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Abstract
In this contribution, we report the investigation on removing of the oxochromium 
(VI), a hazardous species, using HCl-doped polyaniline (PAni-HCl) as adsorbent 
versus particles size. PAni-HCl has been successfully elaborated by conventional 
oxidative chemical method in the temperature range (0–3 °C). The recovered powder 
was milled and sieved into size ranges of < 50, 50–63, 125–160 and > 200 µm. The 
batch adsorption experiments were performed at 25 °C, using 250 mg of PAni-HCl 
dispersed in 250 mL of Cr(VI) aqueous solution (250 mg  L−1). The Cr(VI) uptake 
was significantly influenced by both the particle size and contact time. Smaller par-
ticle sizes allow a quick initial adsorption and high removal efficiency (~100%). 
The kinetics of the Cr(VI) adsorption follow the pseudo-second-order model. A 
good correlation was demonstrated between the removal chromium (VI) properties 
(Qe,exp, k2 and τ(%)) and the (normalized) mean diameter ratio.

Keywords Chromium (VI) sorption · Polyaniline · Removal efficiency · Pseudo-
second-order kinetic model · Powder

Introduction

Among various conducting polymers, polyaniline has been widely studied 
because of its facile synthesis and its good chemical stability both in air [1, 
2] and acidic media over a large pH range. Polyaniline has been used in many 
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applications such as dye-sensitized solar cells [3], hydrogen photoproduction [4], 
corrosion protection [5], gas sensors [6], glucose biosensor [7], the removal of 
pharmaceutical drugs [8] as well as the storage and conversion of energy [9].

The polymers family is versatile system with general formula: 
[(–B–NH–B–NH–)y(–B–N = Q = N–)1–y]n [10]; B and Q denote the rings  C6H4 in 
the benzenoid and the quinoid forms, respectively. The fully reduced leucoemer-
aldine base polymer (LEB; y = 1), the fully oxidized pernigraniline base polymer 
(PB; y = 0), the halfoxidized form emeraldine base (EB; y = 0.5) and 75% intrinsi-
cally oxidized nigraniline (NA; y = 0.75) are all insulators. On the contrary, the 
protonation of the EB form produces the polaronic or bipolaronic emeraldine salt 
(ES) (Fig. 1), with a high conductivity (~ 2–10 S  cm−1) [10–12].

Many reports have been devoted to polyaniline as an adsorbent for remov-
ing heavy metals and chromium (VI) in particular [13–19]. Nevertheless, to our 
knowledge, no studies have been reported on the effect of polyaniline particle size 
on the removal efficiency of chromium (VI) before now.

Chromium belongs to the category of heavy metals that are potentially hazard-
ous for the human health and environment even at very low concentration  [20]. 
In waste aqueous systems, it exists mainly in two oxidation states, trivalent, Cr 
(III) and hexavalent, Cr(VI) states. The later variety is considered the most toxic 
by both the World Health  Organization (WHO) and the Environmental Protec-
tion Agency (EPA) due to its carcinogenicity and mutagenicity on humans [21, 
22]. The US Environmental Protection Agency (USEPA) established for the total 
chromium content (III and VI) that the maximum contaminant level (MCL) was 
0.1  mg/L, due to the possible Cr(III)-Cr(VI) inter-conversions, depending on 
environmental conditions [23]; however, a level of 0.05 mg/L of chromium (VI) 
has been retained as a provisional guideline value by the WHO [24]. In this work, 
we investigate a relationship between the polyaniline particles size (PS) and the 
chromium (VI) sorption efficiency. This is done to enrich the literature on poly-
aniline where the adsorption properties have not been fully investigated.

Fig. 1  The protonated emeral-
dine salt forms (PANI-ES)
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Experimental

All products were supplied by the Alfa Aesar Company with purity greater than 
99%, and solutions were prepared in deionized water. Polyaniline doped with HCl 
(PAni-HCl) has been prepared by a typical oxidation method using ammonium per-
oxodisulfate ((NH4)2S2O8) in aqueous acidic media (HCl) [24].

Initially, 0.055 mmol of aniline (~ 5 mL) was dissolved in 100 mL of HCl solu-
tion (1 M) in volumetric flask, then 150 mL of solution containing the oxidized 
agent  (NH4)2S2O8 (0.063 mmol) was added dropwise to the solution containing 
the aniline monomer. The molar ratio  [S2O8

2−]/[C6H5NH2] was taken to be 1.15. 
The mixture was left under stirring for 8 h at a temperature in the range (0–3°C), 
using an ice bath. The dark green precipitate was recovered by vacuum filtration and 
washed several times with both distilled water and acetone, and finally dried under 
reduced pressure in an oven for 72 h. The obtained powder was milled using an IKA 
laboratory mill (M20, Werke Staufen, Germany) for then sieved (30 min) using a 
FRITSCH vertical vibratory sieve shaker (model Analysette 3 PRO, Germany) into 
size ranges of < 50, 50–63, 125–160 and > 200 μm. Finally, the powders were placed 
in desiccators until use.

The X-ray diffraction (XRD) data were recorded with a PANalytical X’Pert PRO 
diffractometer  (CuKα radiation,λ = 1.54056 Å) over 2θ range (3–60°) with an incre-
ment of 0.008° and a scanning rate of 0.1°  min−1. The morphology and particle size 
were determined with a QUANTA 250 Scanning Electron Microscope (LV-SEM). 
The Fourier transform infrared (FTIR) analysis was performed using a Shimadzu 
sperctrophotometer equipped with a DTGM KBr detector. The particle size analysis 
was performed by dry mode (at 1 bar), according to Mie theory, using a CILAB 
1190DL Laser Particle Size Analyzer.

The sorption experiments were performed in a double-walled Pyrex reactor (500 
 cm3 capacity). A 250  mg of PAni-HCl powder was added to 250  mL of  Cr2O7

2− 
solution (250  mg  L−1, pH ~ 4.5). The sorbent powder was dispersed by vigorous 
stirring (500  rpm), and the temperature was set at 25  °C thanks to a thermostat 
(LAUDA E10 S). Samples of 1 mL were drawn at 0, 0.5, 1, 2, 5, 10, 20, 40 and 60 
min using a syringe with FTFE filter and then were diluted to 10 mL with deionized 
water in appropriate volumetric flasks.

The residual chromium concentration was evaluated in the λ-range (200–370 nm), 
using a UV-2401 Shimadzu spectrophotometer. The calibration curve (slope = 0.015 
 mg−1 L, R2 = 0.998) was performed using samples with Cr(VI) concentrations in the 
range (1−50 mg/L). The adsorption capacity (Qt, mg  g−1) and the removal efficiency 
(τ, %) are calculated using Eqs. (1) and (2):

where [Cr(VI)]0, [Cr(VI)]t and [Cr(VI)]e are the initial, at time t and equilibrium 
concentrations (mg  L−1) of the chromium (VI); V and m are the volume of the solu-
tion and the mass of polyaniline adsorbent (g).

(1)Qt

(

mg g−1
)

= {[Cr(VI)]0 − [Cr(VI)]t∕m } × V

(2)�(%) = {[Cr(VI)]0 − [Cr(VI)]e∕[Cr(VI)]0} × 100
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Results and interpretation

Material characterization

Figure 2 shows a typical X-ray diffraction pattern of a semi-crystalline PAni-HCl 
structure. All peaks are assigned to the monoclinic unit cell (space group:  P21), in 
agreement with the literature data [25, 26]. Furthermore, the broad peaks at ~ 20 and 
25° are attributed, respectively, to the periodicity parallel and perpendicular to the 
ES chains [27]. The main vibration peaks identifying the chemical structure of poly-
aniline are shown in the FTIR-ATR spectra (Fig. 3). The peaks at 794 and 1101  cm−1 
are attributed to the C–H out-of-plane deformation in the 1,4-disubstituted benzene 
ring, and aromatic C–H in-plane stretching vibration, respectively [28, 29]. The 
absorption peaks 1240 and 1292  cm−1 are ascribed to the C–N+ frequency mode of 
the polaronic lattice and to the C–N vibration in benzenoid ring, respectively [30]. 
Moreover, the peaks 1468 and 1651  cm−1 are assigned to the C=C stretching defor-
mation in the sequencing of benzenoid and quinoid units, respectively [31]. Further-
more, the peak at 3440  cm−1 belongs to the stretching vibration of the CN groups.

The SEM image (Fig. 4) shows a non-uniform and porous microstructure based 
on highly agglomerate particles. This morphology offers more favorable adsorption 
sites compared to a compact surface and seems to have an appreciable potential for 
retaining Cr(VI) ions.

Particle size analysis

The particle size distributions (PSD) are obtained in terms of cumulative and frequency 
semi-logarithmic plots except for particles sizes smaller than 50 μm (Fig.  4, Inset), 
the distributions are multimodal (multiple peaks). All the most intense peaks are wide 
and non-symmetric (left and right-skewed) indicating polydispersed particles. For a 

Fig. 2  XRD pattern of prepared material
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non-symmetrical distribution and large particles, its more accurate to report the volume 
weighted mean diameter D4,3 , given by equation (3) [32, 33]:

where ni is the number-based frequency of particles in the same class i, having the 
mean diameter Di. All D4,3 values are presented in Table 1.

Chromium (VI) speciation

According to the Cr(VI) predominance diagram (at 25 °C) [34, 35], the pH affects the 
significantly the chemical equilibrium involving both the  H2CrO4−Cr2O7

2−−CrO4
− or 

 H2CrO4−HCrO4
−−CrO4

− systems, depending on the total chromium concentration 
(TCC); all species are linked by the following acid–base equilibriums [13, 34]:

(3)D4,3 =
(

∑

niD
4
i

)

∕
(

∑

niD
3
i

)

(4)H2CrO4HCrO
−
4
+ H+ (pKa = 0.8)

(5)HCrO−
4
⇄ CrO2−

4
+ H+ (pKa = 6.5)

(6)2HCrO−
4
⇄ Cr2O

2−
7

+ H2O (pK = −1.52)

Fig. 3  FTIR infrared spectra of the elaborated material
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In the pH range (2–6), Cr(VI) exists as dichromate  Cr2O7
2− or as bichromate 

 HCrO4
−, depending on TCC less or higher than  10−1.68 mol/L (pCr = 1.68). Never-

theless, at pH 4.5 and TCC of 2.157 ×  10–3 M (pCr = 2.66), the Cr(VI) species are 
mainly present in the form of  HCrO4

−, and therefore, the  H2CrO4−HCrO4
−−CrO4

− 
system is considered in our study with TCC given by (7):

Fig. 4  SEM micrograph of the recovered powder. Inset: The particle size distribution of the powder with 
small size range (< 50 µm)

Table 1  Particle size specifications and removal properties

Property  < 50 μm 50–63 μm 125–160 μm 200–500 μm

Particle size specifications
D [3, 4] (µm) 21.86 49.53 155.7 267.6
Mode (µm) 36.00 53.00 160.0 300.0
Removal properties
τ (%) 98.72 95.80 87.88 77.36
Qe,exp (mg/g) 246.8 239.5 224.0 191.6
k2 (mg  g−1  min−1 ×  102) 1.824 0.582 0.145 0.099
Qe,cal (mg/g) 247.5 242.1 238.1 210.1
Slope (g  mg−1 ×  103) 4.04 4.13 4.20 4.76
R2 0.999 0.999 0.993 0.980
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Spectrophotometry

The residual chromate Cr(VI) concentration versus time was evaluated by UV–vis-
ible spectrophotometry. Figure  5 gives the absorption spectra of residual Cr(VI) 
samples. The two intense peaks at 350 nm (28,571  cm−1) and 274 nm (36,496  cm−1) 
are attributed to  2t1u–eg and  2t1u–t2g transitions, respectively. It is well known that 
the inter-bands electronic charge transfer in both tetrahedral complexes  Cr2O7

2− and 
 CrO4

2− occurs between the higher occupied oxygen anti-bonding 2p*(O2−) molecu-
lar orbital and the unoccupied chromium non-bonding eg and t2g of 3d  (Cr7+) molec-
ular orbital. The 2p*-3d transitions are classified as ligand-to-metal charge transfer 
(LMCT) and are spin and Laporte allowed [36].

The spectrograms clearly exhibit the effect of the polyaniline particles size on 
the amount of Cr(VI) adsorbed. Indeed, the optical density abruptly decreases for 
grain sizes less than 50 μm, while it gradually decreases for particle sizes > 200 μm 
(Fig. 5, Inset).

The mechanism of the Cr(VI) removal was described by many authors [16, 17, 
37] as chelate-type interactions between the imine and amine functional groups of 
the polyaniline particles and the negatively charged chromium species, which is 

(7)[Cr(VI)]TCC = [H2CrO4] + [HCrO−
4
] + [CrO−

4
]

Fig. 5  UV–Vis absorption spectra of residual Cr(VI) solutions versus the contact time with particles 
sizes of: a < 50 µm and b > 200 µm
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pH-dependent. In parallel to the electrostatic interactions, a fraction of Cr(VI) is 
reduced to Cr(III).

The adsorption of the predominating form  HCrO4
− on protonated PAni-HCl par-

ticles occurs simultaneously with releasing  Cl− ions, through an ion-exchange pro-
cess. Therefore, we suggest mechanism according to Eqs. (8) and (9), in agreement 
with ref. [38, 39]:

Effect of contact time and particle size

The evolutions of [Cr(VI)] versus contact time for different adsorbent particle sizes 
(< 50, 50–63, 125–160 and > 200 μm) are illustrated in Fig. 6. The batch adsorption 
experiments were conducted at 25  °C for 60 min, with an initial concentration of 
250 mg  L−1 and polyaniline adsorbent dose of 1 g/1000 mL. The figure reveals that 
the uptake is significantly influenced by both the particle size and contact time; the 
latter clearly enhanced the percent removal of Cr(VI).

In addition, under the same experimental conditions, powder with small particle 
size allows both rapid and significantly improved absorption. Indeed, for the first 30 
s, more than 80% of Cr(VI) was removed using small sizes particles (< 50 μm), in 
contrast with those of > 200 μm where only 14% was eliminated.

(8)
(

−B − N+H − B−, Cl−
)

+ HCrO−
4
↔

(

−B − N+H − B−, HCrO−
4

)

+ Cl−

(9)

(

−B − N+H = Q =, Cl−
)

+ HCrO−
4
↔

(

−B − N+H = B =, HCrO−
4

)

+ Cl−

Fig. 6  Effect of the particle size and contact time on the Cr(VI) removal. Inset: Kinetic of pseudo-second 
order. Initial Cr(VI) concentration = 250 mg  L−1; pH 4.5; T = 298 K
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For both particle sizes < 50  μm and > 200  μm, the equilibrium was reached after 
40 min, and the calculated uptake efficiencies were found to be 99 and 77%, respec-
tively. Such results are due to the enhanced external surface absorption, and hence to 
increase the number of adsorption sites. It is well established now that both physical 
and chemical phenomena are strongly influenced by the size and geometry of the mate-
rials [40, 41]; they become more pronounced as the particles size decreases, and the 
surface area-to-volume ratio increases [42].

Adsorption kinetic study

Throughout the studied particle sizes range, the linear plots t/Qt versus time (t) illus-
trated in Fig.  6, Inset, indicate that the Cr(VI) adsorption follows a pseudo-second-
order (PSO) model, given by [43]:

where k2 (mg  g−1  min−1) is the rate constant of pseudo-second-order adsorption, Qe 
(mg  g−1) and Qt (mg  g−1) the adsorbed amounts at equilibrium at time t. The val-
ues of Qe and k2 are evaluated, respectively, from the slope and the intercept of the 
straight lines.

According to Ho and Mckay, the adsorption kinetics obeying to the PSO model 
mainly occurs by means of chemisorption, through an electronic exchange between the 
adsorbate species Cr(VI) and the adsorption sites [44].

The kinetic parameters of PSO are listed in Table 1. The correlation coefficient  (R2) 
was found to be close to unity, revealing the good correlation for the Cr(VI)  HCrO4

− 
adsorption of on polyaniline particles. The PSO model is verified for a linear regression 
coefficient R2 ≥ 0.9 [44]. In addition, for particles with small sizes, the experimental 
and theoretical values of Qe,exp and Qe,cal were found to be close to each other.

Figures 7 and 8 show, respectively, the variation of the adsorption capacity and 
the removal efficiency versus the inverse of the diameter ratio D4,3

−1 , normalized to 
D4,3 of particles with size range > 200 μm. The experimental data are well fitted by 
using, respectively, the trend lines:

Figure 8, insert, reveals a clear linear relationship between the rate constant and 
the (normalized) diameter ratio. In fact, the obtained data are well-fitted using a lin-
ear model according to the trend line:

The regression coefficients indicate a strong correlation between all the properties 
obtained and the average diameter ratio D4.3, over a grain size range (20–300 µm). 

(10)t∕Qt =
{

1∕K2Qe
2 + t∕Qe

}

(11)Qe,exp

(

mg g−1
)

= −59.83 x
(

D4,3

)−1
+ 252.3

(

R2 = 0.965
)

(12)� (%) = −23.57 ×
(

D4,3

)−1
+ 100.5

(

R2 = 0.996
)

(13)K2

(

mg g−1min−1
)

= 0.15 (D4,3) − 0.128
(

R2 = 0.981
)
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Therefore, it can be seen that the smaller the particles of the adsorbent, the faster the 
adsorption process and the greater the amount of Cr(VI) removed.

The relationship of the proportionality was highlighted in the previous works 
[45–48]. In fact, Krishna [46] has studied the effect of the particles size (PS = 0.6, 
0.8 and 1.7 mm) on the adsorption kinetics for removing Cr(VI) species media using 
calcined brick powder as adsorbent. He has attributed the increase in the adsorp-
tion capacity using smaller particles to both the greater accessibility to pores and 
a larger surface area for the bulk adsorption. Shanmugam et  al. [48] have given 
the same explanation after studying the sorption of Cibacron blue F3GA using 

Fig. 7  Adsorption capacity versus the mean diameter D4,3

Fig. 8  The Cr(VI) removal efficiency versus the mean diameter D4,3. Insert: the rate constant versus the 
inverse of the mean diameter
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a spirulina platensis biomass as adsorbent, with an increases in particle sizes 
from < 75 to > 600 μm. They indicate that the particles with smaller sizes improve 
the availability of the surface area and consequently the number of binding sites.

The uptake capacities have been compared with those of other adsorbents for 
the removal of Cr(VI) (Table  2), and it is clearly seen that PAni-HCl exhibits an 
interesting potential as adsorbent for removing heavy metals, particularly when the 
uptake is undertaken using small size particles.

Conclusion

In summary, HCl-doped polyaniline was prepared by chemical route at low tem-
perature (0–3° C). The XRD pattern reveals a typical semi-crystalline structure. 
The SEM characterization showed a non-uniform and porous microstructure based 
on highly agglomerate particles, offering more adsorbing sites and higher uptake 
performance. The recovered powder was crushed and sieved into size ranges < 50, 
50–63, 125–160 and > 200 µm. The particle sizes analysis indicated a multimodal 
distributions, except for < 50 μm. The residual [Cr(VI)] versus time plots revealed 
that the small particle sizes give both fast and efficient metal removal, approach-
ing ~ 100% efficiency. The adsorption follows a pseudo-second-order model. Inverse 
linear relationships were demonstrated between adsorption capacity and removal 
efficiency relative to the mean (normalized) diameter ratio, unlike the rate constant 
 k2 for which the experimental data are well fitted using a linear model.

Acknowledgement The financial support of this work was supported by the University of Boumerdes 
(UMBB, Algeria).

Table 2  Cr(VI) adsorption capacities of the previous works

Adsorbent Equilib-
rium time 
(min)

pH T (K) Adsorption 
capacity 
(mg/g)

References

Polyaniline-coated ethyl cellulose 30 1.0 303 38.76 [49]
Kapok fiber–polyaniline 60 3.7–6.6 300 44.05 [13]
Magnetic mesoporous carbon–polyaniline 120 2.0 298 172.33 [16]
Poly(2-ethylaniline)/chitosan 240 3.0 298 147.16 [50]
Polyaniline/polyvinyl alcohol 60 4.0 1112.3 [51]
Calcined brick powder 60 2.0 300 200 [46]
PEI-modified magnetic adsorbent 30 2.0 298 78.13 [52]
Modified magnetic mesoporous silica MCM-

48
90 4.0 298 115.60 [53]

Amino-functionalized mesoporous alumina 60 2.0 298 59.50 [54]
Polyaniline (< 50 μm) 40 4.5 298 246.8 This study
Polyaniline (200–500 μm) 40 4.5 298 191.6
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