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Abstract
This research investigates the adsorption efficiency of a chitosan-bentonite (Ch–B) 
composite in removing methyl orange (MO), a common textile dye, from aqueous 
solutions. The study integrates experimental and theoretical analyses, employing 
density functional theory (DFT) to gain insights into the molecular interactions 
between the composite material and MO molecules. The Ch–B composite was 
characterized using various techniques, including FT-IR spectroscopy, XRD, and 
SEM–EDX. The experimental results indicate that the Ch–B composite exhibits a 
high adsorption capacity for MO, with optimal conditions identified for efficient 
removal. The Langmuir model was found to best fit the experimental data and the 
adsorption capacity was 117 mg g−1. Adsorption thermodynamics showed that the 
adsorption process was spontaneous, feasible, and exothermic. DFT calculation 
results are correlated with experimental findings to confirm theoretical predictions 
and improve the overall understanding of the adsorption process. Electronic structure 
calculations reveal the nature of the interactions between the Ch–B composite and 
MO molecules, including hydrogen bonds and electrostatic forces.
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Introduction

In recent years, the contamination of water bodies by synthetic dyes has 
emerged as a significant environmental concern. Among various dyes, methyl 
orange (MO), is a synthetic dye widely used in various industries, particularly 
in chemistry laboratories, as a pH indicator [1, 2]. In its natural state, it is a 
bright orange, azoic compound. When dissolved in water, it dissociates into ions, 
specifically positive hydrogen ions (H+) and negative organic ions (often denoted 
as MO−) due to the acidic nature of the solution [3, 4]. However, the presence of 
MO in water bodies due to industrial discharges or improper waste disposal can 
lead to significant environmental concerns [5, 6]. MO imparts a vibrant orange 
color to the water, making it visually unappealing [7]. This aesthetic degradation 
can affect the acceptability of water for various purposes. While MO itself is not 
considered highly toxic to humans, its breakdown products might be harmful, 
especially if they accumulate in the environment. Additionally, its presence can 
indicate the potential presence of other harmful pollutants in the water [8, 9]. MO, 
like many synthetic dyes, can have detrimental effects on aquatic ecosystems [10]. 
It reduces light penetration into water bodies, affecting photosynthesis in aquatic 
plants [11]. It can also hinder the growth and development of aquatic organisms, 
disrupting the natural balance of the ecosystem [12]. Synthetic dyes, including 
MO, can be resistant to degradation. This persistence in the environment can lead 
to long-term pollution issues, affecting both surface and groundwater sources [13, 
14]. The removal of MO from water sources can be challenging. Conventional 
water treatment methods may not be highly effective against synthetic dyes, 
necessitating the use of advanced treatment technologies such as activated carbon 
adsorption, membrane filtration, or advanced oxidation processes [15–19]. 
Traditional methods of dye removal often involve complex chemical processes, 
making them environmentally undesirable [20, 21]. Consequently, there is an 
urgent need for innovative, sustainable, and eco-friendly solutions to tackle this 
issue effectively as adsorption on low-cost adsorbents [22, 23].

In response to this challenge, composite materials have garnered attention 
as promising candidates for efficient dye removal [24]. Among these, chitosan-
bentonite composites have emerged as compelling options. Chitosan (Ch), derived 
from chitin, is a natural biopolymer renowned for its adsorption capabilities, 
biodegradability, and nontoxicity [25, 26]. Bentonite (B), a clay mineral, is 
valued for its large surface area and high cation exchange capacity [27, 28]. When 
combined, these materials create a synergistic effect, enhancing their adsorption 
properties and making them excellent candidates for the removal of pollutants 
from aqueous solutions.

This study bridges the gap between theoretical analysis and experimental 
application by employing density functional theory (DFT) simulations to 
understand the fundamental mechanisms governing the interaction between 
the Ch–B composite and MO molecules. Theoretical insights provide valuable 
information about the adsorption sites, binding energies, and electronic 
properties, guiding the experimental design. In conjunction with the theoretical 
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analysis, this research presents a comprehensive experimental investigation. 
Through a series of controlled experiments, the efficiency of the Ch–B composite 
in removing MO from aqueous solutions has been meticulously studied. By 
amalgamating theoretical understanding with practical experimentation, this 
study aims to provide a holistic perspective on the interaction dynamics between 
the Ch–B composite and MO. The findings not only contribute to the scientific 
understanding of dye removal mechanisms but also hold the promise of practical 
applications in wastewater treatment technologies. In the pursuit of sustainable 
environmental solutions, this research stands at the forefront, driving innovations 
in the field of water purification.

Materials and methods

Reagents and instrumentation

Bentonite (B), chitosan (Ch) (medium molecular weight), epichlorohydrin (ECH), 
and sodium tripolyphosphate (NaTPP) were purchased from Sigma Aldrich. 
Hydrochloric acid, acetic acid, nitric acid, potassium nitrate, ethyl alcohol, and 
sodium hydroxide were obtained from Merck.

Instrumentation: The functional groups on the Ch, B, Ch–B, and MO-loaded 
Ch–B composite were determined using the FT-IR (ATR, ThermoScientificNicolet 
6700) technique. The Ch–B and its components were characterized by measurements 
of scanning electron microscopy (SEM, LEO-EVO 40, Cambridge-İngiltere), and 
energy-dispersive X-ray spectroscopy (EDX, Bruker-125  eV, Berlin-Almanya). 
XRD was recorded by the Rigaku RadB-Dmax II. The MO dye concentrations were 
determined using a UV–vis spectrophotometer (UV-DR-6000; Shimadzu, China) at 
λ = 460 nm.

Preparation of Ch–B

To prepare the Ch–B hybrid composite, Ch and B were mixed in 100 mL of a 5% 
w/v acetic acid solution in a magnetic stirrer at 25  °C for 2 h. Then, 80 mL of a 
25% by-weight ECH solution, a cross-linker, was added to this mixture, stirred for 
1 h, and left overnight. The next day, the mixture is added dropwise to the NaTPP 
solution, which is a cross-linker, to form composite beads. The cross-linked Ch–B 
composite was washed five times with double-distilled water to remove free ECH 
and NaTPP. Then, the composite beads were filtered and left to dry at 25 °C. After 
drying, it was ground and stored for use in adsorption studies.

Adsorption experiments

Adsorption experiments were carried out in a batch system using a solution 
volume of 10  mL and 10  g  L−1 composite amount at a constant concentration 
of 500  mg  L−1 MO, kept at 25  °C for 24  h, and the natural pH value of the 
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solution was used. Thermodynamic studies at 5, 25, and 40  °C, kinetic studies 
for 10–1440 min, composite dose in 1–20 g  L−1 amounts, concentration studies 
(10–1000  mg L−1) in MO dye concentrations, pH studies were carried out 
using HCl and NaOH at pH values of 2–12. To find the MO dye concentration 
at equilibrium, absorbance was measured using a UV–vis spectrophotometer. 
Equations  (1), (2), and (3) were used to estimate adsorption%, Q (mg  g−1), and 
recovery%, respectively.

Theoretical research DFT

The use of quantum chemical calculations is of great importance in characterizing 
various quantum chemical parameters of a molecule, including, but not limited 
to, the calculated result EHOMO and ELUMO of the MO molecule in the neutral 
and protonated states, electronegativity (χ), softness (σ), chemical potential (μ), 
hardness (η), and energy gap (ΔEgap). In the present study, all quantum chemical 
calculations were performed using Gaussian 09 software [29].

Results and discussion

XRD analysis

The XRD spectra of the Ch, B, Ch–B composite and MO adsorbed Ch–B compos-
ite are given in Fig.  1. The XRD spectra showed that Ch, B, Ch–B composite and 
MO adsorbed Ch–B composite had a polycrystalline structure. The strongest diffrac-
tion peaks were observed around 2θ = 19.9°, 2θ = 26.4°, 2θ = 26.4°, and 2θ = 26.5° in 
the XRD patterns for Ch, B, Ch–B composite, and MO adsorbed Ch–B composite, 
respectively [30, 31]. According to the XRD spectra of the Ch–B composite and MO-
adsorbed Ch–B composite, the peak positions of the MO-absorbed Ch–B composite 
shifted to larger degrees compared to the peak positions of the Ch–B composite. Also, 
it was observed that the peak intensity of the strongest peak of MO absorbed Ch–B 
composite decreased compared to the strongest peak of Ch–B composite. The crystal-
lite size (D) is calculated from the XRD data using the Eq. 4 [32]:

(1)Adsorption% =

[

Ci − Ce

Ci

]

× 100

(2)Q =

[

Ci − Ce

m

]

× V

(3)Recovery% =
Qdes

Qads

× 100
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The average crystallite size (D) and residual strain (ε) were calculated from the 
diffraction peaks of Ch, B, Ch–B composite, and MO adsorbed Ch–B composite 
by using equations in the literature [32]. The calculated average crystallite size 
(D) of Ch, B, Ch–B composite, and MO adsorbed Ch–B composite were found 
to be 3.0 nm, 35.9 nm, 27.7 nm, and 21.5 nm, respectively. It is seen from XRD 
results that the average crystallite size of MO adsorbed Ch–B composite decreased 
compared to Ch–B composite.

FT‑IR and SEM–EDX analysis

FT-IR spectra of Ch, B, Ch–B, and MO adsorbed Ch–B are shown in Fig.  2. On 
the FT-IR spectrum of Ch, The strong band at 3489 cm−1 is due to N–H and O–H 
stretching as well as intramolecular H-bonding. The peak at 2932 cm−1 is attributed 
to C–H stretching vibrations. The peak at 1153 cm−1 is the symmetric stretching of 
the C–O-C bridge. The peak at 1085 cm−1 is attributed to the C–O stretching vibra-
tion. The peaks at 890 cm−1, 792 cm−1, and 626 cm−1 are attributed to C–H bending 
vibrations [33, 34].

The characteristic peaks of B can be listed as follows. The band at 3640  cm−1 
is O–H stretching vibrations in Al–OH or Si–OH. The peaks at 3422  cm−1 and 
1641 cm−1 are O–H stretching vibrations in adsorbed water. The peak at 1048 cm−1 

(4)D =
K�

(�cos�)

Fig. 1   The XRD spectra of Ch, B, Ch–B, and MO adsorbed Ch–B
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is the Si–O stretching vibration. The peaks at 529 cm−1 and 461 cm−1 are attributed 
to Al–Si–O and Si–O–Si stretching vibrations, respectively [31, 35]. On the 
FT-IR spectrum of the Ch–B, C = O, N–H, and C–N peaks are seen at 1648 cm−1, 
1543 cm−1, and 1378 cm−1, which are the characteristic peaks of Ch, respectively. 
Also on the FTIR spectrum of the Ch–B, the characteristic peaks of B, Si–O at 
1040  cm−1, Si–O stretches at 7792  cm−1, 754  cm−1, 679  cm−1, and 619  cm−1, are 
at 524 and 461  cm−1, respectively. Al–Si–O and Si–O–Si stretching vibrations 
are observed. The peak at 1543  cm−1 in the Ch–B composite corresponds to the 
deformation vibrations of the amino groups of Ch. All these results show that the 
Ch–B composite, containing functional groups from Ch and B was successfully 
synthesized. The FT-IR spectrum of MO-adsorbed Ch–B shows that Ch–B has 
all the compound peaks. The increases and decreases in peak intensities after 
adsorption confirm the adsorption and electrostatic interactions between MO and 
Ch–B during the solid–liquid phase interaction.

The SEM images and EDX results of Ch, B, Ch–B composite and MO adsorbed 
Ch–B composite are given in Fig.  3. The EDX spectra showed that Ch contains 
Ca, Na, Al, Mg, Si, O; B contains C, O, N; Ch–B composite contains Ca, Na, Al, 
Mg, Si, O, N and MO adsorbed Ch–B composite contains Ca, Na, Al, Mg, Si, O, 
N, S, C, respectively. According to EDX results, it was seen that the MO adsorbed 
Ch–B composite contained S and C, unlike the Ch–B composite. From the SEM 
images, it was observed that Ch had a porous and smooth surface, while B had a 
rough surface and irregular edge curves. SEM images of Ch and B are compatible 
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Fig. 2   FT-IR spectra of Ch, B, Ch–B, and MO adsorbed Ch–B composite
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with the literature [36, 37]. This images Also, SEM images showed that Ch–B and 
MO-adsorbed Ch–B composites have a lamellar structure. Also, it was seen in SEM 
images that there was little change in the surface morphology of the MO-absorbed 
Ch–B composite compared to the Ch–B composite.

Protonation of MO, pHpzc of Ch–B, and effect of pH

The protonation mechanism of the MO molecule was investigated over a pH range 
of 0 to 14 using the MarvinSketch software. As illustrated in Fig. 4, the MO mol-
ecule exists in both its protonated (a) and neutral (b) forms, and the percentage of 
protonation sites is also shown. It is noteworthy that the MO molecule exhibits weak 
basic properties, which promote its protonation in acidic media. Furthermore, the 
presence of heteroatoms in the molecule further highlights its strong inclination 
towards protonation in solution. Figure 4 depicts the distribution ratio of each spe-
cies as a function of pH, revealing that only one predominant form (MO–H+) was 
present at 100% at pH = 0 [38], which indicates the molecule’s high affinity for pro-
tons in strongly acidic conditions.

Figure 5 depicts the impact of pH (2.0–12.0) on the adsorption capacity of MO 
molecules by the Ch–B adsorbent. This investigation keeps the other crucial param-
eters constant ([MO]0:500 mg L−1, Ch–B dosage: 10 g L−1, contact time: 24 h, tem-
perature: 25  °C). The adsorption capacity of MO molecules increases (from 29.4 
to 71.9 mg g−1) as the pH rises (from pH:2.0 to pH:8.0), after pH 8, the adsorption 
capacity of MO decreases.

The point of zero charge of the Ch–B composite was determined using the 
solid addition method. In this method, 10 mL of KNO3 solution at 0.1 mol L−1 
concentration was transferred to a 10  mL polypropylene tube. Solutions with 
different initial pH (pHi) between pH: 2.0 and pH: 12.0 were prepared by adding 

Fig. 3   SEM images of Ch (a), B (b), Ch–B (c), and MO adsorbed Ch–B (d), and their corresponding 
EDX mapping images (e–h) and EDX spectra (i–l), respectively
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Fig. 4   Speciation diagram for MO as a function of pH
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0.1 M HCl or 0.1 M NaOH. Then, 100 mg of Ch–B composite was added to the 
solutions and the pH (pHf) of the equilibrium solutions was measured after 24 h. 
The point where ΔpH (pHf-pHi) crossed the x-axis plotted against pHi gave the 
zero charge point (pHpzc). Analysis of Fig.  5 revealed that the pHPZC value of 
Ch–B was determined to be 5.95. Depending on the pHpzc of the adsorbent, the 
surface of the Ch–B composite becomes protonated at pH values below 5.95 and 
negatively charged at pH values exceeding the pHpzc [39, 40]. Consequently, at 
lower pH levels, the surface of the Ch–B composite carries a positive charge, 
thereby enhancing the adsorption of MO− through electrostatic forces.

Effect of Ch–B dosage

The observations presented in Fig.  6 demonstrate that increasing the dosage of 
the adsorbent from 1 to 20 g  L−1 leads to higher levels of adsorption. It can be 
seen in the figure that the efficacy of the adsorbent for MO increased at a high 
dosage of the Ch–B composite, showing that as the Ch–B dose increases from 
1 to 20  g  L−1, the removal efficiency of the MO also increases from 17.65 to 
93.86%, while the adsorption capacity of MO molecules decreases from 304.98 
to 27.54  mg  g−1. This can be attributed to the larger surface area available for 
adsorption and the increased number of accessible adsorption sites resulting from 
higher adsorbent dosages [41, 42].
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Adsorption isotherms

The adsorption behavior of MO on Ch–B composite was studied by employing 
three equilibrium models: Langmuir, Freundlich, and Dubinin-Radushkevich 
(D–R) isotherm models (Fig. 7), and the parameters derived from the models are 
presented in Table  1. The Langmuir model fits the MO adsorption data on the 
Ch–B composite better than the Freundlich and D–R models, according to a com-
parison of the values of the R2. This showed that the adsorption process occurred 
in a monolayer on a homogeneous surface [43]. Therefore, it was thought that 
homogeneous active centers were dominant on the surface of the Ch–B composite 
adsorbent. The maximum adsorption capacity (Qm) was found to be 117 mg g−1 
from the Langmuir model. The β value, which is the surface heterogeneity factor, 
was found to be 0.565. This demonstrated that the MO dye adsorption process 
onto the Ch–B composite was suitable [44]. The adsorption energy was found to 
be 14.9 kJ mol−1, which indicated that the adsorption process was chemical.

Table 2 lists the performance of the Ch–B composite and other types of adsor-
bents for the removal of MO from water. By comparison with other adsorbents, 
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Table 1   Isotherm parameters for MO adsorbed on Ch–B composite

Standard deviation 29.5 mg g−1, standard error 8.52 mg g−1

Isotherm model Equation Parameter Value

Langmuir Q =
KLQmCe

1+KLCe

Qm (mg g−1) 117
KL (L mg−1) 0.0024
R2 0.965

Freundlich Q = XFC
�
e

XF 1.80
β 0.565
R2 0.925

D–R Q = XDRe
−KDR�

2

� = RTln

(

1 +
1

Ce

)

EDR =
(

2KDR

)−0.5

XDR (mg g−1) 102

− KDR × 109/mol2 K J−2 2.23
EDR/kJ mol−1 14.9
R2 0.959

Table 2   Adsorption performances of different adsorbents for MO removal

Adsorbent pH Qm (mg g−1) References

Coffee waste/cetylpyridinium chloride 3.5 62.5 [45]
Coffee waste/cetyltrimethylammonium bromide 3.5 58.8 [45]
Surfactant-modified pineapple leaf 3.0 47.6 [46]
Biochar from chicken manure 6.5 41.5 [47]
Goethite 3.0 55 [48]
Organic matter-rich clays from Egypt 2.0 41.7 [49]
Poly(N-isopropyl acrylamide)-based ionic hydrogels – 64.8 [50]
Ionic-liquid-crafted zeolite – 38 [51]
Mesoporous ZSM-5 zeolite 1.0 25 [52]
Cellulose from Stipa tenacissina L 3.7 16.9 [53]
Al-doped CNTs 4.5 69.7 [54]
Co3O4 NPs 6.0 46.1 [55]
α-Fe2O3 NPs 2.0 28.9 [56]
Amorphous CNTs 3.0 21.5 [57]
Nanoporous carbon – 18.8 [58]
Nitrogen-doped TiO2 – 14.1 [59]
γ-Fe2O3/2C nanocomposites 4.8 72.7 [60]
Spent tea leaves/polyethyleneimine 3.0 62.1 [61]
NaX/MgO–TiO2 zeolite 6.5 53.8 [62]
Chitosan-montmorillonite – 154 [63]
Chitosan composites films – 173 [64]
Protonated cross-linked chitosan 4.5 89.3 [65]
Chitosan microspheres – 207 [66]
Cross-linked chitosan/bentonite – 137 [67]
Ch–B composite 7.1 117 This study
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the Ch–B composite was found to have excellent adsorption performance for MO. 
Therefore, the Ch–B composite can be considered as the desirable adsorbent.

Adsorption kinetics

Adsorption kinetics, finding the contact time between the adsorbent and the adsorb-
ate allows us to have information about what kind of mechanisms play a role in the 
adsorption of the adsorbate to the surface of the adsorbent [68, 69]. Three common 
kinetic models used are pseudo-first-order (PFO), pseudo-second-order (PSO), and 
intra-particular diffusion (IPD) kinetic models Fig. 8. When Fig. 8 is examined, it 
is seen that the adsorption rate increases as the contact time increases from 10 to 
150 min due to the presence of more active centers on the surface of the Ch–B com-
posite adsorbent. After 150 min, it is seen that the adsorption reaches equilibrium 
in 180 min as the active binding centers on the Ch–B composite surface decrease. 
Table  3 presents the parameters obtained from fitting the kinetic models. When 
Table 3 was examined, it was seen that the PSO model (R2:0.961) showed a higher 
correlation coefficient than the PFO model (R2:0.950). In addition, the equilibrium 
adsorption amount obtained by model fitting (Qt: 73.4 mg g−1) was more compat-
ible with that obtained experimentally (Qe: 72.6 mg g−1). This showed that the PSO 
model had a better fit with the MO dye adsorption process onto the Ch–B composite. 
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Additionally, the IPD model was applied to the experimental data to elucidate the 
adsorption mechanism in MO dye removal using Ch–B composite adsorbent. The 
fact that the IPD model fit graph in Fig. 8 shows lines that do not pass through the 
origin shows that the adsorption process cannot be explained by a single mechanism 
and that the adsorption process involves various mechanisms. The fact that the first 
straight line in the IPD model fit graph does not pass through the origin shows that 
the adsorption process is not only limited to surface adsorption but is also controlled 
by IPD.

Adsorption thermodynamics

Thermodynamic parameters such as standard Gibbs free energy change (∆G°), 
enthalpy change (∆H°), and entropy change (∆S°) were calculated using the 
following equations [70].

The Van’t Hoff graph showing the relationship between the equilibrium constant 
and temperature for the adsorption of MO dye molecules on the Ch–B composite 
is presented in Fig. 9, and the parameters derived from this graph are presented in 
Table 4. ΔH° and ΔS° were calculated from the slope and shift value of the line 
obtained from the Van’t Hoff (ln KD and 1/T) graph. ΔH° for MO dye removal using 

(5)Kd =
Q

Ce

(6)ΔG◦ = −RT ln
(

Kd

)

(7)lnKD =
ΔS◦

R
−

ΔH◦

RT

(8)ΔG◦ = ΔH◦ − TΔS◦

Table 3   Kinetic parameters 
for MO adsorbed on Ch–B 
composite

Standard deviation 22.3 mg g−1, standard error 5.57 mg g−1

Kinetic model Equation Parameter Value

PFO Q
t
= Q

e

[

1 − e
−k

1
t
]

Qt/mg g−1 72.6
Qe/mg g−1 69.6
k1 × 103/min−1 12.6
R2 0.950

PSO Q
t
=

t
[

1

k2Q
2
e

]

+

[

t

Qe

]

Qt/mg g−1 72.6

Qe/mg g−1 73.4
k2 × 103/mg−1 g min−1 0.223
R2 0.961

IPD Qt = kit
0.5 ki × 103/mg g−1 min−0.5 3676

R2 0.990
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Ch–B composite was found to be − 95.9 kJ mol−1, indicating that the reaction was 
exothermic. ΔS° was calculated as − 259 J mol−1 K−1 and showed that the MO dye 
molecules at the interface were more ordered than those in the solution phase. ΔG° 
values, which show that the adsorption process occurs spontaneously, were calcu-
lated as − 23.9 kJ mol−1 at 5 °C, − 18.7 kJ mol−1 at 25 °C and − 14.8 kJ mol−1 at 
40  °C. While the negative ΔG° value showed that adsorption occurred spontane-
ously, the increase in ΔG° value with increasing temperature showed that adsorption 
was more applicable at low temperatures [71].

Desorption

Desorption, the process of releasing adsorbed molecules from a surface, is a cru-
cial aspect of studying adsorption processes [72, 73]. In the context of a Ch–B 
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Fig. 9   The effect of temperature on the adsorption of MO dye onto Ch–B composite

Table 4   Thermodynamic parameters for MO adsorbed on Ch–B

Temperature 
(°C)

ΔG° (kJ mol−1) ΔH° (kJ mol−1) ΔS° (Jmol−1 K−1) R2

5 − 23.9 − 95.9 − 259 0.997
25 − 18.7
40 − 14.8
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composite used for removing MO, understanding desorption is vital for several 
reasons: regeneration of the adsorbent, process efficiency, environmental implica-
tions, optimizing desorption conditions, and understanding adsorption mechanisms. 
Four desorbing agents are used for the desorption of MO from the Ch–B composite, 
such as HCl (1 mol L−1), NaOH (1 mol L−1), HNO3 (1 mol L−1), and ethyl alcohol 
(1 mol L−1). Over 79% desorption of MO was obtained from the Ch–B studied with 
HNO3 (Fig. 10). However, future works need various chemical, chitosan, ionic liq-
uid, and nanoparticle treatments of cotton materials, targeted at higher uptake for 
common dye water pollutants.

Computational calculations

DFT study

Recently, quantum chemical calculations based on DFT theory have been employed 
to investigate the influence of molecular structure on the adsorption process of MO 
on the surface of an adsorbent. Figure 11 displays the optimized neutral and proto-
nated forms of the MO molecule, along with their corresponding HOMO/LUMO 
frontier orbitals and molecular electrostatic potential maps. Specifically, the HOMO 
orbitals of both MO and MO–H+ are situated on the rings of heterocyclic atoms and 
nitrogen atoms, while the LUMO orbital of the MO form is located on the aromatic 
ring atoms and nitrogen. In contrast, the LUMO orbital of the protonated form is 
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Fig. 10   The effect of desorption on Ch–B beads
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located solely on the aromatic ring atom, suggesting that the nitrogen atom may play 
a crucial role in the adsorption process.

To gain a better understanding of the adsorption process of the MO molecule, 
the HOMO, LUMO, and ΔEGAP energies of both the neutral and protonated forms 
were computed and are summarized in Table  5. The total energy (ETot) values, 
which can be used to measure a molecule’s reactivity and stability, were found 

Optimized 
structure

HOMO LUMO ESP

MO

MO-H+

Fig. 11   The pictures of optimized structures, HOMO, LUMO, and ESP

Table 5   Quantum chemical 
parameters of MO, MO–H+ at 
DFT/B3LYP 6–31G(d,p)

Quantum chemical descriptor MO MO–H+

ETot (u.a) − 1492.6 − 1493.2
EHOMO (eV) − 5497 − 4.739
ELUMO (eV) − 2.476 − 0.724
ΔEGAP (eV) 3.021 4.015
µ (eV) − 3.987 − 2.731
χ (eV) 3.987 2.731
η (eV) 1.510 2.007
σ (eV−1) 0.662 0.498
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to be nearly identical for both forms of the MO molecule. A low total energy 
value suggests low chemical stability and a high affinity for adsorption [74]. The 
gap energy value of the neutral MO molecule was found to be lower than that 
of the protonated form, indicating that the former is more prone to adsorption 
on the surface of Ch–B and exhibits high reactivity [75]. A negative chemical 
potential (μ) value (− 3.987  eV for MO and − 2.731  eV for MO–H+) indicates 
stronger interaction between the dye molecules and the surface of Ch–B, sug-
gesting favorable adsorption. A comparison of electronegativity (χ) values 
between the MO (3.987  eV) and MO–H+ (2.731  eV) can indicate whether the 
adsorption process involves electron transfer or electrostatic interactions. High 
hardness η values indicate greater stability of the adsorption complex, suggest-
ing strong interactions between the MO dye and Ch–B composite. Softness (σ) 
values (0.662 eV−1 for MO and 0.498 eV−1 for MO–H+) suggest greater polariz-
ability and flexibility, which may influence the adsorption behavior, especially in 
cases where the dye molecule undergoes structural changes upon adsorption. As a 
result, the adsorption process is expected to be highly durable.

Mulliken charges

Figure 12 displays the Mulliken charges for MO and MO–H+. It is evident from 
these results that all heteroatoms have negative charges with high electron densi-
ties, which act as nucleophilic centers when interacting with Ch–B. As shown in 
Fig. 12, all nitrogen and oxygen atoms have a considerable excess of a negative 
charge, while some carbon atoms also have negative charges and are therefore 
considered active Ch–B atoms. DFT allows for a detailed examination of hydro-
gen bonding and electrostatic interactions between the Ch–B and MO. The iden-
tification of hydrogen bond formation and electrostatic forces provides insights 
into the nature of the adsorption process. These interactions play a pivotal role in 
stabilizing the adsorbed complex, influencing the overall adsorption energy.

Fig. 12   Mulliken charge for the MO and MO–H+ forms
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Conclusion

In conclusion, this research endeavors to elucidate the intricate interplay between 
a Ch–B composite and MO molecules in aqueous solutions through combined 
theoretical and experimental investigations. The synthesis and characterization 
techniques employed, validate the structural and morphological aspects of the 
composite, confirming its suitability for adsorption studies. The experimental 
findings demonstrate the effective removal of MO using Ch–B, emphasizing 
its potential as an environmentally friendly material for water treatment 
applications. The integration of DFT theoretical analysis and experimental 
observations establishes a comprehensive framework for understanding the 
complex interactions governing the adsorption phenomenon. DFT calculations 
successfully predict the nature of molecular forces, such as hydrogen bonding and 
electrostatic interactions, contributing to the adsorption process. The alignment 
between theoretical predictions and experimental data enhances the credibility of 
the study and provides a robust foundation for future advancements in material 
design and water treatment technologies. This interdisciplinary approach not 
only advances our fundamental understanding of the Ch–B but also underscores 
the importance of bridging theoretical insights with practical applications. The 
synthesized composite, with its demonstrated efficiency in MO removal, holds 
promise for broader implications in the realm of wastewater treatment. As we 
navigate the challenges posed by water pollution, the sustainable and effective 
nature of the Ch–B composite positions them as viable candidates for eco-
friendly remediation strategies, contributing to the ongoing quest for sustainable 
water management.
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