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Abstract
This study is a comparative assessment of polypropylene composites reinforced 
with two different range size of Agave Americana fibers. The first is from 125 to 
630 microns, named as Short Agave Fiber (SHAF), and the second range is beyond 
630 microns, named as Long Agave Fiber (LAF). The composites were produced 
by twin-screw extrusion and injection molding processes. The composite manufac-
turing by this interior part of plant agave fibers is mentioned in the first time in the 
literature. The fiber content for the SHAF and LAF composites was chosen as 10 wt. 
%. It was found that better mechanical properties were achieved with LAF compos-
ite which increased by 301.4% compared with the neat PP. This was explained by 
LAF features compared to SHAF such as the higher cellulose content LAF (73.5%) 
and SHAF (40.3%), the higher crystallinity index was obtained better thermal stabil-
ity which led to a composite which is more crystalline, more thermally stable and 
stiffer. This was explained by the good interfacial adhesion between fibers and the 
matrix revealed by SEM analysis.
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Introduction

Due to the increasing pollution caused by the use of plastics materials, several atten-
tions in the field of materials have turned to the generation of biodegradable mate-
rial sources.

Biocomposites play an important role in developing biodegradable materials 
that meet both design requirements and customer goals. They have become avail-
able alternatives to synthetic plastic materials because they are usually recyclable 
and generally exhibit a higher degree of biodegradability with lower impacts on cli-
mate change and lower toxicities [1–4]. The most common biocomposites are manu-
factured with several types of matrices such as petrochemical origin (High density 
polyethylene [5], poly(ethylene oxide) [6], poly(vinyl chloride) [7], poly(methyl 
methacrylate) [4, 5], poly(styrene) [8], poly(urethane) [9], poly(propylene) [10] and 
biopolymer (PLA) [6, 7], and polyhydroxyalkanoates(PHAs) [11, 12] reinforced 
with natural fibers. Among these types of plastics, the polypropylene (PP) is widely 
used in various fields such as packaging, building materials and the automotive 
industry because of its excellent heat resistance, thermal stability, non-toxicity and 
low cost [13–17]. The properties of PP were modified using reinforcement natu-
ral fiber in order to optimize their physical properties and improve their mechani-
cal performance [16, 18–21]. Many advantages of natural fibers called the attention 
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of many researchers to the use of plant-derived fibers as reinforcing agent in poly-
meric materials. It has been reported that natural fibers composites exhibit higher 
mechanical performances including high strength and stiffness [22] compared to 
neat thermoplastic matrix. In fact, lignocellulosic fibers are available in large quanti-
ties around the world and offer many advantages such as biodegradability, recycla-
bility, lower cost, low density, non-toxicity and reduced impact on the environment 
[23]. Additional benefits include energy savings, resource renewal capacity, and 
good thermal and mechanical properties [24]. The main components of fibers are 
cellulose, hemicelluloses and lignin. They contain a major rate of cellulose, which 
enhances the mechanical properties of fibers [25]. The main types of lignocellulosic 
fibers are classified according to their location in the plant, for example: bast fib-
ers (jute [26], kenaf [27], ramie [28], hemp [29], and flax [30]), leaf fibers (agave, 
abaca, sisal, and pineapples [31]), seed fibers (cotton, coir, and kapok [32]), fruit 
fibers (fiber coconut [33]), grass and reed fiber (wheat, rice, and maize [31]), and 
other types (wood [22]).

The lignocellulosic fibers used in this work are the fibers extracted from the leaf 
of plant Agave Americana L. Common names of Agave americana are American 
aloe or maguey. Common names of Agave americana are American aloe or mag-
uey. Agave belongs to the monocotyledonous family called Agaveceae [34]. Agave 
americana flourishes in South Africa as well as the Mediterranean area [35], in 
Tunisia. This plant is the most abundant variety of agave. Before the manufactur-
ing of the composites reinforced with agave fiber, it is necessary to apply a suitable 
method of fiber extraction. The Agave fibers can be extracted by several methods 
such as retting in water [36], retting in seawater [37], retting in soil [38], chemical 
extraction [39], biological extraction (use of bacteria and enzymes) [40] and decor-
tication method [41, 42]. The retting in seawater or water consists in putting the 
Agave leaves in seawater or water [43, 44]. Sea water and water retting methods are 
not environmentally sound at an industrial scale due to the large volume of polluted 
water corruption and squandering of water. Also, the unpleasant smell produced by 
the anaerobic fermentation [30], as well as the high costs of labor and drying caused 
by water retting [45]. Retting in soil method rests on the activity of microorganisms 
in the soil [38]. Enzymatic retting has not yet reached industry scale due to high 
costs [46]. Chemical method had been also using by Jaouadi et al., which consists 
on immersing the Agave leaves with a hydrolysis treatment [39]. This process leads 
to the degradation of the cell wall, which is detrimental to the mechanical properties 
of the isolated fibers. In fact, the properties of composite reinforced with natural fib-
ers depend of many factor such as extraction method, fiber content, fiber dispersion, 
fiber orientation, and matrix selection [47]

Most of the work on agave composites investigated the influence of added agave 
fiber on mechanical properties. In this context, Torres-tello et al. [48] have elabo-
rated composites based on poly(hydroxybutyrate) (PHB) and poly(hydroxybutyrate-
co-hydroxy-valerate) P (HB-HV) reinforced Agave bagasse fiber waste product of 
industry with size between 297 and 400 µm. They proved that tensile and flexural 
strength were not negatively affected by fiber addition. The same type of fiber and 
with the same size was also used by Cisneros-Lopez [49] to study the effect of fiber 
surface treatment on the mechanical properties of rotomolded poly(ethylene)-agave 
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fiber composites. This author made a comparative study of poly(lactic acid)/agave 
fiber biocomposites produced by rotational molding and compression molding in a 
recent research [50].

In this work, the Agave Americana L was extracted by mechanical method and 
the interior part of the plant was ground and sieved. Two sizes of Agave fiber were 
used: The first one is between 125 and 630  µ (SHAF), and the second is beyond 
630 µ (LAF). However, the extraction method, interior part of the Agave plant and 
the sizes of Agave fiber were not yet mentioned in the literature for the production of 
PP composites. This study aims to compare the effectiveness of Long Agave Fiber 
(LAF) and Short Agave Fiber (SHAF) as reinforcing agent in PP composites pro-
duced by twin-screw extrusion and injection molding processes.

Materials and methods

The Agave leaves (Fig. 1a) used in this study were collected from Sousse (Tunisia), 
washed into water to remove any remaining unwanted materials. The interior part 
of agave’s leaf is cut into pieces (see Fig. 1b). They were subsequently dried in the 
oven at 70 °C up to constant weight. Then, they were grinded and sieved (Fig. 1c). 
Two sizes of Agave fiber were used: The first one is between 125 and 630 microns 
(Fig. 1d), and the second is beyond 630 microns (Fig. 1e). Then, fibers were stocked 
in black plastic bags to protect them from moisture and light.

The matrix used is PP (CERTENE PMB35). It is a PP-based thermoplastic poly-
mer designed for injection molding and was bought from Techno polymer society, 

Interior part of leaf
Agave

Grinter

125 to 630 microns

630 microns

Pieces Agave

a b

c

d

e

Fig. 1   Mechanical extraction fibers of Agave Americana L.
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Sfax-Tunisia. The density provided in the technical data sheet of this polymer was 
0.9, and its melt flow rate was 35 g/10 min.

Chemical properties of fibers

The determination of the basic chemical composition was determined following 
ASTM standard protocols. Samples were first submitted to reflux extraction with 
ethanol/toluene (ASTM D 1107-56) to determine the extractable rate. The amount 
of lignin, holocellulose, cellulose and ash were determined according to ASTM D 
1106-56, ASTM D 1104-56, ASTM D 1103-60 and ASTM D 1102-84 standards, 
respectively.

A Fourier Transform-infrared spectroscopy (ATR-FTIR) of fibers was carried 
out using a PerkinElmer instrument at room temperature. The wave number range 
is from 4000 cm−1 to 400 cm−1 recorded with 16 scans with a resolution of 4 cm−1.

The samples of fibers were subjected to the X-ray diffraction (XRD) analysis 
using an Xpert-Pro diffractometer with diffracted intensity of Cu Kα radiation with 
a wave length of 0.154 nm. The range of 2θ is between 10° and 60°.

The XRD was used to determine the crystallinity index (ICr)) has been computed 
via Segal method given by Eq. (1) at the height of the (200) peak ((I200) 2θ = 22.7°) 
and the minimum between the (200) and (110) peaks ((IAM) 2θ = 18°). I200 repre-
sents both crystalline and amorphous materials, while IAM represents only amor-
phous materials [51].

Crystallite size (D) was determined by following Scherer’s [52] equation:

where L is the crystallite size perpendicular to the plane; K = 0.89, is the Sharer’s 
constant, λ = 0.1541 nm is the wavelength of the radiation, β is the peak’s full-width 
half-maximum (FWHM) in radians, and θ is the Bragg angle.

The crystallographic spacing (d) was calculated by following Bragg’s [53] 
equation

Physical properties of fibers

The thermal analysis was performed on about 2 mg of fiber samples and on 5–7 mg 
of composite samples using a PerkinElmer (Pyris 6 TGA) analyzer by under nitro-
gen atmosphere. The samples were heated from 30 °C to 700 °C at a heating rate of 
10 °C/min.

(1)Icr =

[
(

I200 − IAM
)

I200

]

× 100

(2)D =
K�

� cos �

(3)� = 2d sin �
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Observation of the microstructure of fibers was as well as the fractured sections 
of film samples used during tensile testing were performed by scanning electron 
microscope (Jeol, JSM-540).

Composite preparation

Agave fibers-polypropylene composites with 10  wt% of LAF and SHAF content 
were melt compounded using twin-screw extruder. The temperature profile of the 
extruder barrel was set to 170, 180, 180, 180, 190, and 200 °C. The screw speed was 
set at 100 rpm, and the feeding rate was 2 kg/h. For each condition, 10 wt% fibers 
were added to the matrix. The extrudates were then cooled in a bath water and cut 
into pellets with a plastic crusher. The pellets latter were placed on the oven set at 
60 °C for 24 h prior to injection molding. Specimens according to ISO-527-2 stand-
ard were produced.

Mechanical properties of composite

Tensile tests of composite were performed with a WDW-5 Universal Electrome-
chanical Testing Machine. The load cell was 5 kN. The crosshead speed was set 
at 2mm/min. Displacement was measured using an extensometer. Samples have a 
gauge length about of 50 mm and a thickness about 4 mm. The measurement was 
repeated at least 5 times for samples, and the average of three sample readings was 
taken for accurate results.

Physical properties of composite

Differential scanning calorimetry (DSC) analysis of composite was performed on 
3–5mg samples of composite pellets using a PerkinElmer DSC 4000. The composite 
samples were first heated from 30 to 400°C with a heating rate of 20°C/min under 
nitrogen flux about 20ml/min. The samples were then cooled from 400 to 20 °C at a 
cooling rate of 20 °C/min.

The crystallinity index was calculated using the following Eq. (2):

where ΔHf0 = 209 J/g for 100% crystalline PP [54] and ΔHf is the fusion enthalpy of 
the sample.

Specimens were first dried in the oven at 50 °C for 24 h and then cooled in a des-
iccator. After that, they were immerged in distilled water. The weights of the sam-
ples were measured every day up to 18 days. The water absorption of the composites 
was conducted by applying the following equation:

(4)XC(%) =

(

ΔHf

ΔHf0

)

× 100
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where W0 is the initial weight of the sample, and Wt is the weight in time t.
The density of composite pellets was calculated using a pycnometer and the etha-

nol as the liquid of immersion. Examined samples were dried in the oven at 50 °C 
for 24 h to remove moisture.

The density was computed using Eq. (4):

where
ρe is the density of ethanol at 25 °C.
m1 is the weight of the empty pycnometer.
m2 is the weight of the pycnometer filled with ethanol at 25°C.
m3 is the weight of the pycnometer filled with chopped samples.
m4 is the weight of the pycnometer filled with chopped sample and ethanol.

Results and discussion

Chemical properties

Fibers Agave is composed of three main compounds: cellulose, hemicelluloses, and 
lignin. The cellulose in LAF and SHAF was 73.5 and 40.3%, respectively. The LAF 
obtained by mechanical extraction showed a higher value of cellulose content com-
pared to another type of Agave such as Agave fourcroydes (72% cellulose)[55]. In 
addition, the cellulose of LAF is higher compared to the after burial in soil and dis-
tilled water extraction methods. The former methods yielded 63.12 and 68.54% of 
cellulose content, respectively [38, 56]. Thus, the mechanical extraction was found 
the most efficient method. LAF has higher cellulose content compared to SHAF. 
Better tensile strength and Young’s modulus could be reached for LAF [57]. The 
hemicelluloses were 11.2 and 24.2% for the LAF and SHAF, respectively. In a pre-
vious work of Oudiani et al. [58], the hemicelluloses content obtained from Agave 
Americana L treated with NaOH concentrations at 1% and 10% was almost 27% for 
both concentrations. The low content of hemicelluloses in this present work repre-
sents another advantage to the fiber’s quality. Indeed, the least hemicelluloses con-
tent was, the stronger the fiber becomes. In fact, its presence with high quantities 
leads to the degradation and the disintegration of micro-fibers [59]. The lignin con-
tent of LAF and SHAF was 6.6 and 10.0%. Lignin presents many advantages, e.g., 
can act as a shield against biological attack [60]. In addition, it plays an important 
role in protecting the hemicellulose and cellulose. However, it is well known for its 
negative impact on fiber structure, property and morphology[61]. The ash content of 

(5)Water absorption(%) =

[
(

Wt −W0

)

W0

]

× 100

(6)�f =

(

m3 − m1

)

[(

m2 − m1

)

−
(

m4 − m3

)]�e
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LAF (1.6%) and SHAF (4.5%) was lower than that founded by Yang and Pan yielded 
5.3% [62].

FTIR analysis

Figure  2 presents the FTIR analysis of LAF and SHAF, a broad absorption band 
in the area 3600–3000 cm−1 due to the presence of O–H. According to Sathishku-
mar et al. [63], these can be attributed to the cellulose Iβ, which is due to the pres-
ence of cellulose I structure in LAF and SHAF. These findings were confirmed by 
the X-ray analysis below. However, the two bands at 2921 and 2846 cm−1, assigned 
to CH and CH2, would be attributed to the cellulose and hemicelluloses [63–65]. 
The small sharper peaks at 2096 to 2323 cm−1 would correspond to the asymmetri-
cal vibrations confirming the presence of waxes. A similar peak was reported for 
the Calotropis gigantea fibers at 2133  cm−1 [66]. According to Taktak et al. [22], 
the small protrusion at 1735  cm−1can be attributed to the presence of lignin, and/
or ester group in hemicelluloses. The intense peak at 1600 cm−1 can be associated 
with the presence of lignin [67] and/or due to the presence of water in the fibers. 
According to Pereira et al., the bands at 1411, 1370 and at 1317 cm−1 could be inter-
preted as indicators of crystalline cellulose, but the peak at 923 cm−1could be due to 
the amorphous cellulose [38]. These characteristic peaks prove the crystallinity of 
LAF and SHAF. This will be further confirmed by the analysis of the XRD. With 
total agreement with Reddy et al. [68], the small peak localized at 1248 cm−1would 
correspond to the –COO can be attributed to presence of hemicellulose. Also, the 
intense peak at 1017 cm−1 can be attributed to the C–O and OH could be due to the 
presence in cellulose [69]. According to De Rose et al. [69], the small peak at 923 
cm−1 may be due to the presence of cellulose showing C–O–C stretching vibration 
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Fig. 2   FTIR spectrum of LAF and SHAF
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of β, 1,4 glycosidic linkages triggered by cellulose. The distinguishable peak values 
corresponding to the functional group interaction are presented in Table 1.

XRD analysis

Figure 3 shows the XRD spectrum of LAF and SHAF. The presence of the 4 local-
ized peaks 2θ such as 15°, 16.7°, and 22.2° represents, respectively, the diffrac-
tion angle of the Miller indices’ plane (1–10), (110), and (200) characteristic of the 
native cellulose I [70].

The intense peak at 2θ equal to 22.2° can be attributed to crystallographic plane 
(200) which indicates the crystalline part (cellulose). The small peak at 34.8° can be 

Table 1   Characteristic FTIR 
peak positions of LAF and 
SHAF fibers

Samples Wave number (cm−1) Vibrational mode(s)

LAF 3002–3657 O–H stretching
2921 C–H stretching
2846 C–H2 stretching
1248 –COO stretching
1017 C–O and OH stretching
923 C–O–C stretching

SHAF 3010–3632 O–H stretching
2930 C–H stretching
2846 C–H2 stretching
1236 –COO stretching
1006 C–O and OH stretching

Fig. 3   X-ray spectrum of LAF and SHAF
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assigned to a quarter of the length of one cellobiose unit also arises from ordering 
along the fiber direction [71].

The crystallinity index, lattice spacing (d) and crystal size (D) of LAF and LAF 
have been calculated by using Eqs. (1)–(3), respectively, and the corresponding val-
ues are presented in Table 2. The next result was related to the crystallinity index 
of the LAF and SHAF which was 51.0 and 30.4%, respectively. This crystallinity 
index of LAF differs with other extraction methods. It was found 41.0 and 50.0% for 
Agave Americana after retting in seawater and in distilled water, respectively [58]. 
Also, the crystallinity index of LAF (51%) is height compared with Lygeum spar-
tum fibers (46.2%) and Ferula communis fibers (48%) [72]. Other studies revealed 
less crystallinity indices compared SHAF fibers such as date palm (19.9%) [73] and 
Arecanut hust fibers (37.0%) [74]. A higher crystalline index indicates well-oriented 
cellulose crystals along the axis of the fiber.

In addition, the crystallite size (D) values found by Scherrer’s equation were 
3.54 nm and 1.8 nm of (LAF), and (SHAF) fibers, respectively. The crystallite size 
of LAF is 3.54 nm which is quite higher than the Shwetark fibers (3 nm), Nerium 
oleander (2.23 nm), flax (2.8 nm) and Hibiscus vitifolius (2.09 nm) [75, 76]. Also, 
the crystallite size (D) of SHAF, which is much greater than that determined for 
the Leucaena Leucocephala Tree fiber (1.6  nm) [77] and Kigelia africana fibers 
(1.73 nm) [78]. Less crystallite size attracts more water absorption characteristics of 
the fibers and is associated with amorphous constituents present in the fibers [75].

The spacing between the (200) planes (d) was calculated using the Bragg’s 
Eq. (3). (d) is the spacing between the planes in the atomic lattice, and θ is the angle 
between the incident ray and the scattering planes [79]. The d-spacings of (LAF) 
and (SHAF) were 4.10 and 4.17A°, respectively. Similar results were observed by 
Oudiani et al. [80].

TGA and DTG analysis

Figure  4a and c shows the TGA and DTG analysis of the LAF and SHAF. A 
weight loss of LAF and SHAF of about 6 and 8%, respectively, was observed at 
the range of 30 to 122 °C. This could be explained by the evaporation of the water 
or the other volatile components present in the fibers [66, 81]. The first appears 
at the range of (229 to 272 °C) and (201–261 °C) are centered at 244.5 °C and 
242.8°C of the LAF and SHAF with 3.9% and 21.0% of weight loss, respectively. 
These peaks can be predicated to the decomposition of hemicellulose, pectin and 
the glycoside linkages of [82]. The second peak observed at the range of 272 °C 

Table 2   XDR parameters of LAF and SHAF

2θ (200) FWHM (°) Crystallinity 
index (%)

Lattice spacing (d) 
(A°)

Crystal 
size (D) 
(nm)

LAF 21.59 2.23 51.0 4.10 3;57
SHAF 21.24 4.42 30.4 4.17 1.80
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to 423 °C and 261 to 433 °C centered at 373 and 346 °C of LAF and SHAF can 
be due to the decomposition of cellulose [83]. Finally, the third small peak was 
observed at 488  °C and 500  °C of LAF and SHAF, respectively, and could be 
due to the decomposition of lignin [84]. The fourth peak at 653 °C of SHAF can 
be assigned to the decomposition of the molecules CO2, CO, hydrocarbons and 
hydrogen [64].

As depicted in Fig. 4b and d, TGA and DTG curves show the thermal stability of 
neat PP, LAF10/PP and SHAF10/PP. The addition of LAF into PP matrix increased 
slightly the thermal stability as shown in Fig. 8, from 275.4 °C for the neat PP to 
278.9  °C for LAF10/PP. This increase was correlated with the thermal protection 
that means the thermally more stable PP that surrounded the fiber. In addition, this 
enhancement in thermal stability was attributed to the better interaction between the 
PP and LAF. The addition of SHAF to the neat PP decreased the degradation tem-
perature from 275.4 °C for the neat PP to 244.4 °C for the SHAF10/PP. The differ-
ence in thermal degradation between LAF and SHAF composites could probably 
due to the difference in chemical composition of these two fibers. LAF has lower 
content of lignin, while SHAF is rich in lignin [85]. Furthermore, the cellulose 
content in SHAF is much lower than that of LAF. Hence, the thermal stability of 
LAF was higher than that of SHAF. To conclude, the addition of the LAF in the PP 
improved the thermal stability of the composites.
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Mechanical properties of composite

The tensile strength and the Young’s modulus of the neat PP, LAF10/PP and 
SHAF10/PP (10 wt.%) composites are shown in Fig. 5. The composites contain-
ing SHAF and LAF showed better mechanical properties compared to the neat 
PP. The tensile strength increased up to 23.3 MPa and 19.6 MPa for LAF10/PP 
and SHAF10/PP, respectively, while it was 7.2 MPa for neat PP. The tensile mod-
ulus was 155 MPa for the neat PP and increased to 625 MPa with LAF and 440 
MPa with SHAF. Composites reinforced with LAF exhibit higher tensile proper-
ties (Tensile strength and modulus) than composites reinforced with SHAF. This 
might be related to the increase in crystallinity of LAF already observed by the 
X-ray analysis compared to SHAF. Moreover, even the high cellulose contents of 
fibers have an important impact on composite properties, the improved perfor-
mance can be related to the enhancement of fiber/matrix interaction. These obser-
vations confirm previous findings found by Haddar et al. [86]. Therefore, provid-
ing a better fiber/matrix interface, result to a more efficient stress transfer from 
the matrix to the fibers. However, compared to the neat PP, composites reinforced 
with LAF and SHAF exhibited lower elongation at break. It was 522.0% for neat 
PP and decreased to 23.0% and 14.5% of LAF10/PP and SHAF10/PP, respec-
tively. This can be explained by stiffness effect of the fibers.

Nevertheless, from the results already published in the literature, the utiliza-
tion of Agave (Agave tequilana) fibers as reinforcement for thermoplastic matrix 
led to remarkable decrease in elongation at break [50]. According to  Boussetta 
et  al., the use of rigid fibers to prepare composite materials in thermoplastic 
matrix leads to less deformability thanks to its low plastic energy that can be 
absorbed [87].
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Water absorption

The water absorption behavior of the neat PP, LAF10/PP and SHAF10/PP com-
posites with 10 wt% of agave fiber content was studied for 18 days, and results 
are depicted in Fig. 6. All samples showed the continuous rise in water uptake till 
12 days. After 1 day less than 0.5% of water absorption was observed for neat PP, 
LAF10/PP and SHAF10/PP composites. Then, water absorption was suddenly 
increased and stabilized almost at the twelfth day. SHAF10/PP showed significantly 
higher water absorption than LAF10/PP. This increase in water absorption could be 
explained to the presence of higher amount of non-cellulosic materials (hemicellu-
loses and pectin) which had an hydrophilic character. In addition, the water absorp-
tion mechanism was related to the (–OH) groups that have the ability to bind with 
water, to the fiber structure that contains the capillary pores and even to the infiltra-
tion into the free space due to micro-voids and other morphological defects [88]. 
Saturated water weight for neat PP, LAF10/PP and SHAF10/PP was recorded as 0.6, 
2.2 and 2.8%, respectively.

Density test

The low density is the major advantage that presents the cellulosic fibers over the 
synthetic ones (e.g., 2500 kg/m3 for glass fiber) [89]. Cellulosic fibers contain pores 
and voids; hence, the low density is related to their porous nature. This advantage 
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allows for using the natural fibers as reinforcement in polymer matrix, which may 
appreciably create low weight green composites. The LAF and SHAF density 
obtained from pycnometer are about 1.28 and 1.18 g/cm3, respectively. The lower 
rate of hemicelluloses and lignin in the fibers increased the fiber density [90]. The 
chemical composition study confirms the decrease in non-cellulosic compounds of 
LAF compared to the SHAF which increased the density of LAF. In addition, the 
difference existing between the densities of cellulosic fibers is due to many param-
eters such as plant growth rate, climatic conditions (weather), plant tissue [63], 
extraction process, and porous rate of the microstructure [83].

The density (1.40  g/cm3 of LAF10/PP and 1.33  g/cm3 of SHAF10/PP) is 
higher than neat PP (0.94 g/cm3). The good contact between both phases leads to 
a reduction in voids and defects, which could probably increase the density of the 
composites.

Differential scanning calorimetry (DSC)

The melting behavior of the composites was analyzed using differential scanning 
calorimetry (DSC) as illustrated in Fig. 7. The corresponding data comprising melt-
ing temperature Tf (°C), melting enthalpy (ΔHf), and percentage of crystallinity 
(Xc%) of the composites. Table 2 shows that the crystallinity increased from 33.2% 
(PP) to 37.2% (LAF10/PP). The increase in crystallinity of LAF composite com-
pared to SHAF composite implies that the first has more thermally stable crystals 
[91]. The slight decrease in crystallinity from 33.2% (neat PP) to 32.9% (SHAF10/
PP) may be due to the presence of non-cellulosic compounds on the fiber surface, 
which can reduce nucleation effects of fibers. The crystallization temperature (Tc) 
of LAF10/PP and SHAF10/PP composites was lower than the neat PP. This could 
explained by the presence of fibers agglomeration during composite manufacturing, 
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where agglomerates lower the number of nucleating sites [92]. For the melting tem-
perature (Tf), no significant changes were appeared.

Scanning electron microscopy (SEM)

The scanning electron microscopy provides a detailed idea about the morphology of 
LAF and SHAF surface to evaluate the fiber surfaces. The morphological analysis 
is important to predict fiber interaction with the polymer matrix in composites. As 
shown in Fig. 8a, the LAF contained a rough surface with the cracks. The occur-
rence of such cracks was attributed to the crystalline character of the fiber [93]. The 
crystalline character has a positive effect in the tensile properties of individual fiber, 
resulted in improving the mechanical properties of composites [94]. Consequently, 
the surface roughness will increase the fiber-matrix interfacial adhesion during the 
production of composites. The SHAF was mixed with powder and lignocellulosic 
fibers (Fig. 8b). The fibers showed in the SHAF surface contained rough surface and 
impurities in the form white layers and rectangular.

Fig. 8   SEM images of a LAF and b SHAF
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Figure  9a–c shows SEM images of the fractured surfaces after the tensile test 
for the neat PP, SHAF10/PP and LAF10/PP, respectively, of the agave fibers com-
posites. Figure 9a shows the rough surface. In Fig. 9b, the voids over the surfaces, 
pull-out and depending of some Agave fibers can be seen in the SHAF10/PP, which 
indicated the poor interfacial adhesion of SHAF10/PP. The void seen between the 
fibers and the matrix significantly affected the mechanical properties of SHAF10/
PP. Figure 9c shows a better interfacial adhesion between LAF and PP. It is clear 
that the fibers are well incorporated in the matrix, and they exhibited a good disper-
sion at the microscopic scale. In fact, there was no indication that shows the fiber 
agglomeration on the studied fracture surfaces. In addition, it is also observed that 
the fibers were broken during fracture and reduced pull-out, which clearly indicates 
the good adhesion between the LAF and PP. This result is expected to produce a 
clear improvement in the mechanical properties of LAF10/PP due to good fiber dis-
persion that provides an efficient charge transfer from matrix to fibers [95, 96]. Not 

Fig. 9   SEM images of a neat PP b LAFPP/10 and c SHAF10/PP
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only that, also the absence of agglomeration decreases stress concentrations in the 
composite, which leads to significant improvements in mechanical properties [97].

Conclusion

In the present investigation, composite based on PP matrix containing LAF and 
SHAF as fillers was successfully produced by twin-screw extruder and injection 
molding process. The filler content for both composites was chosen as 10 wt%. It 
was found that mechanical properties of the composites increased as compared to 
the neat PP. It was also noted that the tensile properties of LAF10/PP were higher 
than SHAF10/PP. This was due to the better thermal stability as well as to the higher 
cellulose content and crystallinity index of LAF that implies better interfacial adhe-
sion between the fiber and the PP matrix. Hence, involving the chemical modifi-
cation of SHAF or/and the use of coupling agent could be studied in subsequent 
research on the topic to improve the overall properties of this composite.
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