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Abstract. In this paper we consider the problem of selecting optimal beam direc-
tions as well as optimal intensity profiles for radiation therapy. Our multiobjective
mixed integer programming problem is based on and extends a multiobjective LP
formulation for intensity optimisation by Hamacher and Küfer. We use a weighted
sum scalarisation to explore the benefits of beam direction optimisation. We propose
exact and heuristic methods for solving the problem and present some numerical
results.
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1 Introduction

The application of radiation from external sources (radiation therapy, radiotherapy)
is one of the major forms of cancer treatment besides surgery and chemotherapy.
The goal of radiation therapy is to deliver a tumouricidal dose to the target volume
while at the same time protecting organs at risk from dangerous effects of radiation.
In radiation therapy treatment the patient is immobilised on a couch. By movements
of the couch and the treatment unit (which can usually rotate 360◦) the beam head
can be placed in different positions relative to the patient and the target volume.
Radiation is then emitted when the beam head is in certain positions around the
patient body. In this paper we address the problem of choosing optimal positions
of the beam head.

For successful application of radiotherapy it is necessary to achieve dose distri-
butions that conform well to the target volume. The development of intensity mod-
ulated radiotherapy (IMRT) and multileaf collimators has improved the success
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rate because they allow shaping the beam and varying intensities across the beam
head (intensity profiles). Beam shapes and intensity profiles are realised through
multileaf collimation. Multileaf collimators move metal “leaves” into the beam to
block out certain parts of the beam. The resolution of the intensity profile depends
on the width of the leaves. Various techniques of treatment are possible. Dynamic
collimators allow irradiation while the leaves are moving, with step and shoot col-
limators irradiation is interrupted when leaf-settings are changed. Similarly, the
linear accelerators can either allow irradiation from fixed positions or while the
accelerator is moving around the patient body (arc treatment). In this paper we do
not consider arc treatment.

Traditionally, radiotherapy treatment planning has been done using a trial and
error approach: For chosen intensity values and beam directions the dose distribu-
tion is calculated and the intensities and/or beam directions are changed, if the dose
distribution is not satisfactory. In modern planning systems optimisation models
are implemented to achieve good dose distributions. These models use evaluation
functions that are usually based on some measure of the deviation from desired
dose levels and use weights of importance for the target volume and organs at risk
and/or restrictions on dose levels in some of the entities involved. The planning sys-
tem then uses some mathematical optimisation methods to optimise the evaluation
function. Some recent references include [5–10,14,15,17,20–22,24].

Because the goals of radiotherapy planning – to achieve a high dose in the
tumour while avoiding irradiation of organs and critical structures – are of a contra-
dictory nature Hamacher and Küfer have more recently proposed to consider these
goals as separate criteria to be optimised. This idea naturally leads to a multicriteria
formulation as given in [4] and also [1] in this issue.

This model is based on a discretisation of the problem. Consider a planning
problem with K entities. These entities are defined on CT or MRI scans of the
body, which are usually taken in equidistant slices across the area of the body where
the tumour is located. Planning systems combine these scans into 3D models of
the body on which dose distributions are visualised. We index the target volume
with 1, and the organs at risk with k = 2, . . . , K. The relevant body volume is
discretised into volume elements, called voxels. The size of the voxels will be
given by the distance of CT slices or the resolution of CT images. Let Mk denote
the number of voxels in entity k. The dose deposited in voxel i depends on the
intensity delivered from a number of beams from R directions. From each of the
R positions of the linear accelerator (linac) radiation is emitted according to an
intensity profile across the area of the beam head using multileaf collimators. To
model these intensity profiles we discretise the beam head into a number of beam
elements (bixels). There will be Rn bixels where n is the number of bixels per
beam. The size of the bixels will usually be equal to the width of the leaves of the
collimator. Assuming that a desired minimal dose L is given for the target volume
and desired upper bounds Uk, k = 2, . . . , K on the dose deposited in the organs at
risk the goal is then to find an intensity vector x ∈ R

Rn such that the dose deposited
in the target volume and organs at risk respects the desired bounds.

Due to physical limitations such an x does usually not exist, in particular if R
is small. One must therefore find a compromise between underdosing the tumour
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and overdosing some of the organs at risk. To formulate an optimisation model it is
necessary to have a dose deposition formula. Let pij be the dose deposited in voxel
i at unit intensity in bixel j. The values pij can be calculated using models of the
physical behaviour of radiation, e.g. [19]. Then the dose deposition model becomes
D = Px, where D ∈ R

M , M =
∑K

k=1 Mk, is a dose distribution vector. With the
objectives of minimising overdosing any organ at risk and minimising underdosing
the tumour we can formulate the following multiobjective linear programming
model.

min T1, . . . , TK

subject to D1 = P1x ≥ (L − T1)1 (MOLP)

Dk = Pkx ≤ (Uk + Tk)1 k = 2, . . . , K

x, T ≥ 0

Here, Pk consists of the rows of P corresponding to the voxels of entity k and
T = (T1, . . . , TK) ∈ R

K is a vector where Tk measures the deviation from the
desired dose in the worst affected voxel in each organ, i.e. we measure the deviation
by Tk = ||(Pkx − Uk)+||∞ for organs at risk and T1 = ||(L − P1x)+||∞ for the
target volume. 1 is a vector of all ones of appropriate dimension. Note that the model
can easily incorporate the max and mean model of the EUD concept of Küfer and
Thieke [18]. The EUD (equivalent uniform dose) is defined as the uniform dose
that has the same effect on an organ at risk as the actual non-uniform dose delivered
during treatment. The EUD depends on the organ structure.

Although there is quite some research on the optimisation of intensities, as we
have seen above, there is not much research on the optimisation of beam direc-
tions. Das et al. [2] present a simple search strategy. Haas et al. [3] try to replicate
the approach of a treatment planner using genetic search operators. They perform
some trade-off analysis between the quality of dose distributions and the number of
beams used. Stein et al. [16] use an exhaustive search and simulated annealing to
determine both the number and directions of beams. Pugachev and Xing [12] intro-
duce a scoring function for beam directions and Pugachev et al. [11] use simulated
annealing to optimize directions for a given number of beams. Simulated annealing
is also used by Rowbottom et al. [13] who compare results with equi-spaced ar-
rangements in a clinical study. A different approach is proposed by Hamacher and
Küfer [4] who make use of ideas from location theory. As far as we know there is no
commercial IMRT planning system which includes beam direction optimisation.
In this paper we present some results on optimisation of beam directions.

The multicriteria model (MOLP) will be the basis of this paper. In Section 2
we extend the model to incorporate the optimisation of beam directions. Then in
Section 3 we describe four methods for solving the problem. We present numerical
results in Section 4 and conclude with a summary of our achievements in Section 5.
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2 Optimisation of beam directions

When we incorporate the beam directions as variables into the intensity optimisation
problem the dose deposition matrix becomes dependent on the chosen directions
θ = (θ1, . . . , θR).

min T1, . . . , TK

subject to D1 = P1(θ)x ≥ (L − T1)1 (MONLP)

Dk = Pk(θ)x ≤ (Uk + Tk)1 k = 2, . . . , K

x, T ≥ 0

Here the matrix entries pij(θ) are nonlinear functions of θ and thus the model
becomes a multiobjective nonlinear programming model. We discretise the beam
directions. This is justified from the practical point of view, because directions that
differ only slightly will cause considerable overlap of beams and therefore lead to
very similar plans. In addition, technically it is often the case that treatment units
allow only one degree changes of the position of the linac.

In this paper we restrict ourselves to coplanar treatment, i.e. beams are in the
same plane as the CT slice. This is the most common treatment technique. Thus, we
are working in a two dimensional setting. Note that the model formulation does not
change for a full 3D configuration. However, computationally the full 3D problem
becomes much larger and harder to solve. We also assume isocentric geometry, i.e.
all beams are focused on the centre of the tumour.

With the discretisation of beam directions we can introduce binary variables
y1, . . . , yS to model all possible positions of the linear accelerator. Here S =
� 360

d � and d is the angular difference between two consecutive linac positions.
Directions which are physically impossible (e.g., irradiating through the couch)
can be eliminated to reduce the number of variables. Then let Pk, k = 1, . . . , K be
Mk × Sn matrices defined as before. Let xjs be the radiation intensity of bixel j
of beam head s. Then the model can be written as follows.

min T1, . . . , TK

subject to D1 = P1x ≥ (L − T1)1
Dk = Pkx ≤ (Uk + Tk)1 k = 2, . . . , K

xjs ≤ Hys j = 1, . . . , n; s = 1, . . . , S (MOMIP)
S∑

s=1

ys ≤ R

x, T ≥ 0
y ∈ {0, 1}S

R is an upper bound on the number of beams to be used in the plan. H is a large
number, e.g. the maximum intensity deliverable by the linac. The third constraint
guarantees that if an angle is not chosen (ys = 0) then none of the bixels of that
beam head position emit radiation.
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This problem is a large scale multicriteria mixed integer programming problem,
which is very hard to solve. Because the focus of this paper is to explore the
benefit of optimisation of beam directions for IMRT planning we do not solve
(MOMIP) in the sense of generating all or a representative subset of the Pareto
optimal solutions. Here we consider weighted sum scalarisation of objectives into∑K

k=1 µkTk as do current planning systems. Note that for any fixed beam setup
(MOMIP) becomes an instance of (MOLP) and all Pareto optimal solutions of that
problem can (theoretically) be found using weighted sum scalarisation. However,
not all Pareto optimal solutions of (MOMIP) can be discovered using weighted sum
scalarisation.

min
K∑

k=1

µkTk

D1 = P1x ≥ (L − T1)1
Dk = Pkx ≤ (Uk + Tk)1 k = 2, . . . , K

xjs ≤ Hys j = 1, . . . , n; s = 1, . . . , S (MIP)
S∑

s=1

ys ≤ R

x, T ≥ 0
y ∈ {0, 1}S

In principle we could solve this problem by solving an LP for each one of the∑R
r=1

(
R
r

)
sets of directions and choose the best solution. But although in most

clinical situations no more than ten beams are used, this approach is too time
consuming. In Section 4 we shall see that the problem (empirically) becomes harder
as R decreases. It is therefore worth noting that if for some value of R the (MIP) has
optimal solution (x∗, y∗) with objective value 0, then we have found an upper bound
on the number of beams to be used as well as an optimal solution that achieves all
desired dose levels for all R ≥ ∑S

s=1 y∗
s , even for all finer discretisations of the

angles, i.e. d′ < d. Note also that usually the objective improves as R increases,
see Table 1. Thus, using more directions could still be desirable to allow reduced
intensities for each direction.

In the following Section 3 we present a number of approaches for solving (MIP).
These are

1. Solving the (MIP) by a commercial solver
2. Local search
3. An LP relaxation heuristic
4. A set covering heuristic.

The first two are integrated methods which attempt to solve (MIP) directly, either
optimally or heuristically. On the other hand the latter two are two phase strategies,
in which we try to overcome the difficulty of solving the integrated (MIP) model
by first determining good beam directions through a direction optimisation model.
(Some of) these good directions are then used as input for the intensity optimisation
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Fig. 1. Optimal (MIP) solution of problem 2

problem. Therefore (MIP) is reduced to an LP, in fact the weighted sum scalarisation
of (MOLP). In both methods a sequence of LP’s is solved.

3 Solution methods

3.1 Integrated methods

The obvious choice for an integrated method is to simply solve MIP using a com-
mercial MIP solver. We used CPLEX 7.0. It turns out that a feasible solution is
often found quickly, but optimality is hardly ever confirmed. Moreover, if R and d
are small a feasible solution could not be found after several hours of CPU time.
In Table 1 we report optimal objective values and solution times when the number
of beam heads is changed for problem 2 (see Section 4 for a description of the test
problems). The objective values shown in the table are µ1

T1
L +

∑K
k=1 µkTk/Uk.

Table 1. (MIP) solution time and objective value versus number of directions R

R 3 4 5 6 7 8 9 10 11 12

Objective value 0.0584 0.0540 0.0500 0.0287 0.0004 0 0 0 0 0
CPU Time > 500 > 500 > 500 > 500 > 500 134 70.1 13.01 12.01 10.59

Table 1 shows the trade-off between solution quality and number of beams R.
Reducing R leads to longer solution times for (MIP) and worse objective values,
but usually to shorter treatment times. In Figure 1 we show a dose distribution
and directions for the optimal solution of a sample problem that we will refer to
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later. Organs at risk are labeled hk, the tumour tu. Dose distributions are given as
percentages of desired doses.

In the local search method we first solve LP for a set of R starting directions.
We tried equidistant angles θi = 360

R i, i = 0, . . . , R − 1, random directions with
θi − θi+1 > 10 initially, and manual selection. Then each of the directions θi is
changed in steps of d degrees until θi+1 is reached. In every step LP is solved again.
The process is repeated until the objective function does not change anymore.

Algorithm Local Search
f0 := ∞, select θ
Solve LP with θ

θ∗ := (θ1, . . . , θR), x∗ := x, f∗ :=
∑K

k=1 µkTk

While f∗ < f0 do
For i = 1, . . . , R

For l = 1, . . . , 360
Rd let θi := θi + ld

Solve LP with θ

If
∑K

k=1 µkTk < f∗

f0 := f∗

θ∗ := (θi, . . . , θR), x∗ := x, f∗ :=
∑K

k=1 µkTk

Next l
Next i

End while

We found that different choices of the starting solution affected the solution
greatly. The best objective values, however, were very similar for all starting so-
lutions, indicating that the problem has a large number of local minima. Repeated
application of the method with random directions never produced the same solution
twice.

3.2 Two phase methods

Our first two phase method is based on the LP relaxation of (MIP). In the optimal
solution of the LP relaxation some of the yi will have fractional values. We observe,
however, that most of the yi values are equal to zero. In our tests 10 to 40 yi

variables were nonzero, even when d = 1, see Figure 2 for a dose distribution and
beam directions for the optimal solution of the LP relaxation of one of our sample
problems.

Often, the objective value of the LP relaxation has optimal objective value
zero. Therefore it suggests “good” irradiation directions (note that most beams
miss critical structures in Figure 2). Notice that the remark concerning an optimal
integer solution with objective value 0 on page 255 made above is also valid for an
optimal fractional solution. Let (x̃, ỹ) be the optimal solution of the LP relaxation
and R = {r : ỹr > 0} and R′ = |R|. We then compute wr =

∑n
j=1 Tjr, r ∈ R

and order the directions θr, r ∈ R according to decreasing values of wr. Next,
we order the

(
R′

R

)
subsets Rj of R according to

∑
r∈Rj

wr and solve the LP for
subsets Rj ⊂ R.
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Fig. 2. Optimal solution of the LP relaxation for problem 2

Algorithm LP Relaxation
f∗ = ∞
For l = 1, . . . ,

(
R′

R

)
Solve LP with angles θr, r ∈ Rl

If
∑K

k=1 µkTk < f∗

θ∗ = (θr : r ∈ Rl), x∗ = x, f∗ =
∑K

k=1 µkTk

Next l

The algorithm also stops if a preset time limit is reached. If for a time t0 no
improvement of the objective is found, the local search algorithm is called with the
current θ as starting solution.

The tests showed that a good solution is found quickly (within five minutes
of CPU time), but few improvements were found later, see Section 4 for details.
The local search never resulted in directions more than ±20◦ from the original
directions indicating that LP relaxation could be used as starting point for steepest
descent local search.

The set covering method aims to minimise the damage to the organs at risk
while guaranteeing that every voxel in the tumour is irradiated. That leads to the
formulation

min
S∑

s=1

Csys

subject to Ay ≥ 1 (SCP)

y ∈ {0, 1}S .

Here A is defined by

ais =
{

1 if radiation from beam s hits target volume voxel i

0 else.
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It turns out that A is a dense matrix due to the isocentric geometry. The optimal
solution of (SCP) always had

∑S
s=1 ys < R, in fact often a single beam was

sufficient to hit every voxel of the target volume. Therefore, we implemented a
strategy to solve (SCP) then remove the optimal angles from the problem by setting
the corresponding ys = 0 and resolve. This is repeated until a set of promising
directions R′ of cardinality R′ > R is found. Then we create and solve LPs for
subsets of R′.

We tried two ways to generate Cs. Cs is intended to model the damage to organs
at risk when using beam s. In the first (weighted angle method) we consider a cone
with point at the isocenter and bounded by two half-lines forming ±5◦ angles with
the beam direction s. Denote this cone by cones. Then we considered voxels in
organs at risk k that are contained in cones for computing Cs.

Cs =
K∑

k=2

Mk∑
i=1

{
µk

Uk
voxel i in cones

0 else.

In the second (dose deposition) method we consider the actual dose deposition
matrices Pk and consider all voxels in all organs at risk.

Cs =
K∑

k=2

Mk∑
i=1

n∑
j=1

=
µkPk(i, j)

Uk
.

In Figure 3 we show the Cs values computed by both methods for the problem
shown in Figure 2. The directions used in the optimal solution are shown as bold
lines (cf. Fig. 1).
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indicate the directions used in the optimal solutions
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Fig. 4. Best solution found by set covering method for problem 2

The weighted angle method generally makes for a sharper discrimination of
“good” and “bad” directions, i.e. low and high values of Cs. The best solution
found by the set covering method for the problem of Figure 2 is shown in Figure 4,
compare with the optimal (MIP) solution in Figure 1. We note that if d and R′

are small the best directions identified by the set covering heuristic will be close
together, which may result in bad overall solutions. This observation should be
taken into account when the parameters for the method are selected.

4 Numerical results

In Table 2 we summarise results from our experiments. In all tests execution was
stopped after 18,000 seconds. Note that the objective values reported here are again
µ1

T1
L +

∑K
k=2 µk

Tk

Uk
. We considered three sample problems. Problem 1 is a tumour

in the nasal cavity, with two organs at risk defined by the left and right eyeball and
optical nerve, L = 30, Uk = 10. Problem 2 is a liver tumour where the organs at
risk are left and right lung and spinal chord, L = 80, U2 = U3 = 33, U4 = 25.
Problem 3 is an artificial one with K = 6, L = 85, U2 = 40, U3 = 45, U4 =
20, U5 = 45, U6 = 20. In all problems the beams are focused on the center of
the tumour (isocentric geometry). In the dose distribution diagrams displayed the
tumour is indicated by tu and organs at risk are indicated by hk. The colour coding
refers to Tk values as percentages of L respectively Uk.

The results are further illustrated by a number of figures below. The tests were
carried out on a Pentium III PC with 512 MB RAM and 900 MHz processor. We
used the solver SOPLEX [23] in all methods, except for the MIP results for which
we used CPLEX 7.0. The computation times for the MIP and the other methods
are therefore not really comparable. With a commercial solver one would expect
the computation times for the non-MIP methods to decrease considerably.
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Table 2. Numerical results beam direction optimisation

Method Head 1 Head 2 Head 3 Head 4 Objective Time
Problem 1, µ = (0.3, 0.3, 0.4), R = 3, n = 10, d = 5

Set covering 145 185 210 n/a 0.0217 667.40
Local search 155 195 245 n/a 0.0492 3491.18
MIP 165 195 205 n/a 0.0166 604.64
LP relaxation 140 180 200 n/a 0.0269 344.45

Problem 1, µ = (0.3, 0.3, 0.4), R = 3, n = 10, d = 2
Set covering 96 154 198 n/a 0 16378.50
Local search 160 204 240 n/a 0.0112 7357.01
MIP 64 178 204 n/a 0.0995 3611.84
LP relaxation 138 188 242 n/a 0.0152 6840.51

Problem 2, µ = (0.3, 0.3, 0.2, 0.2), R = 3, n = 10, d = 2
Set covering 34 50 160 n/a 0.1437 15957.50
Local search 154 184 238 n/a 0.1209 6867.26
Local search 22 162 246 n/a 0.1365 12444.70
MIP no feasible solution found
LP relaxation 158 184 242 n/a 0.1210 382.94
LP relax. + LS 158 184 238 n/a 0.1197 400.00
Problem 2, µ = (0.3, 0.3, 0.2, 0.2), R = 4, n = 10, d = 2, (d = 1 for set covering)
Set covering 0 25 47 147 0.0682 13901.10
Local search 42 156 180 270 0.0455 16980.70
MIP no feasible solution found
LP relaxation 156 238 352 10 0.0503 13901.10

Problem 3, µ = (0.2, 0.2, 0.2, 0.2, 0.1, 0.1), R = 3, n = 3, d = 2
Set covering 42 64 284 n/a 0.0843 11214.00
Local search 132 202 280 n/a 0.0993 3280.71
MIP no feasible solution found
LP relaxation 200 244 310 n/a 0.0863 1363.11

Figure 5 shows the improvement of the objective value over time for problem
1. Note that the MIP solver tended to find a good feasible solution but did not
find a single feasible solution in some cases. In addition, this first solution was
not improved over an acceptable time period. Optimality was hardly ever declared,
except when a solution with objective value 0, which is clearly optimal, was found.
Figure 6 also shows that all heuristic methods found solutions of comparable quality.

Figure 7 illustrates the importance of beam direction optimisation using prob-
lem 1. We compare the best dose distribution obtained with equidistant directions
and the optimal solution of the scalarised (MOMIP). We obtained similar results
for all three problems considered. The picture clearly shows that the optimisation
of directions is very important, especially when R is small. Note that one of the
directions in the optimal solution directly intersects one of the organs at risk. This,
however, is done at a very low intensity, at the borders of the beam, in order to cover
part of the tumour that cannot be reached by the other two directions, whereas the
central beam has zero intensity, The low intensity makes it possible to limit the
damage to the organ at risk while achieving better tumour control. Thus Figure 7
illustrates that optimal beam directions may be counterintuitive and that the use of
optimisation techniques is extremely important to obtain good treatment plans.
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Problem 3, R=4, d=2
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Fig. 5. Objective value versus computation time for problem 1
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5 Conclusion

In this paper we have presented a multiobjective mixed integer programming model
for the problem of optimising intensity profiles and beam directions in intensity
modulated radiotherapy planning. We have considered integrated and two phase
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Fig. 7. Solution with optimised directions (right, objective value=0) versus solution with
equidistant angles (left, objective value=0.4114)

methods for solving a weighted sum scalarisation of the model. The problem turns
out to be hard when the number of beam directions R is small, and a feasible
solution could often not be found within reasonable computation time. Therefore
we considered three heuristic methods. The local search method changes each of
the angles in steps of d degrees until a local optimum is encountered. Two phase
methods try to determine good directions first, which are then fed into the intensity
optimisation model. We proposed one method which uses the directions used in
the optimal solution of the LP relaxation of the scalarised multiobjective model.
A set covering method uses an optimisation model based on the intuitive idea of
covering every voxel of the tumour and minimizing dose delivery to the organs
at risk. Both methods are able to detect good directions. The numerical results
indicate that optimisation of beam directions is very important in achieving good
treatment plans. They also indicate that optimal plans are not always intuitive and
thus illustrate that the intricate interdependencies between patient anatomy, beam
geometry and intensity are difficult to capture for even experienced planners.
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