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Abstract
The majority of the cell wall of a plant is composed of cellulose. Cellulose is an 
outstanding abundant, fibrous, and water-insoluble polymer on earth. The excellent 
hierarchical structure and semicrystalline nature of plant cellulose permit the easy 
isolation of nanofibers and nanocrystals through mechanically and chemically 
applied top-down destruction strategies. The cellulose molecules in nanocomposites 
can be separated into types such as bacterial nanocellulose (BNC), crystalline 
nanocellulose (CNC), and cellulose nanofibrils (CNF), which are biodegradable, 
environmentally friendly, and possess remarkably improved properties compared 
to conventional materials. Generally, they are deliberated as second-generation 
renewable resources, which assist as a superior replacement for petroleum-based 
materials. Research studies on nanocellulose are extensively accelerating due to 
petroleum-based materials issues like  CO2 emissions, plastic based-pollution, and 
the absence of renewable energy. Research studies regarding these materials are 
interestingly increasing due to their outstanding properties such as biocompatibility, 
renewability, higher mechanical and lower density values, while sustainable 
production still associated with various challenges. Here, we comprehensively 
review the recent developments in nanocellulose production structural dimensions, 
properties, and applications, dedicated to drug delivery system, food industry, 
piezoelectric sensors, actuators, energy generators biosensing and bioimaging 
electronic devices.
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Introduction

The extensive and abundant polymer on Earth “Cellulose” is converted as new 
morphological and structural changes in the form of nanocellulose with the help 
of advanced and developed nanotechnology. Nanocellulose is a nanosized material 
found in a wide-range of diversity owing to excellent characteristics, produced 
from plants, bacteria, or animals [1]. Generally, nanocellulose is characterized 
into three forms such as cellulose nanocrystals (CNC), cellulose nanofibers 
(CNF), and bacterial nanocellulose (BNC) [2]. Cellulose is the primary part of 
the plant’s cell wall, considered the world’s supreme prevalent organic material 
because of its structural strength [3]. Usually, its extracted from trees such as flax, 
wheat straw, rice husk, cotton stalk, cotton fibers, hemp, bamboo, and jute [4, 5]. 
Cellulose comprises amorphous and crystalline regions of different ratios based 
on the sources of the raw material. Research shows that the surface morphology 
of native cellulose exists as a combination of two crystalline allomorphs, namely 
cellulose I alpha and II β [6, 7]. The existence and ability of hydroxyl groups 
to develop hydrogen bonds play a significant role in leading the processing of 
crystalline packages and concerned with cellulose’s physical characteristics 
[8]. It has excellent properties, such as a larger surface area, a lower density, a 
higher aspect ratio, better mechanical properties, a low cost, and the ability to 
adapt to different surface characteristics, which make it an ideal material. The 
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abundance of hydroxyl groups in nanocellulose makes surface modification easy. 
Since CNC have an excellent adsorptive property due to their high surface area, 
electrostatic interactions between nanoparticles and oxygen atoms of hydroxyl 
groups of cellulose caused nanoparticles to be adsorbed on CNC surfaces [9]. 
Nanocellulose can be functionalized in two ways: first, by oxidizing or cationizing 
its hydroxyl group in order to achieve UV barrier, antibacterial, high thermal, and 
antioxidant properties [10]. Additionally, a second technique uses nanocellulose 
as a template for forming nanoparticle hybrids, such as ZnO-NPs, Ag-NPs, CuO-
NPs and  Fe3O4-NPs that impart functional properties. Nanocellulose serves both 
as a template and as a capping agent for the preparation of hybrid nanocellulose/
nanoparticles [11, 12]. Cellulose indirectly plays a big part in the human food 
chain. Various businesses, such as veterinary foods, wood and paper, strands 
and clothing, skincare items, and pharmaceuticals, also allow the versatile 
usage of this polymer [13, 14]. A number of current and existing nanocellulose 
uses in nanocomposites such as emulsifiers, wood adhesives, and evolving 
biomedical applications [15, 16]. The use of cellulose-based nanomaterials in 
wastewater treatment and environmental conservation has received considerable 
interest. [15]. In addition, in water remediation, primarily due to its reasonable 
cost, high availability, harmless handling process, large surface area, and high 
affinity for absorbing various contaminants [17]. The fact that cellulose is a safe, 
biodegradable material that has no harmful effects on humans or the environment 
is also noteworthy for security concerns, especially for extensive usage. Therefore 
cellulose-based nanomaterials have been extensively researched for their usage in 
many water treatments to fulfill water shortages across the globe [18]. A notable 
characteristic of nanoscale cellulose structure material is its highly explicit 
mechanical characteristics, superior hydrophilicity, and chemically modified 
surface functionality for enhanced adsorption. Nanocellulose also contains strong 
hydroxyl groups (–OH), which makes it a highly efficient surface engineering 
material. Several applications of this material include template support, self-
governing functional material, and strengthening unit in hybrid materials have 
demonstrated its capacity to usage in environmental health sector. Further, 
covalent bonding, surface graft polymerization, and physical adsorption have 
been used to enhance its performance due to the presence of a large amount of 
reactive groups [19].

In spite of petroleum-based materials application in various industrial sectors, 
petro-derivatives don’t have biodegradable properties which limit their applications 
as compared to bio-based materials. So the usage of environmental friendly, com-
patible, biodegradable, and renewable polymers can assist the industries in a promis-
ing way due to their outstanding characteristics and advantages in contrast to petro-
based materials as Table 1, giving a clear comparison. Recently, nanocelluloses are 
considered as an extensively used green material because of their fundamental char-
acteristics, renewability, and abundance. Nanocellulose surface modification ena-
bles to the transformation of simple molecules into more complex polymer blends 
or composites for an outstanding utilization in several fields. Such as nanocellulose 
surface modification by hydroxyl groups has considerably improved its prospective 
to an inclusive range of applications. Nanocellulose based functional materials are 
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produced by various modification techniques and have been used in food packag-
ing, biosensing, and biomedical applications. Moreover, due to its renewability, 
biocompatibility, bioavailability, and different remarkable properties, nanocel-
lulose (NC) has gained wide attention in food industry to save the food stuffs. Its 
rheological behavior and water absorption ability, crystallinity, and tunable surface 
chemistry, as well as its non-cytotoxicity and non-genotoxicity, make it suitable for 
food use. There are various commercial markets where nanocellulosic materials 
are extremely useful, such as packaging. These materials have distinctive charac-
teristics which can substantially boost those markets. As a food stabilizing agent, 
dietary fiber, thickener, flavor carrier, suspension stabilizer, and calorie reducer, NC 
has a wide range of applications in food [20]. In addition to fillings, crushes, bis-
cuits, cream, ice cream, chips, wafers, soups, and puddings, it can also be used to 
produce desserts and fillings. A food application could benefit from NC gel’s good 
rheological properties. Due to its high viscosity, NC is an excellent food gelling 
agent and a non-caloric stabilizing agent. While used as nanofillers in packaging 
films, NC materials have great potential for sustainable improvement in tensile and 
barrier properties [21]. In addition to applications of nanocellulose in biosensing 
and electronics, its promising hybrids showed unique characteristics, including high 
mechanical strength, flexibility, stretching, shape memory effect, photo dynamics, 
photothermal activity, electrical conductivity, semi conductivity, thermal conductiv-
ity, optical transparency, intrinsic fluorescence and luminescence, and high filtra-
tion and adsorption. In recent studies, CNs have been advocated as green electrical 
components and their potential has been examined in organic diodes, smart papers, 
rechargeable lithium ion batteries, supercapacitors, and photovoltaic cells. Compara-
tively to plastic or silicone-based counterparts, they offer adequate pliability, low 
costs, light weight, and recyclability. There have been several studies on CNs’ poten-
tial contribution to the construction of high surface area two-dimensional nanomem-
branes for storage devices and fuel cells. Therefore as a multifunctional nanocellu-
losic materials have the potential in several applications including wound dressings, 
tissue engineering, electrical stimulation of damaged tissues, biological molecule 
isolation, and drug delivery [22]. Many articles, book chapters, and reviews have 
been published on cellulose sources, nanocellulose extraction, properties, and appli-
cations. [23, 24]. In contrast, there is still a lack of literature on nanocellulose-based 
materials used in drug delivery systems (DDS), food packaging, and biosensing to 
diagnose various diseases [25]. Nanocellulose is effective in drug delivery system 
due to having a large surface area and high polymerization power, enabling it to 
provide maximum packaging and attaching potential for chemotherapeutic agents 
to monitor drug release [26]. For drug delivery systems, all forms of nanocellulose 
have great potential [2]. However, the selection of practical, organic, non-toxic, and 
cheap materials is crucial while preserving bioactivity and reducing unwanted side 
effects [27]. In recent times, significant progress in exploring different natural poly-
mer’ uses has developed in encouraging biomaterials such as collagen, starch, algi-
nate, gelatin, chitosan, elastin, and cellulose, due to their inexpensive, renewable, 
and environmentally friendly properties Among several other aspects, cellulosic 
nanomaterials have attracted considerable industrial and scientific attention due 
to their extraordinary biochemical, functional, geometric, and biological features, 
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along with their high degree of biocompatibility, biodegradability, and bioavail-
ability. Several studies have been published in past few years on the synthesis of 
nanocellulose and its hybrid products as metal-based composites by modification 
procedures. [28, 29]. This review paper would concentrate on preparing and apply-
ing various forms of nanocellulose for drug delivery system, food packaging, and 
biosensing applications.

Biomass sources

Cellulose materials are isolated from several plant fibers [38], as well as bacterial 
sources. Scientists are interesting to produce cellulose and nanocellulose from 
valuable sources using biowastes. Agricultural residues and forest crops are stated 
as lignocellulosic biomass [39]. As the second richest source of nanocellulose, 
agricultural sources come from waste materials from farming fields. Corn 
husk, wheat straw, rice husk, corncob, and banana rachis are some of the most 
commonly used agricultural biomass sources. In addition to tomato waste, 
sugarcane bagasse, carrot pulp, garlic peels, and other industrial waste contain 
nanocellulose. Nanocellulose can also be found in marine animals, such as tunicate, 
and microorganisms like bacteria and fungi [40]. There are several components 
present besides cellulose in these sources, including lignin, hemicellulose, pectin, 
waxes, etc. [41]. The dry mass analysis of lignin, hemicellulose, and cellulose from 
different sources is shown in Table 2.

Nanocellulose can be acquired from biomass (wood) generally in two steps like the 
first step can be the deconstruction of lignocellulose material to obtain cellulose as pure 
as possible, the second step is conducted to produce nanocellulose as it can be seen in 
Figs. 1 and 4. The structure of lignocellulose is defined as a rigid material linking lay-
ers of lignin, hemicellulose, and cellulose with the help of strong covalent and hydro-
gen bonds, so enabling the wood and plants to resist pest and chemical degradation 
attacks [42]. Generally, an extensive multistep refining process is employed on biomass 
to reduce non-cellulosic material while cellulose is preserved. As lignin is cross-linked 
covalently with cellulose and hemicellulose through ester and ether linkages, the cross-
linked structure resists structural breakdown, which is mentioned as lignocellulose bio-
mass resistance [43]. So commonly, special chemical and mechanical treatments are 
applied to obtain nanocellulose by rupturing the lignocellulosic biomass structure. On 
an industrial scale, this process is done by a technique named kraft pulping which is a 
combination of mechanical and chemical treatments of biomass to obtain nearly pure 
cellulose [44]. The most recent study revealed the usage of an environmental friendly 
technique in which poplar wood powder is assorted with various harsh eutectic solvents 
and later on exposed to microwave irradiation for almost 3 min as shown in Fig. 1 [42]. 
As a result, lignin was removed almost 80% and cellulosic material remained in 75% 
crystalline cellulose form. Similarly, authors claimed it an outstanding cellulose extrac-
tion method involved in utilization of reusable bio-sourced harsh eutectic solvents as 
well as low energy microwave consumption treatment. After pure cellulose extrac-
tion, nanocellulose is recovered by the further treatment process. Cellulose-derived 
substances within the nanometer scale are defined as nanocellulose [45]. Nanofibers 
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primarily incorporate nanocrystalline cellulose, cellulose nanofibers/nanofibrillated 
cellulose, and bacterial nanocellulose [15, 46]. These forms of nanocellulose are due to 
various origins and extraction processes that different in structure, particle density, or 
crystalline nature but almost similar in composition [46].

Table 2  Dry mass analysis of 
different biomasses regarding 
chemical compositions [41]

Agriculture sources Lignin (weight%) Hemicel-
lulose 
(weight%)

Cellulose 
(weight%)

Rice husk 19.50 19.0 45.0
Garlic straw 6.3 18 41
Carrot residue 2.5 9 81
Jute 13.4 13.6 73.2
Banana 5 10 64
Wheat straw 17.1 35.4 48.8
Onion peel 38.9 27.62 41.1
Sugarcane bagasse 25.3 16.8 55.2

Fig. 1  Schematic structural representation of deconstruction of lignocellulose from (wood) biomass [42]
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Nanocellulose structure and dimensions

Organic polymers especially cellulose and its derivatives are considered as one of the 
extensively studied materials for various applications including biomedical applications 
due to their less toxicity, renewability, bioactivity, and renewable natural origin. Plants 
are considered fundamental origin for cellulose extraction such as rice husk, rice straw, 
cotton, wood-pulp, and jute. According to the plant structure, cellulose is reported as 
a component of the cell divider having a stimulating part of the plant [47]. Similarly, 
cellulose has been reported to integrate by bacterial species such as Gluconacetobacter 
xylinus, Oocystis apiculata, and Microcosmus fulcatus [47–49]. The understanding of 
cellulose structure inside the plants will have obvious effects on the characterization 
and production method of nanocellulose as well as will affect its preparation and asso-
ciation in manufacturing the functional materials. During cellulose isolation through 
green plants by scientist Anselme Payen in the year 1838, it was reported that every 
plant cell wall is composed of a similar cellulose substance [50]. Cellulose is composed 
of β1-4 glycosidic bonds which are connected to d-glucopyranosyl units. Repeatedly, 
an anhydrase glucose unit is pivoted 180 degrees in the plane to create a favored posi-
tion for producing an acetal bond between two closing glucopyranosyl rings. Hence, 
the consecutive units lead to cellobiose as an auxiliary component. In general, cellulose 
chain length fluctuates greatly (within the range of 300–10,000 units) depending upon 
the source [51, 52]. Figure 2 shows TEM images of various forms of nanocellulose.

Derivation techniques of nanocellulose

Alkaline‑acidic pretreatment

Sodium hydroxide or potassium hydroxide solution is used to pre-treat biomass 
in this pretreatment process. Natural fibers undergo chemical treatment to remove 
hemicellulose, lignin, extractives, and waxes in order to modify their surface. 
This treatment has been described in a number of publications, including our 
recent publication [55]. As a result of alkali treatment, microvoids are eliminated, 
the surface is smoother and there is better stress distribution [56]. The fiber 
diameter decreased on NaOH treatment, resulting in an increased aspect ratio, 
resulting in better fiber–matrix interactions due to a larger effective surface area 
[57]. Furthermore, natural fibers can also be chemically modified with silanes, 
by reacting with OH-groups in natural fibers through self-condensation [58]. 
A lignin, hemicellulose, and pectin removal step is often performed before 
mechanical isolation of nanocellulose by utilizing alkaline-acid pretreatments 
[59, 60]. Therefore, step follows as given below.

 (i) To increase the surface area of the cellulosic materials, biomass natural fibers 
are waterlogged in NaOH (12–17.5 wt%) for 2 h.

 (ii) A solution of hydrochloric acid (HCL) is used to hydrolyze the fibers at 
60–80 °C, causing the hemicellulose to be solubilized.



9527

1 3

Polymer Bulletin (2024) 81:9519–9568 

 (iii) A solution of NaOH (2 weight percent) is applied to the fibers at about 
50–75 °C to disrupt the lignin structure.

Ionic liquids pretreatments

A low melting temperature and low vapor pressure make ionic liquids nonflammable, 
lower vapor pressure, and more thermally stable. Aside from alkali acids and 
enzymes, ionic liquids [61], have also been extensively utilized for pretreatment, 
particularly 1-butyl-3-methylimidazolium chloride, to dissolve cellulosic materials, 
which was followed by high-pressure homogenization for isolation of nanocellulose 
fibers. A variety of factors influence the solubilization of cellulose, including 
microwave power, reaction time, temperature, and the ratio of cellulose to ionic 
liquid [62].

Fig. 2  a Transmission electron micrographs of cellulose nanofibrils [53], b cellulose nanocrystals [54], 
and c, d fleeces of bacterial nanocellulose produced by two different Gluconacetobacter strains [55]
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Enzymes pretreatments

Pretreatment with enzymes is a biological process that degrades the non-cellulosic 
materials (lignin and hemicellulose) in biomass cellulose fibers. Pretreatment 
involves cellobiohydrolase, endoglucanase, and cellulase enzymes. Various 
particles in the cellulose fibers are hydrolyzed selectively or restrictively by 
enzymes in this pretreatment process [63]. Despite its complexity, enzyme action 
involves catalyzing H-bonding between cellulose fibers [64]. Since multiple organic 
compounds are found in cellulosic fibers [22], there is a set of selective enzymes 
that attack crystalline cellulose, i.e. the A- and B-type cellulases. Also, the C-type 
and D-type cellulases are targeted at disordered cellulose structures [65]. Enzymatic 
pretreatment generally requires a longer reaction time than acid hydrolysis under 
mild conditions [63]. Therefore enzymatic pretreatment has been used in several 
reports for CNF production [66, 67]. A mono-component enzyme endoglucanase 
was used in selective and mild hydrolysis to obtain nanocellulose materials from 
softwood pulp, which provided a higher aspect ratio than acid hydrolysis.

TEMPO oxidative method

In some recent research studies, CNC was prepared from banana pseudostems by 
oxidizing them with 2, 2, 6, 6-Tetramethylpiperidine-1-oxyl radicals (TEMPO) [68]. 
It was found that TEMPO-oxidized CNC had less and uniform width, as well as a 
high mass recovery ratio, suggesting that these materials could be used as fillers 
in polymer matrix. An oxidation reaction with TEMPO involves adding sodium 
bromide and sodium hypochlorite to water at a higher pH to dissolve the catalytic 
groups of TEMPO and sodium bromide, and by adding sodium hypochlorite, the 
cellulose –OH is oxidized to carboxylates [69]. In another approach, the TEMPO 
method can also be used with neutral or weak acids for the oxidation of sodium 
hypochlorite and sodium chlorite [70]. In MCC and softwood bleached kraft pulp, 
CNCs were made by oxidizing the pulp during TEMPO-mediated cycling to obtain 
uniform diameters (3–4  nm) with good gas barrier properties.[71]. Similarly, the 
oxidation process followed by the sonication was used to develop CNF in other 
study and their results show that yield increases as sonication time increases [72]. As 
cellulose is oxidized with periodate-chlorite, the secondary alcohols of the molecule 
first undergo oxidation by sodium periodate to aldehyde and then oxidation by 
sodium chlorite to COOH. In order to do this, the nanofibrils become more ductile 
[73], and the films incorporated with CNF can behave in a more mechanical way 
[74].

Water hydrolysis method

It’s a great method to use water as the green solvent because it makes less and 
cleaner waste, corrosion-resistant, and cost effective approach. Subcritical water 
hydrolysis has been used in limited studies to isolate CNCs [75]. Similarly, the 
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researchers studied that optimizing experimental parameters resulted in a higher 
yield of CNCs with improved characteristics. After partial hydrolysis of cellulose, 
21.9% CNC was obtained, in a rod-like structure and crystallized form, with a 
similar aspect ratio to conventional CNC, which shows excellent thermal stability. 
In that study the experiment was conducted to examine the thermal and mechanical 
properties of packaging film using CNF extracted from canola straw by subcritical 
water technology [76]. In addition to improving moisture resistance, the film 
reinforced with CNF also showed improved tensile strength (TS) and reduced water 
vapor permeability.

The hydrolysis of cellulosic amorphous and semicrystalline areas has also been 
reported to be facilitated by subcritical water. As it only uses water to hydrolyze, 
this procedure has tremendous potential, and despite its high energy requirements 
because of the high pressure reactor, it can be less expensive since many washing 
processes are not necessary [77]. While, in order to fully understand the process 
of hydrolysis with subcritical water, more research is needed on various reaction 
conditions.

Subcritical and supercritical fluids (for polar solvents) have a higher diffusion 
coefficient and a lower dielectric constant. In both cases, water can more easily 
break glycosidic bonds by disintegrating cellulose amorphous domains [78]. In 
addition, hydrothermal processes of hemicellulose removal demonstrate water’s 
ability to hydrolyze polysaccharides [79]. In order to achieve an extensive hydrolysis 
rate, both  H3O+ species and water molecules must be present [80]. While, a lower 
Kw value in subcritical and supercritical water results in a higher concentration of 
ionized species [81]. Therefore, they are effective at hydrolysis reactions as a result. 
It has been observed that water under high pressures and temperatures hydrolyzes 
lignocellulosic, gasifies biomass, and liquefies cellulose/hemicellulose by several 
means [77, 82–85]. The rate of hydrolysis must slow down when the density, ion 
product, and dielectric constant of water are all extremely lower. Hydrolysis occurs 
in nature by generating a cellobiose-water intermediate (a transition state) with 
higher polarity compared to the reactant. One possible mechanism that can be 
involved known as; hydrolysis occurs when water molecules attack the nucleophilic 
bond linkage in cellobiose through the nucleophilic attack of water molecules on 
the glycosidic bonds in cellobiose and other can be hydrolysis occurs when a proton 
 (H+) ion is dissociated from the water molecule and attacks the (1,4)-glycosidic 
bonds [86].

Acid hydrolysis method

Reinby and coworkers isolated the CNC first time in 1949 by using of  H2SO4 [87]. 
While, a variety of acids were later used, such as phosphoric, maleic, hydrochloric, 
and bromic acids [88, 89]. Hydrochloric acid and sulfuric acid have been widely 
used for decades to isolate the CNC using chemical treatments and methods [45, 80, 
90]. This method involves de-ionizing water, followed by the addition of sulfuric 
acid to extracted cellulose. A neutral pH suspension is obtained after filtering, 
centrifuging, and washing with clean water after a specific reaction time [91]. The 
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optimal conditions of acid hydrolysis have been found by determining reaction time, 
temperature, and acid concentration in several studies. It has been found that the 
optimal concentration of hydrochloric acid is 64% (w/v) at a liquor ratio of 1: 8.75 
at a specified reaction time and temperature (45 °C, 5 min ultrasonication) [45]. In 
some studies, it was found that sulfate esters are produced by using sulfuric acid to 
avoid CNC aggregation in the solution and promote CNC dispersion in water. In 
addition, due to fewer sulfate groups on their surfaces, sphere-shaped nanoparticles 
have been examined when sulfuric and hydrochloric acids were combined during 
hydrolysis of CNC [92]. Structure and dimensional properties of the obtained fibers 
are greatly influenced by the duration, temperature, and acid concentration of the 
hydrolysis reaction. Researchers have examined a variety of cellulosic materials for 
the reaction condition and optimal conditions included: sulfuric acid concentration 
of 65% (wt), reaction temperature at 20–70 °C, and a hydrolysis duration that varies 
from 30 min to different range of time limits [93]. Similarly, in other study it has 
been reported that sulfuric acid hydrolysis resulted in cellulose nanocrystals with 
diameters of 5  nm and aspect ratios up to 60, can processed from coconut husk 
fibers [94].

Ammonium persulfate ((NH4)2S2O8) method

In recent years, ammonium persulfate (APS) method has been widely consider to 
extract the nanocellulose instead of TEMPO-oxidation and acid hydrolysis methods 
[95]. In order to adopting APS method, it has non-toxic behavior with higher water 
solubility and considered cost-effective. Moreover, its provides the carboxyl group at 
the C6 position, therefore, enabling CNC to be generated from cellulose fibers [96]. 
In addition to removing hemicellulose, pectin, and lignin from biomass materials, 
the CNC extraction process by the APS method is less harmful for the environment. 
The APS method relies on dissolving the amorphous parts of cellulosic materials 
to generate free radicals, hydrogen peroxide, and hydrogen sulfide by oxidizing 
cellulose fibers [97]. Cellulosic materials have also been dissolvable with ionic 
liquids, metal solutions, hydrates of molten inorganic salts, alkali/urea solutions, 
NaOH aqueous solutions, and NaOH/thiourea solutions.[98–102]. Moreover, the 
cellulose polymer solution obtained by reducing intermolecular hydrogen bonds 
between the cellulose particles which is the main mechanism of cellulosic material 
dissolution during these processes. The hydrogen bonding interactions between 
OH-ions and amino groups supplied by NaOH and urea in NaOH/urea systems are 
direct, but the hydrogen bonding interactions between urea and cellulosic materials 
are indirect [103]. It might be that when cellulose particles thaw in a NaOH/urea 
solution, the NaOH hydrates form new hydrogen bonds in the cellulose molecules 
(which are relatively stable), and the urea "hydrates" bind the hydrogen bonds to 
build an inclusion complex that acts as a sheath-like structures [104].
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Other isolation methods

Once natural biomass materials are chemically purified, the next process is to 
convert them into nanoscale particles (CNC or CNF) using a variety of methods, 
particularly acid hydrolysis [17], and mechanical treatment, in combination to 
produce nanoparticles with desired characteristics [1, 15, 105]. Amorphous material 
is removed or decomposed by mechanical methods and chemical treatments 
[106]. Major preprocessing steps involve removing the matrix material partially 
and chemically treating the interfibrillar materials to break their hydrogen bonds. 
Pretreating cellulosic materials in an appropriate manner leads to the availability of 
hydroxyl groups, a boost in crystallinity and fiber surface area, and the breakdown 
of hydrogen bonds between fibers, increasing their reactivity [105]. By imparting 
a charge to the surface of the fibrils, the interfering forces among the fibrils can 
also be strengthened through oxidation, or by adsorbing polyelectrolytes (such as 
carboxymethyl cellulose treatment), or by adsorption of charged polyelectrolytes 
(such as 2,2,6,6-tetramethyl-piperidinyl-1-oxyl radical selective oxidation) [45, 90]. 
Therefore high-pressure homogenizers [107], cryo crushing [108], microfluidization 
[109, 110], and high-intensity ultrasonic treatments [111, 112] are some mechanical 
approaches to converting cellulose fibers into nanofibers.

Types of nanocellulose

Cellulose nanocrystals (CNC)

Cellulose nanocrystals are also named as nano-whiskers [19, 25], demonstrate 
extended crystalline rod-like forms, and reported to exhibit extensive rigid struc-
ture as compared to cellulose nanofibers because of the higher amount of amor-
phous domains are reduced [8]. Generally, cellulose nanocrystals show a degree of 
crystallinity within the range of 54 to 88%. Usually, enzymatic treatment has been 
reported to isolate CNC [113], however, in acid hydrolysis, sulfuric acid is the most 
commonly used acid for CNC extraction [114]. The most commonly used method 
involved in cellulose nanocrystals starts with alkaline and bleaching pre-treatments, 
later on, acid hydrolysis, washing with deionized water, solution centrifuging, repet-
itive dialysis, and ultra-sonication to produce a suspension for freeze drying or spray 
drying according to the requirements [90]. Cellulose origin and reaction conditions 
have been reported the obvious effects on cellulose nanocrystal properties including 
dimensions, crystallinity index, and morphological characteristics [90]. There are 
many techniques associated with CNC production, including enzymatic/acid hydrol-
ysis and mechanical treatment or oxidation, which is frequently used to eliminate 
amorphous parts of cellulosic fiber and obtain the crystalline region cellulose with a 
particular molecular shape. Therefore, multiple phases are included in the process, 
such as drying/grinding/dewaxing, purification, delignification (mechanical, chemi-
cal, biological, or combined), bleaching, and filtration/washing/drying [115]. Du 
et al. extracted cellulose, beginning with milled wood taken from the source of fresh 
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Douglas-fir wood chips [116, 117]. The wood chips were pounded into wood flour 
with a particle diameter of 235 nm and then exposed to a second milling method to 
shape ball-milled wood with a gear-drive planetary ball mill. The ball-milled wood 
was then reacted with water and the enzyme Cellic HTec2 to achieve a solid sam-
ple (hydrolysis residue) [118]. In a neutral sulfite cooking process, the hydrolysis 
residue was combined with cooking liquor to produce neutral sulfite cooking resi-
dues and lignosulphonate [119]. In the next step, holocellulose is formed by treat-
ment with NaCl and  CH3COOH at 70  °C by delignification. After the formation 
of holocellulose, it was bleached and then reacted with NaOH at 90  °C, followed 
by filtration, washing, and drying steps. To increase the cellulose purity, repeat the 
delignification and bleaching procedure as reports mentioned in the literature [120, 
121]. After the isolation of cellulose, many methods can be applied to prepare cel-
lulose nanocrystals. The most common way is enzymatic hydrolysis, in which cel-
luloses as endoglucanases and exoglycanases are used [122]. Harsh hydrolysis with 
concentrated acids such as sulphuric, nitric, formic, and oxalic acid is also used to 
prepare cellulose nanocrystals. Other commonly used methods for preparing cel-
lulose nanocrystals are subcritical water hydrolysis, oxidation method, mechanical 
treatment, and combined process (TEMPO oxidation) [123]. Figure 3 shows a scan-
ning electron microscopic view of cellulose nanocrystals and their thermal stability 
values and lyotropic crystalline behavior.

Cellulose nanocrystals are generally reported as having a width of 3–50 nm and 
a length is subjected between 50 to 500 nm [127]. Cotton cellulose was evaluated in 
the form of sulfonated cellulose nanocrystals by Ureña-Benavides et al. [125]. Simi-
larly, in a study Marchessault and co-authors investigated that cellulose nanocrystal 
aqueous solutions keep liquid crystal properties [128] owing to excellent photon-
ics properties [129]. The results of optical microscope revealed that the concentra-
tion beyond 4.5 wt% gives chiral nematic structures to nanomaterials [90, 92]. Cross 
linking between cellulose nanocrystals and natural or synthetic polymers produces 
functional nanocomposites. Various reports have been devoted to the techniques and 
methods used for cellulose nanocrystals composites preparation such as acid hydrol-
ysis, enzymatic hydrolysis and more [130]. Figure 4 shows the sources and extrac-
tion process of cellulose nanocrystals.

Cellulose nanofibrils (CNF)

It’s reported in the open literature that cellulose chains are normally entangled 
with a higher surface area and CNF is a type of stretched cellulose nanofibrils 
bundle, also named as cellulose nanofibers and nanofibrillar cellulose [133–135]. 
Unlike cellulose nanocrystals, CNF substantially contains long-chain amor-
phous regions [136]. Various techniques such as chemical, mechanical, and 
enzymatic methods have been used to extract cellulose nanofibrils from several 
types of sources, in which the mechanical treatment method is most extensively 
used. Generally, CNF extraction by mechanical treatments involved homogeni-
zation, cryo crushing, and grinding processes [137–139]. Additionally, chemical 
methods involved alkaline treatment, and biological methodology is applied by 
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using enzymatic treatments [65, 140]. Similar to CNC, the properties of cellulose 
nanofibrils can be different according to the raw material origin as well as the 
CNF isolation techniques applied. Thus the properties of cellulose nanofibrils can 
fluctuate extensively like dimensions, morphological properties, size and shape, 
as well as fibrillation degree. With the research advancement, a study revealed 
a quality index to standardize the variety of cellulose nanofibrils [141]. Figure 5 
shows the sources and extraction process of cellulose nanofibrils. Generally, cel-
lulose nanofibrils production involves various operations including refining, 
biological hydrolysis, refining again, and then at the end homogenization [137]. 
Similarly, TEMPO-mediated oxidation, followed by blending-process [142] or 
homogenization [143], as well as carboxymethylation, followed by homogeni-
zation [144]. So the cellulose nanofibrils extraction technique is an outstanding 
combination of various processes through which various types of CNF can be 
attained. Table  3 shows a CNF-based drug delivery system [145], with various 
modifications agents and drug models. Figure 6 shows mechanical processes for 
CNF production.

Fig. 3  a Higher thermal stabilities [124], b lyotropic liquid crystalline characteristics [125], and c the 
SEM graph of cellulose nanocrystals [126]
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Bacterial nanocellulose (BNC)

The most basic component of the plant cell wall is cellulose which has been consid-
ered the most abundant natural polymer on earth [51, 162]. Cellulose is also formed 
by tunicate, fungi as well as green algae [163–166]. Similarly, reports revealed that 
some particular bacteria have been used for cellulose synthesizing called bacterial 
cellulose [166]. For the first time in the year 1886, bacterial cellulose production 
through Acetobacter xylinum was defined in a report [167]. Later on, for BNC pro-
duction various types of bacteria were also used like Agrobacterium, Salmonella, 
and Rhizobium [168–170]. Acetobacter xylinum is reported as an excellent bacte-
rium for the higher yield of bacterial nanocellulose [171] and it’s also named as 
Komagataeibacter xylinus and Gluconacetobacter xylinum [166]. Generally, BNC 
fibrils are reported in length as almost 100 nm and width of about 100 nm [163, 
172, 173]. As a result, fibrils create an outstanding 3D structure by cross-linking 
with each other and stabilize by intra- and intermolecular hydrogen bonding [174]. 
Depending on the fermentation process, bacterial nanocellulose are produced in 
various shapes like in the form of thin films hydrogel using static culture condi-
tions, and by using agitation culture conditions spheres like hydrogels are produced 
[175, 176]. BNC is reported to exhibit similar chemical structural properties as 
plant cellulose [177]. Nevertheless, BNC and plant cellulose are different in cellu-
lose purity as well as morphological and mechanical properties [178, 179]. Bacterial 

Fig. 4  Demonstration of cellulose nanocrystals preparation and SEM images of cellulose nanocrystals at 
various magnifications [120, 131, 132]
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nanocellulose is reported to possess excellent characteristics for example tremen-
dous purity, high surface area and aspect ratio, outstanding 3D ultrafine chemical 
structure [180], higher water holding capacities, and high porosity values as com-
pared to plant cellulose [181–184]. Figure 7 shows SEM image of bacterial cellulose 
and stress–strain curve of cellulose at the various content percentage of bacterial 
cellulose.

Bacterial nanocelluloses having an elastic modulus of 78 GPa are examined to 
have excellent water holding properties with a molecular weight of about 8000 Da 
[185]. Bacterial nanocellulose is promising nanomaterials most widely used in func-
tional materials such as scaffolds [186, 187] optical, and excellent mechanical prop-
erties because of higher surface area values and lower density of BNC [188, 189]. 
Figure  8 shows commonly used bacterial cellulose sources and production tech-
niques and Table 4 shows the properties of various forms of nanocellulose. Bacterial 
nanocellulose has been used outstandingly in biomedical applications [190] such 
as tissue engineering, wound dressing [191], and artificial skins [192, 193] due to 
higher values of physical strength as well as interpenetrating and hydrophilic surface 
structure of bacterial nanocellulose [190]. Similarly, BNC is used in blood arteries 
as well as in regenerative medicines [194–196].

Fig. 5  Demonstration of cellulose nanofibrils preparation; scanning electron microscope images show 
the various forms of cellulose nanofibers [66, 146]
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Characteristics of cellulose biopolymer nanocomposites

Generally, the production and manufacturing design of food packaging materials 
need various steps and careful consideration to fulfill the desired properties 

Fig. 6  Mechanical processes for CNF production and photographs are adopted through www. niro- soavi. 
com, www. micro fluid icsco rp. com, and www. masuko. com

Fig. 7  a Scanning electron microscopic image of bacterial cellulose [197], b tensile stress–strain curves 
of bacterial cellulose (BC) and various oriented BCs (OBCs) [198]

http://www.niro-soavi.com
http://www.niro-soavi.com
http://www.microfluidicscorp.com
http://www.masuko.com
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[205]. Multiple characteristics are considered to evaluate the bio-nanocomposite 
material for specific applications like thermal, mechanical, and rheological 
properties [206]. In a study, the researchers utilized cellulose nanofibers that 
were extracted from banana fibers to serve as a reinforcement material for natural 
rubber (NR) [207]. In this report, by varying the amount of  CNF content, the 
researchers aimed to investigate the impact on the mechanical properties of the 
resulting composite material. The CNF was extracted from banana fibers through 
a series of mechanical and chemical treatments, and then introduced into the 
natural rubber matrix through a mixing process. The composite samples were 
then subjected to a curing process before testing the mechanical properties. The 
researchers found that as the CNF content in the composite material increased, 
there was a corresponding improvement in both the Young’s modulus and 
strength of the material. This is a result of the CNF reinforcing the NR matrix, 
leading to enhanced load transfer and improved mechanical performance.

In a study conducted by Phomrak and Phisalaphong in 2017 [208], the 
authors investigated the use of crosslinking agents, specifically Zinc-based 
compounds and Sulphur, to enhance the interaction between cellulose and rub-
ber. The addition of these agents was found to promote the formation of a 3D 
network between natural rubber (NR),  cellulose nanofibers  (CNF), and  Zinc 
metal, leading to improved  mechanical properties  of the composite material. 

Fig. 8  Demonstration of bacterial cellulose preparation; SEM images of BC [199], BNC pellicle [200], 
and natural bacterial cellulose [201]
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Furthermore, the authors reported the preparation of a bacterial cellulose-rubber 
composite (NRBC) using a latex aqueous microdispersion process. This method 
involves dispersing NR in an aqueous medium and then adding bacterial cellu-
lose to form a composite material. The addition of CNF and crosslinking agents 
further enhanced the mechanical properties of the NRBC composite. Overall, 
these findings demonstrate the potential of using crosslinking agents and CNF to 
improve the interaction between cellulose and rubber, leading to the formation 
of a stronger 3D network and improved mechanical properties of the composite 
material.

A typical immiscible system, polylactic acid/Natural rubber blend was pre-
pared by solvent casting and extrusion followed by compression moulding. Cel-
lulose nanocrystals were investigated as compatiblizers for the system. Three 
different types of fillers were used in this study, one unmodified (CNC), long 
alkyl chain grafted CNC (C18-g-CNC) and PLA grafted CNC (PLA-g-CNC). 
The preferential localization of fillers affects the compatibility which was ana-
lyzed in the study. Unmodified CNC moved to the PLA phase, thus there was 
no obvious effect in mechanical properties. Long alkyl chain grafted CNC had 
affinity for the NR phase and resulted in decrease in Young’s modulus. Although 
the PLA grafted CNC were localized in the PLA phase, the tensile strength 
could be retained with a slight increase in Young’s modulus. Thus PLA grafted 
CNC having small PLA chains acted as effective nucleating agent [209] reported 
the reinforcing effect of cellulose nanofibrils and cellulose nanowhiskers on poly 
ethylene oxide (PEO) matrix.

For the reason, Abdollahi et  al. (2013) [210] measure the mechanical 
properties of neat alginate film as well as reinforcement with nanocellulose 
material. They verified that the tensile strength (TS) value of the composite 
films increased from 18.0 to 22.4  MPa with increasing nanoparticles content 
from 0 to 5 wt%, while the elongation at break (E%) value decreased from 
11.5 to 8.2%. The improvement observed in the TS of the nanocomposite by 
increasing the filler content up to 5% was attributed to the reinforcement 
effect of homogeneously dispersed high-strength cellulose nanoparticles in the 
biopolymer matrix. Alves et al. (2015) [211] studied the mechanical properties of 
starch/gelatine/CNC films, with the increase in gelatine and CNC concentration 
driving an increase in puncture resistance. This behavior is desirable because a 
larger resistance to puncture indicates better film resistance, and the resistant 
film is better suited for applications in the packaging industry.

Applications of nanocellulose

Nanocellulose can be applied in various fields like food packaging, optical mate-
rials, aerospace and construction, pharmaceutical, and food additives [212, 213]. 
Cellulosic materials are considered an essential component used in cosmetics, food, 
and beverage. Their excellent properties such as hygroscopicity, chemically inactive-
ness, absence of high sorption, and nontoxicity enable the nanocellulose to be used 
in various sectors [214–217]. Nanocellulose possesses excellent unique properties 
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such as creditable mechanical properties, proper strength, cheaper, and lightweight 
which makes it interesting for wide use. Aerogels prepared by freeze dried CNF are 
used in various areas like diapers, tampons, hygienic naperies to wound-dressing. 
Similarly, nanocellulose has been utilized in biotechnology and biomedical applica-
tions as an elastic cryo-structured gel [217]. Nevertheless, nanocellulose has several 
uses like an excellent high scattering substrate for corrosion inhibition, membrane 
for loudspeakers, computer parts, conductive material reinforcement, and tobacco 
filter additives. Cellulosic materials are outstandingly capable of holding water, so 
they are well-matched with the human body.

Nanocellulose has been used in biocompatible coating, design for drug release, 
scaffold as well as wound dressings. Nanocellulose has been extensively used 
in biomedical applications because of the very less cytotoxic and excellent 
biocompatible properties of nanocellulose. In biomedical functional applications, 
hydrogels and aerogels are reported as tremendous forms of materials dues to 
higher porosity values, however owning less mechanical stability values. So the 
aerogels and hydrogels with lower mechanical stability values can have an extensive 
drawback in specific tissues while cell culturing or in blood vessels. Nanocellulose 
with cross-linking agents forms an excellent stable structure of aerogels and 
hydrogels without affecting the porosity values, letting the passage of fundamental 
nutrients. This review paper will summarize the recent work related to the usage 
of nanocellulose in food packaging, and biomedical applications such as wound 
dressing, drug delivery systems, tissue engineering, scaffolds, medical implants, etc.

Nanocellulose in food preservation and packaging

Multifunctional nanocellulose scaffolds have been used in food packaging due to 
their outstanding characteristics. In nanocomposites, CNF with dimensions between 
1 and 100 nm has been used as reinforcement. It is biodegradable, environmentally 
safe, renewable, cheaper, lighter, stronger, and stiffer than other materials. Trans-
parent CNF-based films have excellent barrier properties and are used for coatings, 
food packaging, and different other applications. Several industries, including food 
and preservatives, use thick films to act as oxygen barriers. Polymers such as soy 
protein, rubber latex, thermosetting resins and starch-based matrixes can benefit 
from cellulose nanocrystals (CNC) in terms of mechanical properties. A functional 
food ingredient can be created from these composites as dietary fiber or as a coating 
for food packaging [218]. Aside from its use as a natural emulsifying and stabilizing 
ingredient in foods like salad dressing, milk products, ice cream, and bread, while 
nanocellulose scaffolds are also used as a photo heat resistive material to preserve 
the foods in terms of packaging [219]. Food industries use BNC for various applica-
tions, including texture modifiers, thickeners, gravies, sauces, icings, frosting, addi-
tives, deserts, and frozen dairy kinds of stuff as shown Fig. 9. It has been proven 
that BNC is an excellent hydrocolloid additive that can replace other materials in 
the food industry [220]. Numerous companies have marketed products with BNC 
and carboxymethyl combined with sucrose [221]. As well as replacing low-calorie 
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additives and texture modifiers, stabilizers and thickeners, BNC is also used to 
replace low-calorie additives [222]. Food industries could potentially benefit from 
BNC’s dietetic and technical aspects [223].

A recent study reported highly stable Pickering emulsions using microfluidization 
from a variety of oils [224]. The product was more stable to coalescence, but it 
does show flocculation and creaming under some circumstances. In addition, under 
the different conditions, CNC-added droplets exhibited greater stability against 
flocculation. This may be attributed to a decrease in electrostatic repulsion among 
the particles, which affects or limits their use in a particular food variety. Of course, 
they also exhibit flocculation and creaming when exposed to highly acidic conditions 
and strong ionic strength. The indigestible dietary fiber might affect the performance 
of lipid droplets in the human gut by forming a layer around them. In addition, it 
could mitigate the effects of lipid spikes in the bloodstream or increase satiety by 
delaying the digestion of lipids. The indigestible coating, however, can withstand the 
adverse gastrointestinal conditions caused by the absence of cellulase enzyme, as 
well as protect the bioactive compounds encapsulated like vitamins, omega-3 fatty 
acids, curcumin, probiotics, and nutraceuticals, because there is no cellulase enzyme 
in the human system. While, a deeper understanding of the mechanism of the NC 
effect requires a detailed investigation of the human model/system.

Furthermore, functional foods contain new components or higher quantities of 
existing components, which can promote health and prevent disease [225]. Adding 
new compounds, however, may adversely affect the properties of food [226]. 
According to recent reports, NC can be used to reduce fat in formulations. In 
addition to this study patent results demonstrate that, NC might be used to prepare 

Fig. 9  The protective applications of nanocellulose for food stuffs [21]
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a salad dressing that is low in calories [227]. NC was combined with vinegar and 
dried Italian salad in the formulation. This product resembles authentic Italian 
dressing in both color and texture. As well as being a dietary fiber, NC has other 
important qualities. In order to support people in meeting their dietary requirements, 
food scientists are developing functional foods. There are many food products, such 
as chocolate and hamburger, that can be reduced in calories if they contain NC with 
a high water content [226, 228]. It is possible to reduce calories in different stuffing 
by 15–20 weight percent by substituting non-fat additives such as NC for fat [229]. 
Furthermore, a healthy biscuit cream containing NC as an additive was developed 
recently [230]. After adding CNC, the cream formulation with sunflower oil and 
shortening demonstrated the stability of oil related to sensory attributes. Therefore, 
in order to maintain cream texture properties, it is essential to standardize CNC 
concentrations.

Similarly, for food packaging, coatings can be used to increase the properties of 
packaging materials. The coating process is usually based on thin films, which can 
be applied externally or between two materials and lead to composite structures with 
excellent characteristics. In recent studies, maltodextrin and NC were combined to 
extend saffron shelf life. Based on the study results, CNC coating prevented loss 
of bioactive compounds like crocin in saffron much more efficiently than control 
samples [231]. In polymer-based packaging materials, NC addition leads to enhance 
the mechanical and water vapor barrier properties because natural polymers have 
very little mechanical and water vapor barrier properties. Therefore, alginate-based 
films were enhanced by the addition of NC. CNCs in packaging films improved their 
UV barrier properties and oxygen permeability, according to the latest study [232]. 
On the other hand, it has also been reported that nanoencapsulating nisin in alginate-
CNC beads successfully suppresses Listeria monocytogenes growth in ham ready for 
consumption [233]. In comparison with free nisin, the beads substantially decreased 
the number of L-monocytogenes during storage. Further, ham’s pH and color did not 
change during storage, nor did its physicochemical properties. In addition, a newly 
developed bio-nanocomposite was reported with coating method, which primarily 
based on egg-derived polymers and cellulose nanoparticles and can be used for 
food packaging [234]. Thus coating is intended to delay food spoilage by delaying 
dehydration, ripening, and microbial invasion on fresh fruits (such as avocados, 
bananas, papayas, and strawberries). Due to its edible characteristics, washability, 
and low-cost nature, it is an effective alternative to commercially available fruit 
coatings and a solution to the expanding problem of food waste worldwide.

The use of CNC as a food additive is extensive. A recent study evaluated the 
effect of CNC on retrogradation characteristics, gelatinization, and pasting of usual 
starch, waxy starch, and sweet potato starch. When gelatinized starch is cooled and 
stored, retrogradation occurs. Based on viscosity studies, CNC demonstrated that 
it decreased the setback value of sweet potato starch and raised the peak viscosity 
of normal maize starch. CNC repressed amylose retrogradation short-term as well 
as amylopectin retrogradation long-term. Molecular chains of starch can be cross-
linked using CNC [235]. CNF derived from discarded brown algae has recently been 
tested for use as a milk thickener in terms of food additive [236]. As revealed by its 
rheology behavior, CNF suspensions in water exhibit high viscosity and shear thin 



9544 Polymer Bulletin (2024) 81:9519–9568

1 3

ability. As a result of their ability to absorb casein micelles via hydrogen bonds, 
CNFs showed better thickening properties in milk than other nanofibers. CNF safety 
and biocompatibility were confirmed by MTT assay. Food producers may use CNF 
derived from abundant marine bioresources. Therefore, a high aspect ratio bioactive 
CNF can be produced for food thickening through this study. So consequently, 
we can say that nanocellulose and its derivatives have great potential in food 
preservation and packaging.

Nanocellulose in drug delivery system (DDS)

In drug delivery system mostly those materials are preferred to be used which are 
ideal in sustaining antimicrobial activity, nontoxicity, surface of the skin moisture, 
speed up the healing process and can be taken out without disrupting to the healed 
skin. Nanocellulose-based hydrogels accomplish most of the necessities so in recent 
times they are used in wound dressing applications [237–240]. An excellent effect of 
bacterial nanocellulose (BNC) membranes was examined in a report which shows a 
tremendous recovery of burn wound into nearly 70% closure wound only in 3 weeks 
as shown in Fig. 10. The bacterial cellulose hydrogel (BCH) was used in a study to 
treat third-degree burn wounds, results exhibited that BCH assists in growing the 
fibroblast cells, non-toxic, and cell viability was increased. The burn wound clo-
sure activities of BCH were carried out by in-vivo Wistar rats, and the results of 
that study propose that bacterial cellulose hydrogel can efficiently be used as natu-
rally burn wound dressing materials. Tables 5, 6 and 7 shows nanocellulose based 
applications in oral drug system [25], nanocellulose-based topical drug delivery sys-
tem [241] used in biomedical applications, and nanocellulose-based applications in 
transdermal drug delivery system [242], respectively.

Cellulose and nanocellulose have been reported to be excellent drug carriers 
acting as drug excipients in various DDS [263, 264]. The vital benefit of Nano-
cellulose DDS is sustained drug discharge. Nanocellulose can convert the drug’s 
release through multiple processes, including water retention, film formation, and 
rheology control [265]. Cellulose nanofibers and cellulose nanocrystals have been 
significantly used as an excellent safe solution for commonly controlled drugs; 
they are used in the preparation of several forms of sustainable and controlled 
DDS such as films, nanoparticles scaffolds, nanocomposites, and micro-particles 
gels [266]. Different CNF synthesize aerogel serves as a store for oral drug deliv-
ery. The CNF aerogels are integrated with beclomethasone dipropionate-coated 
nanoparticles with amphiphilic hydrophobin proteins. The analysis found that the 
release of the drug was dependent on the composition and associations between 
the nanoparticles and the cellulose matrix, so these nanocomposite materials can 
give new possibilities to monitor the distribution of drugs [267]. For example, 
cellulose nanofibrils composites loaded with calcium peroxide  (CaO2) were pro-
ficiently proved as owing high porosity and efficiency in producing  H2O2, later 
on, transformed into  O2 with the help of catalase enzyme. The results exhibited 
that the cell proliferation and wound healing activity of the CNF composites were 
improved; even the drug release was maintained for 5 days showing the excellent 
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bioactive ability of CNF composites [268]. Similarly, in another paper three 
model drugs, namely itraconazole, indomethacin, and beclomethasone, were also 
evaluated using CNF to prepare film matrices with excellent mechanical proper-
ties using a filtration process appropriate for heat-sensitive drugs. High drug load-
ing (> 90%) and sustained drug release for more than 3 months were seen in the 
prepared films, which were accredited to shape a compact fiber network around 
drug particles as well as to connect the drug to CNF in the molecular form [269]. 
In a study, porous aerogel by freeze-drying method has been used for oral drug 
delivery system; the freeze-dried aerogels were later integrated with beclometha-
sone dipropionate nanoparticles treated with amphiphilic hydrophobic proteins. 
The results showed that the drug release was dependent on the microstructure and 
crosslinking between nanoparticles and cellulose-matrix, so the structure of the 
nanocomposites may offer various potentials for controlled DDS [270]. Addition-
ally, in other article, five model drugs with various structural features (indometh-
acin, itraconazole, beclomethasone, nafarelin acetate, and lysozyme) have been 
integrated into CNF hydrogel for film preparation. The research proved that the 
substance’s size-based diffusion has a significant dependency between the drugs 

Fig. 10  Bacterial cellulose membrane for wound healing showed nearly 70% wound closure in 3 weeks 
[243]
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and CNF fibers through the films and the pH-dependent electrostatic attachment 
[271]. Nanocellulose hydrogels are applied in various biomedical applications 
like drug delivery system, cell therapy, and tissue engineering. Depending on the 
source origin, nanocellulose delivers the desired properties from the biomedical 
point of view. Cellulose nanofibers have been extracted from an abundant plant 
source and CNF hydrogel was prepared to achieve the desired functionalities in 
a recent study [272]. Results evaluated that CNF hydrogel exhibited no cytotox-
icity, created a 3D environment for cells, and prompted spheroid formation of 
HepaRG and  HepG2 cells. Similarly, cellulose nanofibers hydrogel from a novel 
plant was produced and used for human pluripotent stem cells. The pluripotency 
of human pluripotent stem cells cultured in CNF hydrogels was sustained even 
for 26 days [273].

CNC was also used to start preparing dynamic extended-release drug 
delivery systems, such as the modified surface properties of CNC bound to 
cetyltrimethylammonium bromide, which improved hydrophobic binding drugs 
etoposide, paclitaxel, and docetaxel, extending the release of these drugs for 
2 days [271]. Cellulose nanofibers in a study [274] have been extracted using the 
spray drying method and utilized as drug carriers using 6 model drugs such as 
verapamil hydrochloride, ibuprofen, metoprolol tartrate, atenolol, indomethacin, 
and nadolol. Investigations of this study reveal that the dimensions of the prepared 
nanoparticles were nearly 5 μm in size and the drug release was quick for the first 
10 to 14 days, and a continuous drug releasing behavior was noted for 2 months. 
Cellulose nanofibers can maintain the drug release because of the nano-fiber 
structural network which assures the certain drug release. In various studies for drug 
delivery systems, i.e., tablets and nanoparticles, CNF and CNC in the preparation 
of rapid drug delivery systems were incorporated. CNF has the potential to prepare 
fast delivery systems for drugs. Results revealed that the speediest drug release 
was shown by tablets prepared by direct compression using CNF, which could be 
attributed to CNF’s faster dissolving time than Avicel PH102 [275].

In a similar study, results acknowledged the cellulose nanocrystals efficiency in 
increasing the mechanical properties and adjusting the drug release in theophylline-
loaded alginate microspheres because of the excellent properties of nanocellulose 
to limit the movement of alginate restraints [276]. Additionally, nanocellulose 
and sodium alginate were prepared in the occurrence of calcium ions exhibited 
efficient improvement in ibuprofen release [277]. Meanwhile, it’s reported that 
microcrystalline cellulose’s adsorptive properties tend to result in incomplete 
drug release from the tablets. Akhlaghi et  al. revealed the execution of CNC in 
the preparation of fast-release nanoparticles, where the researchers grafted CNC 
with chitosan oligosaccharide into carboxylic groups through the oxidation of the 
primary alcohol groups on CNC, which reacted to chitosan oligosaccharide with 
the available amino groups. For the preparation of procaine hydrochloride-loaded 
nanoparticles, the grafted CNC/chitosan oligosaccharide was used to release the 
drug at pH 8 within 1 h [278].
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Nanocellulose in nano‑generator, piezo‑electric, biosensing and bioimaging

Biosensors are considered outstanding materials in recent technology due to their 
excellent properties like simple, cheap, and very appropriate for multiple areas of 
application as shown in Fig.  11. Due to the boom in technology, measurements 
are taken with different approaches to use the biosensors and electronic devices in 
medical applications as a diagnosing materials. From the last few years, scientists 
are trying to use environment friendly, sustainable, and biodegradable materials in 
biosensors and electronic devices to replace the plastic/glass-based substrates in 
bio-sensing equipment’s like actuators, electrochromic instruments, electrodes, and 
sensors. That’s why instead of plastic materials, recently nanopaper-based biosen-
sors and electronic devices are highly recommended to be used in sensor technology. 
The utilization of nanopapers in electronic devices and sensors is advantageous over 
common papers because of owing excellent characteristics like higher mechanical 
strength and outstanding stability values in various conditions.

Research has proposed multiple binary systems involving polymers (particularly 
polypyrrole (PPy) or polyaniline (PANI)) and nanocellulose. To initiate 
polymerization, BC was dissolved in a concoction of protonic acid (hydrochloric) 
and polar solvent, then added to an oxidant agent and conductive monomers. When 
acid hydrolysis was used to dope the PPy particles, formed a nanohybrid of PPy-CNs 
on the cellulosic layer. A desirable electrical conductivity and a reasonable degree of 
flexibility were demonstrated by the attained structure. An NC-PPy nanocomposite 
exhibiting a BC ratio of 1:10 and a core-sheath structure was described to exhibit a 
conductivity value as high as 77 (S  cm−1). CN-based electrodes’ charge capacity is 

Fig. 11  Schematic illustration of nanocellulose usage in biosensing and bioimaging [279]
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significantly influenced by the type of nanocellulose and PPy pore size distribution. 
While a coating composed of PPy and CN substrate has weaker electrostatic forces 
than a substrate composed of pure CN, which has a higher number of NH groups. 
For making CN-carbon composites, coating methods are generally more effective 
than polymer-based ones. However, the weak carbon bonds between the layers may 
prevent an increase in conductivity beyond a certain thickness [280]. So in support 
to these conductive CN composites used in to build nanogenerators and piezoelectric 
devices.

The working principle of nanogenerators is based on piezoelectric or triboelec-
tric effects, which convert external mechanical tension into electricity. There are 
also pyroelectric nanogenerators, which produce electricity by varying temperature. 
A piezoelectric effect occurs when the charge distribution of a material changes 
as a result of mechanical deformation. In many electro-active applications, such 
as microelectromechanical systems, actuators, robotics, and sensors, CNs exhibit 
piezoelectric properties due to their asymmetric crystal arrangement [281]. Taking 
advantage of this distinctive property of nanocellulose, the CNF-poly (dimethyl-
siloxane) (CNF-PDMS) aerogel was developed into a nanogenerator. An aerogel 
coated with PDMS was layered between two PDMS films followed by aluminum 
foils in that study. As a result of the piezoelectric signal in the layered structure, 
19 light-emitting diodes were turned on and the capacitor charged to 3.7 V [282]. 
Similarly, as shown in Fig. 12, using bacterial cellulose, a biotriboelectric nanogen-
erator was developed in which a transparent and gel-state BC was generated using a 
Cu current collector to create a self-powering system. Based on results, a light input 
force (16.8 N) generated with 8.1 C  m−2 and 4.8 mW  m−2 of accumulative charge 
and peak power, respectively [283].

Using CNF in a perfluorosulfonic acid-based copolymer, recent studies have 
described an IPMC composed of an ionic polymer-metal composite. Through an 

Fig. 12  Schematic illustration of; a preparation of bacterial nanocellulose, and b usage of BC-triboelec-
tric nanogenerators to harvest triboelectric energy [283]
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oxidation–reduction reaction, CNF could increase platinum (Pt) plating surface area. 
It was discovered that the hybridized structures exhibited better mechanical char-
acteristics, as well as electro responsive properties, with the potential to be used as 
artificial muscles and actuators in the future [284]. Further, the sensors were con-
structed by using electronic beam evaporating CN film between electrodes on a 
125 mm thick PET substrate as shown in Fig. 13.

In comparison to the piezoelectric effect of metal oxide as a reference material, 
Csoka et al. demonstrated that ultra-thin CNC films with a high shear piezoelectric 
constant of 2.1   V−1 have an acceptable piezoelectric effect [286]. It has been 
demonstrated that BC films can play a significant role as smart electro-active 
actuators by controlling crystallinity and chemical properties [287]. Similarly, the 
piezoelectric polymer polyvinylidene fluoride (PVDF) has been compared with 
a self-standing film of CNF [285]. As well as boosting piezoelectric response, 
microcrystalline chitosan can also reduce the brittleness of CNF films through its 
incorporation with CNF [288]. A nanocomposites composed of poly(vinylidene 
fluoride) and cellulose nanocrystals (PVDF-CNC) has recently been developed to 
improve piezoelectricity in PVDF devices [289]. In addition to ferroelectricity, CNF 
films have also been investigated as materials that can reverse their polarization 
when exposed to external electric fields. As shown in Fig. 13e–f a ferroelectric test 
on CNF films was conducted to determine the ferroelectric hysteresis of the films. 
At low electric fields (Fig. 13e), the film’s capacitance value 5–15 V μm−1 shows 
a linear trend. This indicates that CNF film does not show ferroelectric hysteresis 
at these low electric fields. On the other hand, (Fig.  13f), at higher voltages 

Fig. 13  Schematic illustration of; a CNF film that stands upright and bends, b, c double layer of PET and 
Cu sandwiched between a layer of CNF shown in the side view of a sensor assembly, d sensor assem-
bling, e, f CNF film under room temperature conditions for ferroelectric hysteresis based on voltage 
curves 40–50 V  m−1 and 5–15 V  m−1 electric fields [285]
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(40–50 V  m−1), a nonlinear polarization trend is observed, suggesting ferroelectric 
hysteresis may be present. The porous CNF demonstrated its ability to resist high 
electric fields during this characterization testing [285].

Similarly, nanocellulose has been used in optical sensors by fabricating the silver 
nano-particles with bacterial cellulose in a nanocomposite form using the citrate 
method. This study reveals that the silver nanoparticles and bacterial cellulose 
nanocomposite were exploited to detect the 2,2-dithiodipyridine and amino acid 
acting as a substrate for Raman scattering [290]. Silver nanoparticles and bacterial 
cellulose nanocomposites have also been used in Raman scattering for detecting 
the carbamazepine and atrazine [291]. Similarly, an eco-friendly, sustainable 
and biocompatible material cellulose nanofibers have been used in pH sensors, 
which are advantageous due to recyclable materials and demonstrate a very stable 
performance. These can be used for 1 month at various temperatures and for various 
pH with an excellent visual-ability to illustrate different colors for different pH 
1–14 [292]. Due to the excellent sensing properties of these bio-composites based 
sensors, can be used to detect pH of biological fluids (blood, urine, etc.), and this 
pH sensor based on biocomposite could potentially serve as an alternative tool for 
diagnosing alcoholics, monitoring health, or even tracking the progression of certain 
illnesses. Similarly, nano-paper of bacterial cellulose has been used in developing 
the nanocomposites to design the biosensors for exhibiting plasmonic and 
photoluminescent characteristics which can be used for various applications [293]. 
This paper confirmed the properties of the optical sensor in a cheap, transparent, 
tunable, reusable, lightweight, and perhaps for wearable applications. Moreover, to 
develop the optical sensors, it is also important to measure the transmission haze, 
particularly in printed electronics and photovoltaics. The optical property occurs 
when light passing through the material deviates by more than 2.5 degrees from its 
path. The combination of high transparency and superb light scattering can greatly 
enhance the performance of material. CNF nanopaper has been shown to have 
excellent light scattering coefficient and high transparency, making it suitable for 
such systems [294]. It is the nanoscale dimension and extensive internal bonds of 
CNCs that give them their superior optical properties, in comparison with dense 
plastic films [126].

Similarly, in another article, nanocellulose surface characteristics, its perfor-
mance, and design issues to develop biosensor with different approaches were dis-
cussed [292]. For this purpose, CNCs were extracted from cotton cellulose and used 
in detecting human neutrophil elastase (HNE) by covalently attaching HNE tripep-
tide substrate with glycine esterified cellulose nanocrystals. Authors described out-
standing results for colorimetric detection of HNE that involves very low amounts 
(few milligrams) of peptide-CNC to create a visually obvious response at HNE 
levels. Similarly, transparent and tunable BC nanopapers have been described for 
the in-situ generation of silver nanoparticles [295]. In this technique, the reduc-
tion of silver ions and BC nanopaper is done by using hydroxyl groups of cellulose 
nanofibers (performing as a reducing agent to generate bio-nanocomposite). The 
major advantages of silver nanoparticles and BC nanopapers nanocomposites were 
obvious because these nanocomposites preparation was done without any exter-
nal reducing or cross-linking agent. Similarly, this study also reveals the excellent 
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chemical detecting properties as well as determine the amount of cyanide ions and 
2-mercaptobenzothiazole in various water samples. On the other hand, a novel study 
has also been revealed in which supramolecular functionalized nanocellulose with 
β-cyclodextrin was characterized for the first time, having easy and simple conjuga-
tion through amination [296]. Hence, nanocellulose is a potential biopolymer with 
many applications in electronic and biomedical diagnostics, such as piezoelectric 
sensors, actuators, energy generators and biosensor. In addition, their surface-mod-
ification as a nanomaterials proved as an outstanding platform because of their easy 
design according to the suggested applications.

Future prospect and recommendations

Nanocellulose has emerged as a next-generation nanomaterial due to its customizable 
surface chemistry, high mechanical strength, and surface characteristics. The 
development of economical and environmentally friendly nanocellulose based 
materials will likely reduce the need for petrochemical based products. Nanocellulose 
can be used as a biopolymer to manufacture glucose molecules in large quantities 
without harming the body. As a result, biocompatibility, renewability, hydrophilicity, 
and biodegradability are the primary viewpoints for its biomedical uses. The current 
review article offers advanced data on recent developments in the sustainable 
manufacture of various nanocellulose kinds, including BNC, CNC, and CNF, from 
various sources and manufacturing pathways.

Appropriate resources, pretreatment, and physicochemical conditions are essential 
to induce desired characteristics in nanocellulose-based bio-inks. Researchers 
have developed various methodologies to optimize procedure parameters and 
functionalities to broaden their application using different biomaterials, including 
chondrocytes, mesenchymal stem cells, fibroblast alginate, hyaluronic acid, and 
gelatin. Nanocellulose can effectively be utilized to produce the 3D bioprinting 
of nanocellulose-based functional hydrogels. The advantages of shear thinning, 
and gelling characteristics are attained by CNF/alginate at low concentrations, as 
demonstrated by various works based on bio-ink synthesis through CNFs, alginates, 
and chondrocyte cells [297]. Further research should investigate the impact of 
shear-induced CNC alignment on cell viability during 3D bioprinting, as well as the 
effects of high concentration-induced osmolarity.

In general, nanocelluloses have demonstrated effectiveness and versatility as 
biomaterials suitable for various biomedical applications, either in their original 
form or after incorporating bioactive components. These applications encompass a 
wide range, including wound healing, drug delivery, biosensing, bioimaging, and 
tissue engineering. However, certain challenges need to be addressed before their 
use in biomedical applications. First of all, it is essential to thoroughly evaluate 
the biosafety of nanocellulose and its derived biomaterials, by practicing the 
established standard methods and clinically accepted protocols such as the ISO 
10993 standards [298]. Secondly, there is a need for advanced characterization 
techniques to understand the real-time interactions between biomolecules and the 
surface of nanocellulose, as well as the interactions between nanocellulose and cells 
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or tissues [299, 300]. Finally, the life cycle assessment and biodegradation profiles 
of nanocellulose-based biomaterials, particularly those designed for implantation 
and long-term use in the body, should be evaluated and precisely controlled [301, 
302]. The properties required for nanocellulose vary across different biomedical 
applications, from surface chemistry to micro/nano-structure.

Conclusion

In the recent time, eco-friendly and biodegradable materials are replacing 
petroleum-based products in the early stages of scientific research. So, this review 
article exhibits that nanocellulose is likely to replace conventional plastic materials 
at the industrial level in near future. Nano-cellulosic materials are sustainable, 
biocompatible, cheap, nontoxic, and biodegradable polymers. They have a lot of 
marvelous characteristics and thus can be incorporated with a variety of materials. 
The various types of nanocellulose, dimensions, and applications in different fields 
have been described in this literature. However, we primarily focus on research 
and development in the areas of cellulose nanocrystals, cellulose nanofibers, and 
bacterial nanocellulose. A wide range of application prospects were discussed, 
including food packaging, drug delivery, piezoelectric sensors, actuators, energy 
generators, biosensing, and bioimaging, as well as biomedical applications to 
maximize the scope of nanocellulose. There is a great deal of challenge in choosing 
the right nanocellulose for a particular application. Therefore, studies suggest that 
in contrast with all other types of nanocellulose, bacterial nanocellulose is the 
best choice when it comes to drug delivery system. Similarly, cellulose nanofibers 
are ideal for large-scale applications, including food packaging, composites, 
and strength additives. On the other hand, in polymer composites, biosensors, 
piezoelectric sensors, actuators, energy generators and bioimaging applications, 
the cellulose nanocrystals, and cellulose nanofibers are suitable for stabilizing 
interfaces, reinforcing, and modifying rheology. In order to maximize the production 
and commercialization of nanocellulose, various scientists and companies conducted 
numerous research studies. Essentially, nanocellulose has multiple applications that 
can help and resolve a number of society’s problems, but due to its goal oriented 
sustainable properties, cellulosic materials production can still be expensive, thus 
further studies are still important to make possible and wide range of optimized 
production.
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