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Abstract
The objective of this study was to develop biodegradable, environmentally friendly, 
economical and smart gelatin-based hydrogels and ferrogels as controlled drug 
delivery systems. Cross-linking is an important treatment for controlling the drug 
release from hydrogels, as well as enhancing the thermal and mechanical stability 
of hydrogels. In this study, gelatin-based hydrogels and ferrogels were synthesized 
at different cross-linker concentrations, ranging from 4 to 16 wt% to allow for dif-
ferent mesh and pore sizes in the gelatin matrix. The gels were characterized by 
thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning elec-
tron microscopy, and energy dispersive X-ray spectroscopy. The swelling proper-
ties and in-vitro release of tetracycline as a model drug from the hydrogels and fer-
rogels cross-linked with different ratios by the diffusion mechanism were tested in 
solutions of pH 6.5 and 7.4 at 37 °C, which mimics environments similar to those 
of the mouth and intestines. The results showed that the swelling and drug release 
properties of all the gelatin hydrogels and ferrogels significantly depended on the 
cross-link level because of the effect of the cross-linking mechanism on reducing 
the number of free carboxyl and free amino groups of gelatin matrix. In addition, it 
was observed that the presence of magnetic nanoparticles in the gelatin matrix has 
an effect of decreasing the swelling and drug release percent of the gelatin-based 
hydrogels.
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Introduction

Controlled release is described as a process in which one or more active agents are 
intended to come out of a system at a desirable site, time and at a definite rate. In 
recent years, studies on controlled drug release systems that can reach certain one or 
more regions of the living organism and control the release rate of the trapped drug 
have increased in biomaterials and biomedical applications. In the selection of drug 
carrier materials for controlled drug release systems, natural and synthetic biomedi-
cal polymers such as chitosan [1], cellulose [2], gelatin [3–7], polyvinyl alcohol [8], 
polyacrylic acid [9], polyethylene glycol [10, 11] are generally preferred due to their 
biocompatibility, biodegradability, nontoxicity, and antibacterial properties.

Hydrogels are attracting increased attention lately because of their potential 
in drug delivery systems. They are polymeric structures that have the proper-
ties of gelation, functionalization, being hydrophilic, having three-dimensional 
meshes that are capable of absorbing large amounts of water or biological fluids, 
and swelling without dissolving in water [12–14]. However, they are not efficient 
enough for targeting and holding drug molecules at the specific site in the body. 
Magnetic nanoparticles are considered as one of the most effective solutions to 
these problems. The magnetic nanoparticles could easily isolate in the targeted 
area under an external magnetic field, and also be introduced into a polymeric 
matrix or coated with polymers, so that the magnetic nanoparticles have poten-
tial application in drug targeting and drug delivery as drug carriers [15, 16]. 
Recently, natural polymer hydrogels functionalized with magnetic materials (or 
called ferrogels) are receiving increasing attention as intelligent drug delivery 
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devices because of their rapid response, selective targeting, and also remote con-
trollability [17]. Several biopolymers such as alginate [18–20], chitosan [21], 
κ-carrageenan [22], agarose [23] have been used for preparation of ferrogels as 
efficient drug carriers for delivering various types of drugs.

Among these biopolymers, gelatin, which is derived from collagen, has 
received extensive attention in the preparation of ferrogels due to its superior 
physicochemical features, antioxidant activity, acceptable biocompatibility, bio-
degradability, antimicrobial properties, gelation ability, better film-forming 
characteristics and relatively low cost [24]. These features make gelatin-based 
hydrogels remarkable for tissue engineering [25], drug delivery [26], magnetic 
resonance imaging [27], wastewater treatment [28], hyperthermia cancer therapy 
[29] applications.

However, gelatin-based hydrogels have poor mechanical strength, and forma-
tion of cracks in polymeric networks leads to a relatively fast degradation rate. 
The problem can be solved by a chemically, enzymatically or physically cross-
linking process as well as formulation of hybrid gelatin-based hydrogels with 
metal nanoparticles and metal oxide [21, 30]. Physical cross-linking of hydrogels 
is carried out by cooling the solution of gelatin below 35 °C to partial recovery 
of the triple-helix structure of collagen. However, hydrogels have low mechani-
cal and chemical stability above 35  °C because of the breaking of the second-
ary bonding structure [31, 32]. Gelatin can be easily chemically cross-linked with 
cross-linkers due to accessible functional groups such as amine, carboxyl and 
hydroxyl [15]. The chemical cross-linking of gelatin not only improves its phys-
icochemical properties, but also enhances its mechanical properties. The cross-
linking mechanism also affects its drug release mechanism as well as physico-
chemical properties.

In literature studies, there are numerous research that have investigated the appli-
cations of cross-linked gelatin-based hydrogels as drug delivery systems for nucleic 
acid [33], antibacterial [34], anticancer [35, 36], and anti-inflammatory drugs [37]. 
Some studies have also showed the influence of the chemical cross-linking method 
[38], cross-linking agent type [39], embedding of drug-loaded nanoparticles into 
the hydrogel structure [40], water content [41], polymer and monomer ratios [42], 
drug loading technique [43] on the characteristics of gelatin-based composites and/
or their drug release profiles. However, the effect of cross-linking amounts in gelatin 
ferrogels and hydrogels on the drug release mechanism and kinetics has not been 
reported previously.

In the present study, it was aimed at synthesizing gelatin-based hydrogels and 
ferrogels as efficient and smart drug delivery systems in the presence of different 
ratios of cross-linking agents to raise the mechanical properties and structural integ-
rity of polymer matrix. This research study also emphasizes kinetic models of in-
vitro drug release to understand the mechanism of drug release from drug-loaded 
hydrogels and ferrogels. In addition, swelling studies of the fabricated hydrogels in 
pH 6.5 and 7.4 media were assessed systematically. The gels were characterized by 
thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, 
scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) spectros-
copy to evaluate the interaction of the gelatin and cross-linker.
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Materials and methods

Materials

Gelatin (from bovine skin) used as a polymer in the synthesis of hydrogels and fer-
rogels and glutaraldehyde solution (OHC(CH2)3CHO, 50%) used as cross-linker 
were purchased from Sigma-Aldrich company. Tetracycline  (C22H24N2O8.xH2O) 
used as a drug active agent was obtained from Merck company. In the synthesis of 
 Fe3O4 nanoparticles, which have been used to gain magnetic properties of hydro-
gels, iron(III) chloride hexahydrate  (FeCl3.6  H2O, 97% Sigma-Aldrich), iron(II) 
chloride tetrahydrate  (FeCl2.4H2O, 99%, Sigma-Aldrich) and ammonia solution 
 (NH4OH, 25%, Merck) was used. Phosphate Buffer Solution (PBS, Sigma-Aldrich) 
was used to determine both swelling properties and drug release behavior of synthe-
sized hydrogels and ferrogels.

Synthesis of  Fe3O4 nanoparticles

A co-precipitation method was used in the synthesis of magnetic  Fe3O4 nanopar-
ticles as described in our previous study [44, 45]. In this method, magnetic  Fe3O4 
nanoparticles were synthesized based on a stoichiometric mixture of  FeCl2.4H2O 
and  FeCl3.6H2O reactive salts with a molar ratio of 3:2 under the aqueous ammonia 
(%25 v/v) as the precipitating agent. The synthesis of  Fe3O4 nanoparticles in alka-
line medium is shown in Fig. 1.

The synthesis process was carried out under inert atmosphere to prevent oxida-
tion of  Fe2+ and  Fe3+ salts and possible side reactions. A mixture of  FeCl2·4H2O and 
 FeCl3·6H2O was introduced to 150 mL of deionized water. The mixture was stirred 
with a mechanical stirrer (RZR 2021, Heidolph) at 90  °C for 1  h. Then, ammo-
nia solution (25% v/v) was added dropwise to the system with a peristaltic pump 
within 30 min. The brown-colored  Fe3O4 nanoparticles were collected using a mag-
netic field by a permanent magnet, washed using distilled water until the pH value 
descended to 7.0, and dried at room temperature.

Synthesis of gelatin‑based hydrogels and ferrogels

Gelatin hydrogels and ferrogels were synthesized using a solvent casting method 
[26, 46] at different cross-linker concentrations, ranging from 4 to 16 wt% to allow 
for different mesh and pore sizes in the gelatin gels. In detail, the gelatin solutions 
(10 wt%) were prepared by mixing gelatin in deionized water at 40 °C using a mag-
netic stirrer. After the gelatin powder was fully dissolved, glutaraldehyde solutions 
at different concentrations (4, 8, 12, and 16 wt%) were added dropwise to the gelatin 
solutions under stirring, and stirred for further 5 min. After the gelation was per-
formed, the mixtures were poured onto cylindrical tubes, followed by air-drying at 
room temperature for 24  h to allow the solidification. Subsequently, the resultant 
gelatin hydrogels were peeled out from the cylindrical tubes. The hydrogels were 
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then washed multiple times with deionized water to remove the unreacted residues 
and cut into 10 mm discs followed by freeze-driering using a lyophilizer at − 80 °C 
for 24 h. The hydrogels were designated as GH4, GH8, GH12, and GH16 according 
to their different cross-link densities, which indicates the glutaraldehyde content is 
4, 8, 12, and 16 wt%, respectively.

A two-step process was applied to prepare the gelatin ferrogels. In the first step, 
magnetic  Fe3O4 nanoparticles were prepared using a co-precipitation method. Sec-
ond, the magnetic nanoparticles were added in a 10% (w/w) ratio to the gelatin solu-
tions. Then, the resulting black color mixture was homogenized for 10 min using 
an ultrasonic bath. Finally, the cross-linking, washing, and freeze-drying methods 
similar to procedures in the preparation of gelatin hydrogel samples as described 
above were used to obtain the gelatin ferrogels. The ferrogels were designated as 
GF4, GF8, GF12, and GF16 according to their different cross-link densities, which 
indicates the glutaraldehyde content is 4, 8, 12, and 16 wt%, respectively.

Fig. 1  Shematic representation for the synthesis of  Fe3O4 nanoparticles
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Drug loading of gelatin‑based hydrogels and ferrogels

One of the general methods for drug loading of hydrogels as drug carriers is to 
incorporate a drug into the system during the synthesis of hydrogels [47, 48]. 
In this study, tetracycline as a model drug was added to the gelatin solution at a 
concentration of 5 wt%. In the synthesis process of the gelatin hydrogels and fer-
rogels, the gelatin monomer is allowed to polymerize with glutaraldehyde solu-
tion used as a cross-linker and the tetracycline molecules get trapped inside the 
polymer structure.

Characterization of gelatin‑based hydrogels and ferrogels

Morphology of the hydrogels and ferrogels was observed using Scanning Electron 
Microscopy (SEM). The samples were mounted on brass pins and were sputter-
coated with gold in a sputter coater. They were then visualized using SEM (LEO, 
1430 VP, Carl Zeiss, Germany) operated at an acceleration voltage of 20 kV at var-
ying magnifications. The mapping images of iron and chemical composition were 
taken by SEM equipped with energy dispersive X-ray spectroscopy (EDX). The 
chemical structure of hydrogels and ferrogels were investigated by Fourier transform 
infrared spectroscopy (FTIR, Thermo Scientific, NICOLET iS50FT-IR) equipped 
with an ATR assembly. All spectra were the average of 32 scans in the range of 
4000–400   cm−1 with a spectral resolution of 4   cm−1. The thermal behavior of the 
gelatin hydrogels and ferrogels was measured by a simultaneous thermal analyzer 
(STA, NETZSCH, STA 449 F3 Jupiter) operating at a heating rate of 10  °C/min 
from 25 to 600 °C under nitrogen  (N2) gas.

Swelling of the gelatin‑based hydrogels and ferrogels

Gravimetric methods were used for determining the swelling percentage of the pre-
pared hydrogels and ferrogels [49]. Firstly, the freeze-dried hydrogel and ferrogel 
samples were weighed (Wd) and immersed in solutions of pH 6.5 and 7.4 at 37 °C, 
which mimics environments similar to those of the mouth and intestines. Then, at 
different time intervals, the samples were removed from the swelling medium and 
weighed (Ws) after the excess fluid on the surface was absorbed with a filter paper. 
The changes in weight of the swollen hydrogels were regularly observed and the 
process was repeated until a weight change between two readings was constant. All 
tests were performed in triplicate.

The swelling ratio for each hydrogel and ferrogel was calculated using Eq. (1):

where Ws represents the weight of the swollen sample and Wd is the initial weight of 
freeze-dried hydrogel samples, respectively.

(1)Swelling% =
Ws −Wd

Wd

× 100
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In‑vitro drug release studies

Gelatin hydrogels and ferrogels were added to a 50 mL plastic tube with 30 mL 
of different PBS solutions (pH = 5.0 and pH = 7.4) and then stirred at 100 rpm at 
37 °C. After certain time, 1 mL samples of the each drug release solutions were 
collected from the tubes with replacement of an equal volume of the fresh solu-
tion and then the collected samples were analyzed at 360  nm using a UV–vis 
spectrometer (Shimadzu, UVmini-1240). The release experiments were carried 
out by triplicate. The drug release percent was determined according to the fol-
lowing Eq. (2) [47]:

where M∞ and Mt represent the initial amount of drug-loaded and the cumulative 
amount of drug released at the time t.

Results and discussion

Morphological and structural analysis

The surface morphologies of the cross-linked gelatin hydrogels and ferrogels were 
investigated using SEM. When the SEM micrographs in Fig.  2 are examined, it 
is seen that both hydrogels and ferrogels have a porous structure by virtue of the 
freeze-drying step with the pores being the result of ice crystal formation [50], but 
the ferrogels have uneven surface and formed rough protrusions. This phenomenon 
can originate from the incorporation of  Fe3O4 nanoparticles in the gelatin matrix, 
resulting in a slightly irregular surface of the ferrogels. Similar results were also 
observed by other researchers. Zeng et al. [51] have reported that higher  Fe3O4 nan-
oparticles content causes a rough surface on the pore wall of magnetic hydrogels. 
Similarly, Li et al. [52] have shown that the surface of pure hydrogels is smooth and 
flat, while the surface of magnetic hydrogels is irregular and rough.

Moreover, the elemental composition of Fe in the magnetic hydrogels was 
analyzed by SEM/EDX analysis. The SEM images of the ferrogels demonstrate 
that the  Fe3O4 nanoparticles are fairly uniformly distributed in the gelatin matrix. 
The homogeneous distribution of the  Fe3O4 nanoparticles in the ferrogel was con-
firmed by EDX mapping and the blue dots represent Fe in the gelatin gel in Fig. 3.

Figure 4 shows the EDX pattern of gelatin hydrogel and ferrogels. The pres-
ence of carbon, oxygen, and nitrogen is attributed to gelatin. The signals for iron 
in Fig.  4b confirm the existence of iron oxide nanoparticles within the ferrogel 
network. The peaks at 1.75 to 2.25 keV are related to gold, which was used for 
sample coating. The detected weight and atomic fractions of carbon, oxygen, 
nitrogen, and iron elements are given in Table 1. According to the EDX findings, 
the amount of Fe in the gelatin ferrogel sample was calculated as 5.74 (wt%).

(2)Drug release (%) =
Mt

M∞

× 100
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Fig. 2  SEM images of gelatin hydrogels (a, b) and ferrogels (c, d)

Fig. 3  SEM image of cross-section of gelatin ferrogel a and EDX mapping of iron (blue signal) in the 
image (scale bar: 70 μm) b 
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Fig. 4  EDX analysis of gelatin hydrogel a and ferrogel b 
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Table 1  Results of the EDX 
analysis of the gelatin hydrogels 
and ferrogels

Gelatin hydrogels Gelatin ferrogels

Element Weight % Atomic % Weight % Atomic %

Oxygen 47.66 41.80 47.33 43.47
Carbon 34.66 40.49 33.05 40.45
Nitrogen 17.68 17.71 13.88 14.57
Iron – – 5.74 1.51
Total 100.00 100.00 100.00 100.00

Fig. 5  FTIR spectra of  Fe3O4 a, raw gelatin b, gelatin hydrogels c and gelatin ferrogels d 
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The FTIR spectra of  Fe3O4, raw gelatin, gelatin hydrogels and ferro-
gels are presented in Fig.  5. In all the samples, the broad peak in the range of 
3200–3600   cm−1 is related to O–H stretching vibrations [53]. Amide groups of 
gelatin peptide bonds exhibit characteristic absorption spectral peaks in spe-
cific bands, which are amide I (1600–1800   cm–1), II (1470–1570   cm–1), and III 
(1250–1350   cm–1) bands [54]. All these characteristic bands are present in the 
spectrum for raw gelatin, gelatin hydrogels and ferrogels too. The other charac-
teristic band which corresponds to the C–H stretching is observed at the range 
2800–2950   cm−1 [15]. The FTIR spectrum of  Fe3O4 shows a peak at 537   cm−1 
which corresponds to vibrations of the Fe–O bonds [55]. The characteristic peak 
is observed in the spectrum for gelatin ferrogels too.

Thermal stability

Thermal stability is one of the most important properties related to the cross-linking 
density of the hydrogels. Therefore, thermogravimetric analysis (TGA) was carried 
out to investigate the thermal properties of the gelatin hydrogels and ferrogels cross-
linked with different weight ratios of cross-linkers. As shown in Fig. 6, all the gela-
tin hydrogels and ferrogels showed two steps of weight loss. In detail, the gelatin 
hydrogels were decomposed with initial weight losses of between 9.6 and 10.9%, 
attributed to a combination of physical and chemical evaporation of water trapped 
in the hydrogel matrix at 25 to 200 °C, followed by the second stage observed major 
weight losses in the temperature range of 200–450  °C due to the degradation of 
gelatin and polymer chains [56–58]. Weight losses of the GH4, GH8, GH12, and 
GH16 in the temperature range of 200–450 °C were 77.2%, 76.6%, 71.9%, 57.6%, 
respectively. In this temperature range, it was observed that hydrogels with a higher 
cross-linking degree showed lower weight losses than that of hydrogels with a 
lower cross-linking degree, indicating that cross-linking density has a positive effect 
on thermal stability. After 450  °C, the loss rate slowed down, and the residue of 
the GH4, GH8, GH12, and GH16 at 600 °C were calculated as about 1.7%, 3.3%, 
11.3%, and 24.3%, respectively. The cross-linked gelatin ferrogels showed a similar 
degradation process. However, it was observed that the decomposition of the cross-
linked gelatin ferrogels in the temperature range of 200–450 °C was quite lower than 
that of the hydrogels. This phenomenon originated from the incorporation of  Fe3O4 
nanoparticles in the gelatin matrix that enhanced thermal stability of the system due 
to strong interactions (e.g., hydrogen bonding) between the  Fe3O4 nanoparticles and 
the gelatin matrix [15]. As shown in Fig. 6b, magnetite presents high thermal stabil-
ity and only one step observed weight losses of approximately 8.4% in the tempera-
ture range from 25.0 to 600 °C, which is similar to the literature results [59].

Swelling behaviors

Gelatin can swell up and absorb 5–10 times its mass of water to form a gel in aque-
ous solutions [60]. The swelling properties of gelatin-based hydrogels fabricated 
by a physical and chemical cross-linking process can be controlled by cross-linking 
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Fig. 6  Thermal decomposition of a gelatin hydrogels (GH4, GH8, GH12, and GH16), b magnetite and 
gelatin ferrogels (GF4, GF8, GF12, and GF16)
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degrees. In this study, swelling behavior of the gelatin hydrogels and ferrogels syn-
thesized at different cross-linker concentrations were studied in buffer solutions of 
pH 6.5 and 7.4. As shown in Fig. 7, it was observed that the change in the pH of 
swelling medium from 7.4 to 6.5 did not have much effect on the swelling behavior 
of the gelatin hydrogels and ferrogels, but the change in glutaraldehyde content had 
a significant effect on the swelling behavior. The increase in glutaraldehyde con-
tent in the samples decreased the overall swelling ratios of the hydrogels and fer-
rogels, as a result of higher cross-linker proportions. This result is explained by the 
higher cross-linking densities causing a decrease in solvent uptake and equilibrium 
swelling ratio [32]. In addition, the gelatin hydrogels at both pH levels (6.5 and 7.4) 
have higher swelling ratios than those of gelatin ferrogels at the same conditions due 
to the higher gelatin content. In literature studies, it has been reported that gelatin 
exhibits good swelling properties due to its hydrophilic groups, such as single bond 
CO, NH,  NH2 and COO− , providing the diffusion of water molecules through the 
polymeric matrix [61]. Moreover, the internal network structure of the gelatin fer-
rogels is tighter than gelatin hydrogels due to the good bonding of gelatin molecules 
with nano  F3O4 nanoparticles as coordination bonds, which reduces the swelling 
ratio of hydrogels.

Drug release kinetics

The tetracycline release from the hydrogels and ferrogels was tested in solutions of pH 
6.5 and 7.4 at 37 °C, which mimics environments similar to those of the mouth and 
intestines. As shown in Fig. 8, the cumulative drug release percent of gelatin hydrogels 
and ferrogels is very high at the beginning. After 8 h, they basically reached the equi-
librium of release. The cumulative release percent of gelatin hydrogels (GH4, GH8, 

Fig. 7  The swelling ratio of gelatin hydrogels and ferrogels in buffer solutions of pH 6.5 a and pH 7.4 b 
at 37 °C
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GH12, and GH16) is much higher than that of ferrogels (GF4, GF8, GF12, and GF16) 
due to the higher swelling ratio in the hydrogels than ferrogels. The release of drugs 
from hydrogels and ferrogels involves the absorption of water molecules into the matrix 
followed by desorption of drug molecules from pores by a diffusion mechanism [47].

To investigate the drug release kinetics and mechanism of the gelatine hydrogels and 
ferrogels, the drug release data was fitted into various kinetic models such as zero order 
(Eq. 3), first order (Eqs. 4, 5), Higuchi (Eq. 6), Korsmeyer-Peppas (Eqs. 7, 8) models 
[62].

Zero Order:

First Order:
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Fig. 8  In-vitro drug release profiles of tetracycline-loaded gelatin hydrogels and ferrogels in solutions of 
pH 6.5 a and pH 7.4 b at 37 °C
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Higuchi Model:

Korsmeyer-Peppas model:

where Mt and M∞ represent the amount of released active agent at time t and infinite 
time, respectively. M0 is the initial amount of the active agent in the solution (most 
times, M0 = 0). k0 and k1 are the zero order and the first order release constants, 
respectively. kH is the Higuchi constant of dissolution and kK is the Korsmeyer-
Peppas model rate constant, which reveals structural and geometric character of the 
drug release matrix. Mt/M∞ is the fraction of released tetracycline until time t, n is 
the release diffusional exponent incorporating the mechanism of the drug release.

The experimental release data were evaluated by plotting the cumulative % drug 
release versus time for the zero-order kinetic model; log cumulative % drug remain-
ing vs time for the first-order kinetic model; cumulative % drug release vs square 
root of time for the Higuchi model; log cumulative % drug release versus log time 
for the Korsmeyer–Peppas model [63].

Correlation coefficient (R2) values that were used to evaluate the predictive accu-
racy of the kinetic models are given in Table 2. By comparing the calculated R2 val-
ues for the four release kinetic models, it was observed that the release kinetics best 
fitted with the Korsmeyer-Peppas model for all hydrogels and ferrogels. The R2 val-
ues ranged from 0.9837 to 0.9979 in both mediums (pH 7.4 and 6.5), indicating that 
the tetracycline release mechanism of the hydrogels and ferrogels follows the Kors-
meyer–Peppas kinetic model. The values of n evaluated for the slopes of the curves 
are used to determine the type of drug diffusion from developed hydrogels. n value 
is in the range of 0.45–0.5 and 0.5–0.89 refers to Fickian (diffusion-controlled) and 
non-Fickian (diffusion and erosion-controlled) release, respectively. If n is between 
0.89 and 1.0, it corresponds to case II (zero-order) transport. If n value is above 1.0, 
the phenomenon corresponds to super Case II transport [20, 64, 65]. As can be seen 
from Table 2, the values of n determined for all hydrogels and ferrogels are in the 
range of 0.5080 to 0.6558, which corresponds to a non-Fickian diffusion and erosion 
controlled release mechanism. Similar results were reported for the release of other 
drugs from the polymeric hydrogels: ibuprofen [20], (±)-2-(p-isobutylphenyl)propi-
onic acid [66], and cyclophosphamide anticancer drug [67]. When the drug release 

(4)Mt = M
0
e−k1t

(5)ln
Mt

M
0

= k
1
t

(6)Mt = kHt
0.5

(7)
Mt

M∞

= kKt
n

(8)ln
Mt

M∞

= ln kK + n lnt



5230 Polymer Bulletin (2024) 81:5215–5235

1 3

Ta
bl

e 
2 

 T
et

ra
cy

cl
in

e 
re

le
as

e 
ki

ne
tic

 p
ar

am
et

er
s f

or
 th

e 
ge

la
tin

 h
yd

ro
ge

ls
 a

nd
 fe

rr
og

el
s a

t p
H

 6
.5

 a
nd

 7
.4

H
yd

ro
ge

l i
de

nt
ifi

-
ca

tio
n

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t (
R2 )

pH
Ze

ro
 o

rd
er

Fi
rs

t o
rd

er
H

ig
uc

hi
 m

od
el

K
or

sm
ey

er
–P

ep
pa

s 
m

od
el

Re
le

as
e 

ex
po

ne
nt

 ‘n
’ f

ro
m

 K
or

s-
m

ey
er

–P
ep

pa
s m

od
el

R
at

e 
co

ns
ta

nt
 K

K
 

fro
m

 K
or

sm
ey

er
 

m
od

el

G
H

4
6.

5
0.

59
90

0.
46

61
0.

77
71

0.
99

41
0.

52
71

0.
52

77
7.

4
0.

59
19

0.
47

49
0.

77
07

0.
99

67
0.

50
80

0.
54

92
G

H
8

6.
5

0.
62

69
0.

48
43

0.
80

06
0.

99
60

0.
53

67
0.

50
56

7.
4

0.
60

64
0.

47
23

0.
78

45
0.

98
51

0.
51

93
0.

51
62

G
H

12
6.

5
0.

62
15

0.
47

00
0.

79
61

0.
99

76
0.

59
65

0.
48

54
7.

4
0.

62
28

0.
47

49
0.

79
71

0.
99

61
0.

57
96

0.
49

14
G

H
16

6.
5

0.
61

94
0.

46
05

0.
79

47
0.

99
79

0.
65

58
0.

44
78

7.
4

0.
61

75
0.

46
57

0.
79

37
0.

99
93

0.
61

91
0.

45
67

G
F4

6.
5

0.
67

95
0.

51
59

0.
84

65
0.

97
50

0.
51

93
0.

40
64

7.
4

0.
66

86
0.

51
19

0.
83

80
0.

98
07

0.
50

86
0.

41
65

G
F8

6.
5

0.
68

50
0.

53
07

0.
85

20
0.

99
33

0.
59

32
0.

30
23

7.
4

0.
66

79
0.

52
51

0.
83

84
0.

98
88

0.
55

72
0.

32
36

G
F1

2
6.

5
0.

68
96

0.
52

60
0.

85
55

0.
99

57
0.

59
95

0.
29

42
7.

4
0.

67
78

0.
52

33
0.

84
57

0.
99

05
0.

57
21

0.
31

02
G

F1
6

6.
5

0.
69

80
0.

51
00

0.
86

19
0.

98
37

0.
61

33
0.

28
00

7.
4

0.
67

69
0.

51
43

0.
84

55
0.

99
43

0.
57

66
0.

29
78



5231

1 3

Polymer Bulletin (2024) 81:5215–5235 

rate constants determined according to the Korsmeyer–Peppas model of both hydro-
gels and ferrogels synthesized with different ratios of cross-linker were compared, 
it was observed that the increase in the amount of cross-linker decreased the drug 
release rate. Therefore, all the results show that variations of cross-linker amount 
can be utilized to control the release percent and rate of drugs from hydrogels and 
ferrogels according to the necessity of definite applications.

Conclusion

The study is important to show the effect of cross-linking density and  Fe3O4 addi-
tion on the swelling properties and drug release performance of the gelatin-based 
gels. Firstly, the hydrogels and ferrogels were successfully fabricated by chemically 
cross-linking using different amounts of glutaraldehyde as a cross-linking agent. 
Then, the underlying diffusion mechanism of drug release from the hydrogels and 
ferrogels was investigated using tetracycline as a model drug. The swelling and 
drug release ratios of the gelatin hydrogels and ferrogels were found to significantly 
decrease with the increase in the cross-linker ratio in the gelatin matrix, i.e. with 
the increase in the degree of cross-linking. The cumulative drug release from the 
gels had maximum stages ranging from 77.9% for GF16 to 99.9% for GH4 at pH 
7.4 and maximum stages ranging from 77.4% for GF16 to 99.6% for GH4 at pH 6.5. 
The results obtained demonstrate clearly that it is possible to control drug release 
from gelatin-based gels that can be achieved by the variation of the chemical cross-
linking level, as a result of the changing structural properties. The study also showed 
that the combination of gelatin hydrogel and  Fe3O4 nanoparticles gives a synergis-
tic effect to the newly formed gels. While the remarkable improvements in thermal 
properties were observed in hydrogel when  Fe3O4 nanoparticles were inserted in the 
gelatin matrix, drug release and swelling ratios of the gelatin gels have been signifi-
cantly decreased.
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