We define y, y, c and c as in Section 2.1.5. A modified bound tightening technique
may be applied to the bounds of the dual variables which use either c or c instead
of c in an obvious way. The dual tests are performed after tightening the bounds
with the modified lower and upper limits. Dual infeasibility is detected if cj > cj .
Variable j can be fixed at its lower (or upper) bound if c∗

j ≥ cj (or c∗
j ≤ cj), or

dual infeasibility can be detected if the bound is infinite. In the postsolve we have
to perform similar operations as in the previous section.
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Table 4. Preprocessing results on quadratic programming problems

Problem Original Preprocessed

Name M N Nz(A) Nz(Q) M N Nz(A) Nz(Q)

dualc2 229 7 1603 21 9 7 51 21

dualc5 278 8 2224 28 1 8 8 28

dualc8 503 8 4024 28 15 8 105 28

q25fv47 820 1571 10400 59053 687 1456 10489 57674

qbandm 305 472 2494 16 162 317 1421 5

qbore3d 233 315 1429 50 28 53 241 0

qbrandy 220 249 2148 49 93 170 1582 27

qcapri 271 353 1767 838 148 214 1448 824

qe226 223 282 2578 897 149 250 2161 737

qfffff80 524 854 6227 1638 276 617 4649 1628

qgfrdxpn 616 1092 2377 108 432 908 2005 108

qpilotno 975 2172 13057 391 731 1754 11833 163

qscagr25 471 500 1554 100 229 380 1296 89

qscfxm1 330 457 2589 677 238 390 2195 674

qscfxm2 660 914 5183 1057 473 777 4433 1049

qscfxm3 990 1371 7777 1132 712 1168 6559 1109

qscrs8 490 1169 3182 88 221 905 2542 60

qscsd8 397 2750 8584 2370 397 2750 8584 2370

qsctap1 300 480 1692 117 284 480 1638 117

qsctap2 1090 1880 6714 636 1033 1880 6489 636

qsctap3 1480 2480 8874 861 1408 2480 8595 861

qseba 515 1028 4352 550 55 110 343 433

qshell 536 1775 3556 34385 293 1280 2517 2010

qship12l 1151 5427 16170 60205 638 4175 10513 43156

qship12s 1151 2763 8178 16361 323 1902 4777 8715

qstair 356 467 3856 952 254 282 5087 703

stcqp1 2052 4097 13338 22506 0 3158 0 1525

stcqp2 2052 4097 13338 22506 0 2045 0 5898

5.3 Other techniques

One can perform algebraic elimination of free variables with quadratic terms but,
unfortunately, this requires the transformation of Q which may introduce fill–in in
Q, even if the transformations introduce no fill–in in A. As it was shown in [15],
the density of Q has a very strong influence on the fill–in during the solution of QPs
with interior point methods, therefore fill–in in Q is very undesirable. Therefore
we do not recommend to perform the elimination steps of Sections 2.2.1, 2.2.2 and
2.2.3 on variables having quadratic terms. Removing linearly dependent rows and
improving the sparsity in A can be performed as in the linear programming case.
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6 Preprocessing results on QPs

Table 4 presents the effect of the default preprocessing of BPMPD on quadratic
programming problems. Figures given include the number of rows, columns and
nonzeros in the constraint matrix, furthermore the number of nonzeros in the lower
off–diagonal part of Q before and after the preprocessing of BPMPD. The results
indicate that in several cases the original problem size of quadratic problems can
be reduced significantly. For example, problems stcqp1 and stcqp2 were reduced
to simple bound constrained optimization problems while the presolve reductions
completely removed the nonlinearity of problem qbore3d.

7 Sparsity considerations of LU and Cholesky factorization

One other important consideration of LP preprocessing techniques is to consider
its impact on numerical stability and sparsity of factorizations of sparse matrices
which occur during the LP optimization of the models. From a theoretical point
of view no prediction is possible concerning what impact preprocessing can have
on sparsity and stability. For those preprocessing techniques without elimination
of constraints one can expect that the sparsity and stability are not effected. This
is different, however, if the structure and the size of elements will change. There-
fore, we present only numerical results for the last (optimal) basis of the simplex
algorithm and for the last Cholesky factorization of the interior point code. We
report the number of nonzeros and the fill–in with and without the preprocessing
techniques. One fundamental problem is that the execution paths with or without
full preprocessing can be different. This implies in general that the final matri-
ces to be factorized can be different. Nevertheless it can be helpful to make this
comparison to obtain an understanding of how preprocessing effects sparsity of
factorizations. Note that this effect is implicitly represented in the overall running
times of the models. For problem stocfor3 we observed that the elimination steps
of the presolve changed the structure of the problem in such a way that the standard
Cholesky factorization of the interior point method suffered heavy fill–in, resulting
in a larger number of nonzeros in the factorization than without presolve. Whereas
our presented safeguard techniques prevent heavy fill–in of the whole constraint
matrix during the eliminations, it may allow fill–in in few columns, which may re-
sult in undesirable behavior of the Cholesky factorization. As was discussed in [13]
this case can be reliably identified and handled efficiently by using the augmented
factorization scheme. Figures given in Table 5 for problem stocfor3 refer to the
number of nonzeros by the latter approach rather than for the standard Cholesky
factorization.

8 LP benchmarks – simplex versus interior point

One additional purpose of the paper is to show a comparison between two state-
of-the-art implementations: an interior point code BPMPD [18] and the simplex
code MOPS [21]. The new LP preprocessing is part of BPMPD and has also been



Advanced preprocessing techniques for linear and quadratic programming 591

Table 5. Nonzeros in the factorizations with and without preprocessing

Problem With full preprocessing Without preprocessing

name nz(LU fact.) nz(Cholesky) nz(LU fact.) nz(Cholesky)

80bau3b 5163 35793 6164 38904

Degen3 16386 124811 17065 129724

dfl001 17860 984030 26081 1206564

Stocfor3 36047 99071 51649 242489

pilot87 89803 410520 89360 425993

Pds-10 20426 748042 36477 1060980

maros-r7 66481 606529 82009 1426204

tough 14948 31532 247119 1870551

xs01 199171 145550599 338905 4829181

incorporated into MOPS. Furthermore, MOPS has also been extended by the inte-
rior point code of BPMPD. Both codes use, therefore, the same LP preprocessing
kernels, the same scaling and postsolve algorithms. Furthermore, both codes were
compiled with the same compiler and the same optimization options. Both codes
were run with the default tolerances and strategies. The primal simplex optimizer
of MOPS was used for the comparison although in some cases the dual optimizer
would have been significantly faster than the primal. The interior point code used
the supernodal pull Cholesky factorization [14] and the minimum local fill order-
ing [16]. The column ”IPM+OBI” shows the total time needed to solve a model
with the interior point code BPMPD, perform the primal and dual basis identifica-
tion (BI) and establish formal optimality (OBI) with the primal simplex engine of
MOPS using the default tolerances of MOPS. Finally the last two columns report
numerical results with the primal simplex engine. These results compare also very
favorably with the ones published in [2,9] even though the machines used for the
computations are different. The following table shows the optimization times with
and without preprocessing using the interior point code BPMPD and the primal sim-
plex engine of MOPS. Since it is well established knowledge that LP preprocessing
is generally advantageous before LP optimization we selected some models which
show several possible cases: models where preprocessing has a different impact on
interior point resp. simplex algorithms, models where the discussed preprocessing
is very advantageous and those where preprocessing is disadvantageous. The term
preprocessing means full preprocessing with all techniques discussed enabled i.e.
also with the elimination of constraints and possible fill–in. The meaning of the
columns is identical to those in the table above. Each of the selected models is
solved with and without preprocessing.

9 Conclusions

It is a widely accepted assumption that preprocessing is more important for inte-
rior point methods, since IPMs work with the whole matrix in each iteration while
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Table 6. Comparison of IPM and PSX on a Pentium IV (2,2 GHz)

Problem IPM BI IPM+OBI PSX

name Iter. Sec Sec Sec Iter. Sec

bn12 22 0.64 0.03 0.81 4537 1.31

cycle 16 0.41 0.06 0.53 943 0.30

80bau3b 33 1.06 0.03 1.19 7389 1.34

degen3 12 0.89 0.08 1.03 4073 2.06

greenbea 26 0.62 0.12 0.92 4494 2.33

greenbeb 34 0.89 0.06 1.06 3923 2.03

d2q06c 22 0.97 0.09 1.25 9354 6.41

d6cube 16 0.75 0.11 0.99 11719 6.62

dfl001 29 27.28 0.42 27.92 27199 54.86

stocfor3 25 2.03 0.20 2.55 4934 7.70

pilot87 24 6.99 1.14 8.59 9153 33.00

pds-10 33 17.19 0.74 18.52 25414 61.08

maros-r7 11 4.16 0.45 4.84 3143 3.23

cre-b 23 6.89 0.31 7.75 14754 50.26

ken-18 20 43.90 18.75 73.56 148144 2235.03

tough 14 0.28 4.67 13.75 22401 42.41

dbic1 51 312.08 99.42 413.84 28675 301.44

gams 29 7.61 55.16 103.67 18321 430.50

osa-60 26 0.69 19.09 22.67 6721 28.34

xs01 102 383.05 38.66 444.83 126023 4469.91

BI: basis identification.
OBI: optimal basis identification after BI using primal simplex engine.

the simplex algorithm accesses only a small part of it. Surprisingly, our numerical
experiments do not confirm the above statement. Of course, the following conclu-
sions can only be based on the implemented interior point and simplex algorithms
(BPMPD and MOPS) and the selected LP problems listed in the table:

– Concerning solution speed, LP preprocessing seems to be more important for
simplex algorithms. This conclusion is based on the ratio of the total times
without preprocessing and with preprocessing.

– Concerning numerical stability, preprocessing is more important for interior
point algorithms. Our interior point implementation failed on four problems
without preprocessing, but it had no numerical problems when preprocessing
was turned on (see Table 7). Our numerical results show that the simplex method
is numerically less sensitive to the redundancy in the problems: the simplex
engine was able to solve all selected problems without LP preprocessing (in the
case of problem tough it took a very long time).

– LP preprocessing is similarly important for mixed–integer optimization. The
speed–up of solving the initial LP with preprocessing carries over to the branch-
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Table 7. Impact of preprocessing on IPM and PSX

Problem Preproc. IPM with OBI PSX

name iter. secs iter. secs
bnl2 y 22 0.81 4537 1.31

n 24 0.97 4339 1.42
cycle y 16 0.53 943 0.30

n 20 0.56 1497 0.28
80bau3b y 33 1.19 7389 1.34

n 39 1.23 8947 2.17
degen3 y 12 1.03 4073 2.06

n 12 1.03 5007 2.03
greenbea y 26 0.92 4494 2.33

n Iteration limit Not finished 7719 5.28
greenbeb y 34 1.06 3923 2.03

n Iteration limit Not finished 4687 2.86
d2q06c y 22 1.25 9354 6.41

n 23 1.05 11428 8.25
d6cube y 16 0.99 16725 12.94

n Iteration limit Not finished 11719 6.62
dfl001 y 29 27.92 27188 54.86

n 30 35.62 38046 96.59
stocfor3 y 25 2.55 4934 7.70

n 27 3.42 8080 20.28
pilot87 y 24 8.59 9153 33.00

n 26 9.94 9251 32.33
pds-10 y 33 18.52 25414 61.08

n 31 23.16 7554 28.36
maros-r7 y 11 4.84 3143 3.23

n 10 12.39 3382 4.12
cre-b y 23 7.75 14754 50.26

n 22 14.33 21280 80.05
ken-18 y 22 73.56 148144 2235.03

n 27 82.06 184978 5995.92
tough y 14 13.75 22401 42.41

n Iteration limit Not finished 168800 4417.08
dbic1 y 51 413.84 28675 301.44

n 42 535.39 32618 483.58
gams y 29 103.67 18321 430.50

n 28 1616.38 20545 860.33
osa-60 y 26 22.67 6721 28.34

n 33 43.52 6868 64.27
xs01 y 102 444.83 126023 4469.91

n 101 538.33 160044 7015.17

Solution times in seconds on a Pentium IV (2,2 GHz).
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and-bound-phase where the simplex engine is used. Moreover, every time a new
node is selected in a non-LIFO-node selection choice a new LU factorization
has to be computed. Sparsity and speed of the LU factorization are improved
by using advanced LP preprocessing techniques as can also be seen from Table
5.

– Table 4 indicates that preprocessing is also advantageous for quadratic program-
ming problems. The results show that preprocessing may significantly decrease
the number of nonlinear variables which is particularly advantageous.

Experience shows that model sizes increase due to the use of modeling systems
and less willingness by users to generate redundant free models. In such a situation
LP preprocessing plays an even more important role to reduce the size of LP models
for better performance. The benchmark results of Table 6 indicate, that a state–
of–the–art interior point code with crossover is on most LP models faster than
a state–of–the–art simplex code. In those cases where the simplex code is faster
(maros-r7, dbic1), the speed improvement of the simplex code is not as big as for
the most suitable models for the interior point code (xs01, ken-18).

Much thoughts went into design and implementation of the optimal basis iden-
tification. Nevertheless we believe that the results indicate room for improvements
(gams, ken-18, osa-60). There are other numerical difficult problems for the sim-
plex method not shown here, where the crossover time is a multiple of the time to
solve the LP with the interior point code.
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