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Abstract
Parkinson’s disease is a neurological illness that slowly impairs a small number of 
neurons in the substantia nigra, a part of the brain. Dopamine, a substance (neuro-
transmitter) that disseminates signals to different regions of the brain and, when it 
functions correctly, coordinates smooth and balanced muscular activity, is typically 
produced by these cells. One-hand tremor is frequently the first sign of Parkinson’s 
disease. Loss of balance, stiffness, and delayed mobility are further symptoms. Pro-
teins including catechol-O-methyltransferase and dopamine D3 receptors were taken 
into consideration as prospective therapeutic targets in this study. Two ligand-based 
pharmacophore models were generated with the help of compounds used for Parkin-
son’s disease which have structural similarity, screened from the first 16 compounds 
found in the drug bank. In the second case, 9 compounds that have similar structure 
to the compound istradefylline were selected. Based on docking score, intermolecu-
lar interactions, ADME (absorption, distribution, metabolism, and excretion) fea-
tures, pharmacophore, and toxicity investigations, the inhibitors among the chosen 
compounds were found. Additionally, the chosen inhibitor underwent a 100 nano-
second molecular dynamics simulation with the two protein targets to determine 
its stability and binding affinity. The compound 3,4-Bis(1,3,5,6-heptatetraenyloxy) 
benzaldehyde was identified to be the most promising lead molecule in this analy-
sis due to its better binding affinity, better pharmacophore properties, and greater 
stability. Hence, by targeting both specified proteins, the compound 3,4-Bis(1,3,5,6-
heptatetraenyloxy) benzaldehyde should be beneficial against Parkinson’s disease.
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Introduction

Parkinson’s disease (PD), which affects 1–3% of people over the age of 60 world-
wide, is classified as a progressive neurological condition which is fatal [1]. James 
Parkinson’s famous book "Essay on the Shaking Palsy" (AD) published in 1817 
defines the essential clinical symptoms of the second most common age-related neu-
rodegenerative disorder after Alzheimer’s disease [2]. The symptoms of both the 
motor and non-motor system are common in this idiopathic disorder of the nerv-
ous system [3]. The degeneration of dopaminergic (dopamine-producing) neurons 
in the substantia nigra, as well as the development of Lewy bodies in dopaminergic 
neurons, is pathological manifestations of Parkinson’s disease (PD) [3]. Pathological 
alterations may occur approximately two decades or even much before visible symp-
toms appear. This selective loss of dopamine-producing neurons has a significant 
impact on the motor function [3]. Lewy bodies, or aberrant intracellular aggregates, 
include proteins such as alphasynuclein and ubiquitin, which affect neuron function 
[3]. The mechanism behind the PD is depicted in Fig. 1 [4]. Dopaminergic replace-
ment therapies are the mainstay of PD therapy, which aims to reestablish dopamine 
functioning. These dopamine-targeted medications only treat the symptoms of PD-
related motor impairments; they have no effect on the disease process [5]. These 
medications also exhibit diminished efficacy over time and have negative side effects 
such as hallucinations, dyskinesia, and on–off effects [5]. Additionally, the dopa-
minergic medications that are now on the market have extremely limited effects on 
the treatment of non-motor symptoms that typically accompany Parkinson’s disease 
(PD), such as mood, postural instability, and cognitive difficulties. Therefore, the 

Fig. 1   Brain with and without Parkinson’s disease
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development of efficient and long-lasting symptomatic and disease-modifying medi-
cations is urgently needed for the long-term management of PD [5].

Even though the development of levodopa revolutionized the treatment of Parkin-
son’s disease, it was quickly discovered that after numerous years of therapy, most 
patients acquire involuntary movements known as "dyskinesias," which are chal-
lenging to control and can greatly damage quality of life [2]. The current focus of 
study is on the mitigation of dopaminergic neuron loss. Despite progress towards 
this aim, all existing therapies are symptomatic; none stop or slow dopaminergic 
neuron loss [2]. The greatest impediment to the design of neuroprotective medica-
tions is a lack of understanding of the particular biochemical mechanisms that cause 
neurodegeneration in Parkinson’s disease [2].

Given the active role that catechol-O-methyltransferase (COMT) plays in 
L-DOPA metabolism, both in the peripheral and in the CNS, where it converts more 
than 90% of administered L-DOPA before reaching the brain, the identification of 
a novel component known as COMT inhibitor with low toxicity, strong inhibitory 
potency, and selectivity for the CNS is of great interest [6]. S-adenosyl-L-methio-
nine (SAM) is transformed into O-methylated products and S-adenosylhomocyst-
eine by the magnesium-dependent enzyme COMT (AdoHcy) [6]. In Alzheimer’s 
disease, potential COMT inhibitors have been discovered by pharmacophore-based 
inhibitor screening [7]. The dopamine transporter (DAT) also plays an important 
role in the termination of DA neurotransmission by absorbing DA released into the 
synapse. There are 5 types of DA receptors which are D1, D2, D3, D4, and D5. 
DA receptors are classified into two subfamilies which are D1 subfamily and D2 
subfamily coupled with G-proteins. The DA receptors, D2, D3, and D4, are mem-
bers of the D2 subfamily and bind to inhibitory G-proteins [8], whereas DA recep-
tors D1 and D5 belong to the D1 subfamily [9]. Dopamine D1 receptor (D1R) is 
a significant therapeutic target implicated in a variety of mental and neurological 
illnesses. Selective D1R agonism is being pursued as a treatment option for various 
illnesses [10]. Most selective D1R agonists contain a dopamine-like catechol moiety 
in their chemical structure, hence limiting their therapeutic potential in vivo [10]. 
Unlike dopamine D1 receptors, the anatomical location of D5 receptors in the CNS 
is unknown. Most pharmacological and physiological studies do not identify the 
individual role of D1 and D5 receptors due to the lack of distinct agonists and antag-
onists [11]. The only significant difference that has been extensively recognized is 
that the D5 receptor has a higher affinity for dopamine than the D1 receptor [11]. 
The D4 receptor has been used for the study of many disorders like attention deficit 
disorder, metastatic progression, and erectile dysfunction. G-proteins, also known 
as guanine nucleotide-binding proteins, are a protein family that acts as a molecu-
lar switch inside cells, sending signals from various stimuli outside the cell to its 
inside [12]. The D2 dopamine receptor is the major target for both conventional and 
atypical antipsychotic medications, as well as for the pharmaceuticals used to treat 
Parkinson’s disease [13]. D2 and D3 DA receptors are pharmacologically similar. 
Therefore, D3 receptors can also be considered as a possible target for antipsychotic 
and anti-Parkinson’s medications [8]. Given the necessity to incorporate new tech-
nology in order to aid in the development of innovative medications, bioinformatics 
is gaining prominence in practically all therapeutic domains. Many researchers have 
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used some of these technologies to find and/or help in the creation of novel com-
pounds since the 1990s [6]. Bioinformatic techniques have been widely employed 
to investigate the conformational space of a receptor in the binding domain of the 
chosen target protein due to the difficulties in acquiring the 3D structure of protein 
complexes [6]. A creative approach for finding molecules with increased potency is 
pharmacophore modelling. It has been a significant and effective tool for drug dis-
covery over the recent decades, and it has been recommended that docking studies 
(binding affinity studies) be performed after pharmacophore screening [14]. In the 
absence of a macromolecular target structure, ligand-based pharmacophore model-
ling has emerged as a critical computational technique for aiding drug development. 
It is frequently performed by identifying shared chemical properties from the three-
dimensional (3D) structures of a collection of well-known ligands that are indica-
tive of the ligands’ important interactions with a particular macromolecular target 
[15]. There are several 3D pharmacophore modelling applications available, some 
of which are free for academic users. The fundamental idea behind 3D pharmaco-
phores does not change even though the exact meaning and application of pharma-
cophore properties and their attributes may vary between various 3D pharmacoph-
ore modelling applications [16]. In pharmacophore-based virtual screening, virtual 
libraries of compounds are screened against 3D pharmacophores created from a 
collection of active ligands, a target–ligand combination, or the entire target [16]. 
The libraries are queried for molecules with pharmacophore matches that match the 
query. Comparing virtual screening to in vitro high-throughput screens, the hit rate 
may be considerably increased for compounds, lowering the number of compounds 
that need to be tested experimentally [16].

Methodology

Database creation

Databases are the most important in the drug discovery context since they serve as 
the foundation for drug repositioning strategies. Thus, it is essential that they be 
properly developed and incorporate features that aid researchers in getting better 
results [17]. For setting up the database, the 3D chemical structures of drug com-
pounds used in Parkinson’s disease were downloaded in the ".sdf" format. Initially 
the list of compounds was derived from the DrugBank Database and the compounds 
were downloaded from the PubChem database. The DrugBank database is an all-
inclusive, freely accessible online database that contains information on medications 
and drug targets that was created and is maintained by the University of Alberta and 
The Metabolomics Innovation Centre in Alberta, Canada. DrugBank amalgamates 
accurate drug data (chemical, pharmacological, and pharmaceutical) with extensive 
drug target data (sequence, structure, and route) along with their pathways and indi-
cations. PubChem is a database of chemical compounds and their activity against 
biological entities. The system is managed by the National Centre for Biotechnology 
Information, which is part of the National Library of Medicine, which is part of the 
National Institutes of Health in the United States. Millions of compound structures 
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and informative datasets are freely available for download via FTP. PubChem 
includes a variety of substances with descriptions as well as small molecules with 
less than 100 atoms and 1000 bonds. Over 80 database providers contribute to the 
ever-expanding PubChem database. A total of 16 compounds were selected and 
downloaded for the above-mentioned databases.

These compounds are: apomorphine, cycrimine, droxidopa, istradefylline, lisu-
ride, mephenesine, moxonidine, pimavanserine, pramipexole, profenamine, rivastig-
mine, ropinirole, rotigotine, safinamide, selegiline and tolcapone. In order to iden-
tify more number of candidate lead molecules, two sets of databases were prepared 
for model building. The first set consists of the 16 compounds listed above, which 
have similar pharmacological features. The second set consisted of compounds with 
structural similarity to the compound istradefylline. This set contains a total of nine 
compounds. As a supplement to levodopa/carbidopa in individuals with motor fluc-
tuations, istradefylline is an alternative to dopaminergic medications [18].

Alignment checking

Furthermore, the alignment perspective tool found in the software LigandScout’s 
(v.4.4) alignment perspective tool was used to align the ligands and their major 
structural characteristics were integrated [6]. Each of the 16 compounds was taken 
as a reference compound, and alignment perspective was completed. The RMSD 
(root mean square deviation) value was calculated. The compound set with the low-
est RMSD value was selected for generating the database for the model building. 
The 16-compound database was used for screening purposes. An active set database 
was created with all these compounds. After excluding compounds that were not 
aligned properly, the first set then had 10 compounds and the second set remained 
the same with 9. The average difference between the corresponding atoms of two 
small molecules is indicated by the RMSD value; the lower the RMSD, the more 
similar the two structures are [19].

Inactive dataset

An inactive set database was created with the help of the DUD-E site [4]. A total of 
49 compounds for the first case and 51 for the second case were found in the inactive 
database. This inactive set was used for screening purposes. The database was saved 
and kept aside. This was done for validation of the model. So, while screening, the 
software should predict 49 inactive compounds and 51 inactive compounds for the 
first and second sets, respectively.

Model building

For model building, we selected three compounds, which were the reference com-
pound, droxidopa, and its similar compounds, istradefylline and apomorphine. Their 
multi-conformer was used to construct a number of different pharmacophore models 
[6]. Ten models were generated for both cases, and they were screened.
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Model validation and screening

The models were validated using an active set of (10 compounds) and an inactive 
set of (49 compounds) compounds. Furthermore, the model was screened against 
the PubChem database to identify compounds with similar pharmacophore fea-
tures. After the screening, 243 hits for the first case and 43 hits for the second 
case were observed. In the selection phase, only the ligands that shared all of the 
necessary structural moieties with the training set were considered hits [6].

Pharmacokinetic properties prediction

A powerful molecule needs to be concentrated sufficiently to reach its target in 
the body and remain there in a bioactive form long enough for the anticipated 
biological reactions to take place for it to be effective as a medication [20]. In 
order to produce new drugs, it is necessary to evaluate absorption, distribution, 
metabolism, and excretion (ADME) ever earlier in the discovery phase, when 
the number of potential compounds is high but access to the physical sample is 
scarce [14]. In that situation, computer models are appropriate substitutes for 
experimentation. Here, physicochemical characteristics, pharmacokinetics, drug-
likeness, and medicinal chemistry are predicted using the web application Swis-
sADME. A total of 286 compounds were subjected to pharmacokinetic properties 
prediction by adding the compounds of both cases. After the ADME analysis, 30 
compounds were screened out of 243 from the first case and 3 compounds out of 
40 compounds from the second case. The following criteria were used to filter 
the compounds: ∙The molecular weight is an important factor since as the MW 
increases, the absorption decreases. The drug must pass through the skin barrier 
for absorption to take place, so it is suggested that the MW should be less than 
500 g/mol [21]. ∙According to Lipinski’s Rule of Five, an orally active medicine 
should typically have a molecular weight under 500 g/mol, a partition coefficient, 
log P, of less than 5, not more than 5 hydrogen bond donors (OH and NH groups), 
and not more than 10 hydrogen bond acceptors [21]. ∙The blood–brain barrier 
(BBB) is a specialized network of brain microvascular endothelial cells that pro-
tects the brain from blood toxins, nourishes brain tissue, and removes dangerous 
substances from the brain and returns them to the bloodstream [22]. BBB perme-
ability was also a criterion for screening.

Toxicity prediction

The ability to forecast toxicity has a significant impact on public health. Because 
it allows for the avoidance of various pharmacological research, toxicity predic-
tion is crucial for lowering the cost and labour of a medicine’s preclinical and 
clinical trials, in addition to its many other applications (clinical, animal, and cel-
lular) [23]. Using the Toxtree V3.1 program, toxicity prediction was carried out. 
The compounds with high toxicity were removed, and the compounds with low 
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and medium toxicity were taken. While 10 compounds were screened in the first 
case, no compounds were successful in the second.

Molecular docking

The molecular docking problem’s primary goal is to identify the best possible pair-
ing of ligand and receptor that consumes the least amount of energy and attaches to a 
specific protein of interest [24]. The type and strength of the signal that will be gener-
ated can be predicted using docking. As a result of its ability to anticipate how small 
molecule ligands would bind to the proper target binding site, it is one of the most fre-
quently employed methods in structure-based drug design [24]. Protein targets were 
identified and prepared from the Protein Data Bank (PDB) server. The Protein Data 
Bank is a database that contains three-dimensional structural data for big biological 
entities including proteins and nucleic acids. The data are collected by X-ray crystallog-
raphy, NMR spectroscopy, or, increasingly, cryo-electron microscopy, and provided by 
biologists and biochemists from around the world. These data are publicly accessible 
on the Internet through the websites of its member organizations. The PDB is managed 
by a group called the Worldwide Protein Data Bank. The targets chosen for this inves-
tigation were dopamine D3 receptors (PDB ID: 7CMV) and catechol-O-methyltrans-
ferase (PDB ID: 1H1D). The three-dimensional structure of both the proteins is shown 
in Figs. 2 and 3, respectively. The 10 compounds from the first case were downloaded 

Fig. 2   PDB structure of dopamine receptor
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from PubChem and converted to PDB format. The docking was done using the POAP 
server. Open Babel and the AutoDock package are designed to run with highly effi-
cient parallelization using the parallel-based pipeline—POAP [25]. A special feature 
of POAP is the ligand preparation module, which provides a wide range of choices 
for geometry optimization, conformer creation, parallelization, and also quarantines 
incorrect datasets for smooth operation [25]. Additionally, POAP has multi-receptor 
docking, which may be used for virtual comparison screening and drug repurposing 
research [25].

The software Discovery Studio Version 16 was used to further examine the pose 
with the lowest binding energy, which was expressed in kcal/mol by the POAP server, 
and their atomic interactions in order to better visualize and recognize the most signifi-
cant atomic interactions.

Fig. 3   PDB structure of catechol methyl transferase
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Molecular dynamics simulations

Molecular dynamics can be used to explore conformational space and is often the 
method of choice for large molecules such as proteins [26]. Due to the significant 
advancements in the field of technology, the application of molecular dynamics simula-
tion is turning out to be arduous. Molecular simulation, in simple terms, is a systematic 
computer simulation of real experimental molecules. By applying Newton’s equations 
of motion to the system, molecular dynamics explores the energy surface [27]. MD 
modelling mainly determines how a biomolecular system will react to a perturbation 
[26]. To find consistent differences in the outcomes in each of these situations, one 
should often run multiple simulations of both the disturbed and unperturbed systems 
[26]. With the rapid growth of molecular simulation technology, the world’s major 
firms have created a variety of molecular simulation calculation tools, such as TINKER, 
Gromacs, Materials Studio, and LAMMPS, to suit the research needs of many fields 
[27]. This method has been used for various research pertaining to biomolecules and 
also to determine the relationship between various units of measurement. In a recent 
study [27] conducted in order to determine the properties of PAMAM dendrimer-based 
macromolecules, this method was used to determine the stability of the PAMAM den-
drimers and the complex it forms with different drugs [27]. MD simulation was also 
used to study the dependence of temperature on specific volume of Lennard-Jones 
potential [28]. In a study conducted in 2012, MD simulation was also used to determine 
the affinity of plastisizers to nylon where the cohesive energy and the solubility param-
eters were taken into consideration [29]. Desmond, MD simulation software package 
was utilized for the molecular dynamics simulation. Both the protein–ligand complexes 
and the target protein utilized for docking have undergone MD simulation research. A 
series of steps were needed to be done in the software before engaging into molecular 
dynamics which were such as protein preparation, system build, and energy minimiza-
tion. A protein trimer was positioned in the centre of the box during protein prepara-
tion, and 1.0 nm was chosen as the minimal distance between the solute surface and 
the box [30]. Further, a 100-nanosecond (ns) MD simulation was run for each system 
at 1 bar and 300 K [30]. Finally, for further examination, the atomic coordinates were 
saved to the trajectory file every 0.5 picoseconds (ps) [30]. In the subject of computer 
modelling evaluations, structure comparison approaches have been actively developed 
and employed for quantitative evaluation of anticipated model accuracy [27]. They are 
presently used to identify, evaluate, comprehend, and predict protein conformational 
changes, which are the essential foundation of their biological activity [31]. Any tech-
nique that depends on comparing the distances between points of reference in the model 
and their corresponding counterparts in the source template necessitates superimposing 
the model on the template beforehand, with the comparison’s outcomes being blatantly 
dependent on the superimposition [31]. All superimposition-dependent approaches are 
hampered by the ambiguity that arises from the ambiguous goal of finding an opti-
mum superimposition, which has several solutions that each optimize a different set of 
parameters [31]. The most commonly used quantitative metric for evaluating the degree 
of similarity between two stacked atomic coordinates is the root mean square deviation 
(RMSD) [31]. The RMSD of atomic locations in bioinformatics is a measurement of 
the typical separation between superposed protein atoms, which are typically backbone 
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atoms [32]. Non-protein molecules, such as small organic chemical compounds, can 
also be calculated using the RMSD method [32]. To compute the RMSD, first, carry 
out a least-squares fit to minimize the variation between two overlaid structures [33]. 
This presupposes that the structures are stiff and that the global minimum is quickly 
discovered using the least-squares method [33]. When the two structures are superim-
posed, the RMSD (in length units) is estimated based on

where N is the total number of equivalent atoms, and di is the distance that exists 
between atom i in each of the configurations [33]. The unit of RMSD is Å [31]. 
Only when the RMSD is as minimal as it is for nearly related proteins (< 3 Å), is 
success evident in structural comparison [34]. A difference in structure is shown by 
an RMSD of 3 Å between two tripeptides, but a comparable difference is indicated 
by an RMSD of 100 between two chains of 100 residues [34]. The closer the two 
structures are to one another, the lower the RMSD between them [34].

RMSD statistics were provided when the results were obtained from the Desmond 
software. The below equation is what the software uses to calculate RMSD. It is calcu-
lated across the trajectory’s whole frame set [35]. The RMSD for frame x is:

where N is the number of atoms in the atom selection, t ref is the reference time, 
usually the first frame, which is taken to be time t = 0 , frame x is captured at time t 
x, and r’ is the position of the chosen atoms in frame x after superimposing on the 
reference frame. The procedure is repeated for every frame in the simulation trajec-
tory [35]. A protein’s function is influenced by both its structure and dynamics. The 
divergence in the evolution of protein movements can be studied to get a further 
understanding of the dynamics-function link [36]. The correlation between the root 
mean square fluctuations (RMSFs) of aligned residues is the most commonly used 
dynamical similarity score [36]. Any array of protein conformations, such as those 
generated through MD simulations or Monte Carlo (MC) simulations, can be used 
to determine RMSFs [36]. RMSF merely takes into account the total size of each 
C-atom’s variation [36]. When analysing a structure, RMSF looks at the areas that 
deviate most (or least) from its mean structure [37].

A structure’s RMSF is the time average of its RMSD [38]. It is computed using the 
following equation:

where xi represents the coordinates of particle i and ⟨xi⟩ represents the ensemble 
average location of i [38]

(1)RMSD =

√√√√
N∑

i=1

d2
i
∕N

(2)RMSDx =

√√√√
1∕N

N∑

i=1

(ri(tx) − ri(tref ))
2

(3)�i =

�
⟨(xi − ⟨xi⟩)2⟩
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The RSMF can identify which portions of a system are the most mobile, whereas 
the RMSD measures the amount that a structure deviates from a reference over time 
[38]. The RMSF ought to be calculated based on the simulation’s average structure 
rather than the initial state, where the RMSD is commonly calculated [38]. High 
mobility is indicated by a region of the structure where the RMSF values regularly 
depart from the average [38]. When RMSF analysis is performed on proteins, it is 
usually limited to alpha-carbon atoms, which are more indicative of changes in con-
formation than the more flexible side chains [38]. RMSD and RMSF both express 
the divergence of the particle’s target state from the reference state in terms of their 
physical meaning. The RMS analysis combines the RMSD and RMSF evaluations 
[38].

RMSF statistics were also provided when the results were obtained from the Des-
mond software. The below equation is what the software uses to calculate RMSF. 
The RMSF for residue is:

where T is the trajectory time over which the RMSF is calculated, t
ref

 is the refer-
ence time, ri is the position of residue i; r’ is the position of atoms in residue i after 
superposition on the reference, and the angle brackets indicate that the average of 
the square distance taken over the selection of atoms in the residue [35].

Results

Pharmacophore model

Using the structures acquired from the DrugBank and PubChem, pharmacophore 
models were created. The developed model should have the ability to distinguish 
between "active" and "inactive" ligands [39]. If an inactive molecule outperforms 
an active molecule, the hypothesis may be inaccurate since it does not distinguish 
between actives and inactive [40]. Greater selectivity is preferred since it suggests 
that the hypothesis is more likely to be specific to the ligands in the active set [39]. 
A ligand-based pharmacophore model was generated with a fitness score of 72.77. 
The obtained model structures along with the bond angles and bond lengths are 
given Figs. 4 and 5.

After screening each model from each case (i.e. first case and second case) with 
the respective active and inactive datasets, it was observed that model 8 in the first 
case had 9 hits consisting of 9 true positives and 0 false positives, and model 5 in the 
second case had 11 hits with 10 true positives and 1 false positive.

Further, the model was screened against the PubChem database to identify com-
pounds with similar pharmacophore features. The effective implementation of a vir-
tual database screening approach employing pharmacophore models as 3D queries 
has allowed the retrieval of prospective compounds that may be reliably employed 

(4)RMSFi =

����
1∕T

T�

t=1

⟨(ri)(t)) − ri(tref)2)⟩
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in the discovery and development of innovative drugs [41]. In total, 243 compounds 
were obtained as hits in the first case, and 43 compounds were obtained in the sec-
ond case after screening. Using docking studies, these compounds were tested for 

Fig. 4   Pharmacophore model obtained using 9 actives

Fig. 5   Pharmacophore model obtained using 11 actives
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binding affinity in protein targets such as dopamine receptors, adrenergic receptors, 
and adenosine receptors. The compounds that scored above −5 KJ/mol were chosen 
and subjected to pharmacokinetic property prediction, including toxicity studies.

ADME analysis

The compounds with drug-like properties and those that could cross the blood–brain 
barrier were filtered. All the 243 compounds in the first case and 43 compounds in 
the second case underwent ADME screening. Thirty compounds from the first case 
and three from the second case were BBB (blood–brain barrier) permeant and pos-
sessed drug-like properties. The detailed results of the ADME analysis are given in 
Table 1 in which the last three compounds belong to the second case.

Toxicity analysis

The toxicity of the chemicals assessed using the program Toxtree is shown in 
Table 2 in which the last three compounds belong to second case. Compounds of 
minimal toxicity were obtained and used in subsequent processes. In the first case, 
10 compounds were obtained, whereas no compounds were retrieved in the second 
case.

Molecular docking studies

The ten chemicals obtained in the preceding stages were fetched from the PubChem 
repository. These chemicals were converted to the PDB format and submitted to the 
system. Docked results are given in Table 3. Figure 6 depicts the 2D docked struc-
ture obtained from the complex 1H1D-7471813. Figure  7 depicts the 2D docked 
structure obtained from the complex 7CMV-7471813. The dark green colour repre-
sents conventional hydrogen bonds. The light green colour represents van der Waals 
interaction. The orange colour represents Pi-anion. The dark yellow colour repre-
sents Pi-sulphur. The dark pink colour represents Pi-Pi stacked. The light pink col-
our represents Pi-alkyl. The coloured circles represent proteins (amino acids), and 
the cyclic structure represents the ligand molecule. Surface-accessible atoms that 
may potentially carry lone pairs are defined as hydrogen bond acceptor sites [39]. A 
hydrogen bond donor site is centred on a polar hydrogen atom, and a single vector 
feature is oriented along the hydrogen bond axis [39].

Molecular dynamics simulation studies

Initially, the target molecules, i.e. catechol-O-methyltransferase (PDB ID: 1H1D) 
and dopamine D3 receptors (PDB ID: 7CMV) were subjected to molecular dynam-
ics simulation, and the RMSD values that we got for the targets were within the lim-
its, i.e. between 1 and 3 for each of these targets, which are given in Table 4. And for 
each of these compounds, the corresponding graphs were obtained.
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Then, molecular dynamics simulation was performed to each of the tar-
get–ligand complexes that were obtained after docking. The complexes 
of both targets produced with the ligand with PubChem ID 7471813, or 

Table 1   ADME Results

Data set LIGAND 
PubChem 
ID

Molecular 
Weight (g/
mol)

Hydrogen 
Bond 
Acceptor

Hydrogen 
Bond 
Donor

BBB Per-
meant

Lipinski 
Viola-
tions

Bio-
avail-
ability 
Score

First Case 20291156 246.3 2 0 YES 0 0.55
20361792 209.25 3 0 YES 0 0.55
20578428 494.62 4 1 YES 1 0.55
21623110 334.45 4 1 YES 0 0.85
23114952 286.32 4 0 YES 0 0.55
104564 297.35 3 0 YES 0 0.55
1100329 412.48 4 0 YES 0 0.55
3759504 371.23 10 1 YES 0 0.55
3797600 375.43 6 2 YES 0 0.55
10939801 482.62 4 0 YES 1 0.55
11059845 476.64 1 1 YES 1 0.55
11067466 243.28 4 0 YES 0 0.55
11370993 332.44 2 0 YES 1 0.55
11401426 202.21 3 0 YES 0 0.55
12173638 562.65 6 0 YES 1 0.55
5262128 297.39 5 0 YES 0 0.55
6138700 337.46 3 1 YES 0 0.55
57527585 476.4 1 0 YES 1 0.55
67123 358.39 6 0 YES 0 0.55
96874 342.44 4 0 YES 0 0.55
1754908 424.62 2 2 YES 0 0.55
1754911 422.6 4 2 YES 0 0.55
2297311 278.39 4 2 YES 0 0.55
3027735 425.56 5 1 YES 0 0.55
3146121 490.63 6 0 YES 0 0.55
3146122 490.63 6 0 YES 0 0.55
7471813 318.37 3 0 YES 0 0.55
17357779 326.39 4 1 YES 0 0.55
17780758 334.45 4 0 YES 1 0.55
17844478 211.26 3 1 YES 0 0.55

Second case 11471102 266.12 8 0 YES 0 0.55
33824 251.37 3 2 YES 0 0.55
316301 293.45 3 2 YES 0 0.55

First Case: Compounds with structural similarity; Second Case: Compounds with similar structure to 
that of istradefylline
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3,4-Bis(1,3,5,6-heptatetraenyloxy) benzaldehyde (name provided in PubChem), 
were determined to be stable since their values were between the specified limits, 
i.e. 1 and 3. Table 4 includes the relevant information. The graph for the RMSD 
plot for the 1H1D and 1H1D-7471813 complex and 7CMV and 7CMV-7471813 
complex is shown in Figs. 8 and 9, respectively. The blue indicates the selected 
target and the red the target–ligand complex. The time frames picosecond is dis-
played on the X-axis, while the corresponding RMSD values are displayed on the 
Y-axis (in Angstrom).

Table 2   Toxicity Results Data set LIGAND PubChem ID Toxicity Level

First case 20291156 HIGH
20361792 HIGH
20578428 HIGH
21623110 LOW
23114952 LOW
104564 LOW
1100329 HIGH
3759504 HIGH
3797600 HIGH
10939801 HIGH
11059845 HIGH
11067466 HIGH
11370993 HIGH
11401426 LOW
12173638 HIGH
5262128 LOW
6138700 HIGH
57527585 HIGH
67123 LOW
96874 HIGH
1754908 HIGH
1754911 HIGH
2297311 LOW
3027735 HIGH
3146121 HIGH
3146122 HIGH
7471813 LOW
17357779 HIGH
17780758 LOW
17844478 LOW

Second case 11471102 HIGH
33824 HIGH
316301 HIGH
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The RMSF plots for 1H1D and 1H1D-7471813 complexes are shown in 
Fig. 10. The graph’s Y-axis displays the RMSF value, while the X-axis displays 
the residue count. The protein regions with the highest fluctuations during the 
simulation are shown by the peaks. The protein’s N- and C-terminal tails often 
change more than any other region of it. Secondary structural components like 

Fig. 6   2D Interaction of 1H1D-7471813 complex

Fig. 7   2D Interaction of 7CMV-7471813 complex
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Table 3   Docking Results Ligand Molecule PubChem CID Energy values for respective 
target molecules (kCal/mol)

1H1D 7CMV

CID7471813 − 7.9 − 5.0
CID104564 − 7.8 − 4.6
CID21623110 − 7.6 − 4.4
CID67123 − 7.7 − 4.0
CID23114952 − 6.6 − 4.9
CID11401426 − 6.8 − 4.4
CID17780758 − 6.7 − 4.4
CID2297311 − 6.3 − 4.6
CID17844478 − 6.6 − 4.1
CID5262128 − 6.3 − 3.4

Table 4   Statistics of RMSD and radius of gyration

Statistics Apo and Holo forms Mean Median SD

RMSD 7CMV 1.952 1.962 0.153
1H1D 1.83 1.84 0.227
7CMV-7471813 complex 2.702 2.557 1.019
1H1D-7471813 1.880 2.069 0.345

Radius of gyration 1H1D-7471813 16.725 16.730 0.079
7CMV-7471813 17.788 17.787 0.117

Fig. 8   RMSD plot for 1H1D and 1H1D-7471813
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alpha helices and beta strands change less than loop sections because they are 
often more rigid than the protein’s unstructured portion.

The radius of gyration of the target–ligand complexes was then determined. 
The arrangement of atoms of a protein along its axis is known as the radius of 
gyration (Rg). Rg is the length that corresponds to the separation between the 
rotating point and the location where the energy transfer has the greatest impact. 
The Rg offers details about the size and compaction of the protein molecules. As 
illustrated in Table  4, their matching values were acquired in tabular form and 

Fig. 9   RMSD plot for 7CMV and 7CMV-7471813

Fig. 10   RMSF plot of 1H1D and 7471813
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Figs. 11 and 12 show the graphical version of the data. The X-axis shows the time 
in picoseconds (ps) while the Y-axis shows the radius of the gyration value.

Discussion

The final pharmacophore model was reached through many trials and errors with 
different sets of databases. The selected pharmacophores were finalized based on 
their number of hits, or score, and their ability to distinguish between active sets and 
inactive sets. The pharmacophore models were rated based on their similarity to the 
active chemicals; a scoring function was used; and ten pharmacophore hypotheses 

Fig. 11   Radius of gyration plot of 1H1D-74718133

Fig. 12   Radius of gyration plot of 7CMV and 7CMV-7471813 complex
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were retained [40]. Alignment of site points and vectors, volume overlap, selec-
tivity, number of ligands matched, relative conformational energy, and activity all 
contribute to the scoring method [40]. Individual compounds or chemical libraries 
can be tested as “licence-in” opportunities using ADME in silico models, evaluating 
their eligibility as prospective therapeutic molecules [42]. The capacity to forecast 
the effect of a suggested structural adjustment in silico prior to compound synthe-
sis would result in fewer redesign–synthesize–test cycles during lead optimization. 
This is most effective if a model can give suggestions on structural changes that 
can improve a property [42]. In silico approaches for estimating the toxicity of pos-
sible medicinal drugs are complicated systems. They are upgraded and evolved on 
an annual basis [43]. Their advancements are followed by the growth in the num-
ber of huge databases and the number of different computer applications [43]. 
Molecular docking was utilized to further understand and evaluate the preliminary 
data acquired in pharmacokinetic investigations, removing potential false negatives 
and examining the atomic interactions created with the active site in the proteins 
in great detail [6]. The docking approach regarded the conformationally sampled 
ligands and target proteins as hard structures. For each ligand, the ten docking pos-
tures with the lowest energy were preserved [44]. By comparing the atomic coor-
dinates of each docked ligand to the X-ray coordinates of the reference ligands, the 
produced ligand–protein complexes were visually evaluated [44]. Asp141, His142, 
Trp143, Lys44, Asn170, Pro174, and Glu199 involved in the interaction profile of 
COMT [7] are present here in this docking study also. During the molecular dynam-
ics simulation, the dynamic properties of the target and the target–ligand complex 
were determined using their respective RMSD and RMSF values. If the simulation’s 
fluctuations at the end are centred on a thermal average structure, RMSD analysis 
can tell whether the simulation has been equilibrated. For tiny, globular proteins, 
changes of the order of 1-3 are quite acceptable. However, changes that are consid-
erably exceeding the given values suggest that the protein is undergoing a significant 
structural shift throughout the simulation. It is crucial that the RMSD values in the 
simulation are stable at a particular value. If the protein’s average RMSD is still 
rising or falling at the conclusion of the simulation, the system has not yet reached 
equilibrium, and your simulation may not have lasted long enough for a thorough 
study. None of the three MD simulations produced particularly unstable structures, 
which validated the convergence tendency of the systems throughout the simulation. 
The results are therefore credible for further research.

As future prospective of the work, the simulated compound first needs to be 
formulated. Primarily, drug compounds are the focus of early formulations, which 
are administered to animals via a variety of methods, including intravenous and 
oral administration, during the discovery and preclinical stages of drug develop-
ment [45]. Once formulation is done, in vivo testing is the first step in the preclini-
cal stage of the development of drugs to ascertain the medicine’s effectiveness and 
safety [46]. They are used to assess these substances against a variety of pharma-
cological objectives, particularly pharmacology (activity or efficacy), pharmacoki-
netics (PK), and toxic effects [45]. Pharmacology, PK, and toxicology studies are 
commonly conducted on experimental mice. Now, there are chips that mimic all the 
metabolic activities of a real cell or animal tissue. Ex vivo, in vitro, and in vivo tests 
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are performed on whole, live beings or cells, such as those from animals or people, 
or with the use of non-living organisms or tissue extract [46]. Examples of in vivo 
preclinical research include the generation of novel medications utilizing mouse, rat, 
and dog models [46]. In vitro research is a study done in a lab [46]. Ex vivo employs 
animal tissues or cells that are taken from dead animals [46]. Throughout the pre-
clinical and clinical stages, formulation optimization should be carried out. It makes 
sure that the right amount of medication, at the right time, is administered to the 
correct location [46]. Then, a range of dosage forms and solubility-improving strat-
egies, such as different solutions, suspensions, lipid-based formulations, and solid 
dispersions, are evaluated [45]. Beyond this are the clinical trials and approval.

Conclusion

Hence, by targeting both specified proteins, the compound 3,4-Bis(1,3,5,6-hepta-
tetraenyloxy) benzaldehydes is found to have favourable pharmacokinetic properties 
and forms a stable complex with the target 1H1D. This interaction should be benefi-
cial against Parkinson’s disease. While conducting the molecular docking studies, it 
was inferred that the above-mentioned compound had a significantly high binding 
affinity with the catechol-O-methyltransferase(COMT) (1H1D), which is a compo-
nent that is responsible for inactivation of L-3,4-dihydroxyphenylalanine (L-DOPA) 
[47] which is a precursor of dopamine which has a significant role in Parkinson’s 
disease. This happens by the process of O-methylation [47] where more than 90% 
of administered L-DOPA is deactivated before reaching the brain. So, the compound 
3,4-Bis(1,3,5,6-hepta tetra enyloxy) benzaldehyde acts as a COMT inhibitor to pre-
vent the degradation of L-DOPA which in turn can prevent the rigorous symptoms 
of Parkinson’s disease from taking place. As mentioned earlier, the D3 receptor can 
be considered as a possible target for antipsychotic and anti-Parkinson’s medications 
[8], as the D2 dopamine receptor is the major target for both conventional and atypi-
cal antipsychotic medications, as well as for the pharmaceuticals used to treat Par-
kinson’s disease [13] and D2 and D3 DA receptors are pharmacologically similar. 
The discovered compound also had a high binding affinity with the D3 receptor also. 
The ROC curve graphs demonstrate the relevance of the pharmacophore models, 
and the RMSD, RMSF, and radius of gyration plots are all stable. The 2D interac-
tion figures reveal that there is good target–ligand interaction. The graphs of RMSD, 
RMSF, and radius of gyration then demonstrate stability during the interaction of 
the target and ligand. The screened compounds were subjected to ADME investiga-
tions, and only those that passed all of the screening criteria were advanced to the 
next stage. In the toxicity studies conducted only non-toxic substances were cho-
sen. It can be inferred from all of these tests and steps that the resulting molecule, 
3,4-Bis(1,3,5,6-heptatetraenyloxy) benzaldehyde, has no adverse effects according 
to the computational studies.
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