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Abstract
Chitosan, the second naturally abundant polysaccharide, has shown promising anti-
cancer activity against many cancer cells. There  are various chitosan  nanoparti-
cle  preparation  techniques. This study compared three of these methods, namely, 
ionotropic gelation, microemulsion, and emulsification solvent diffusion in terms of 
their product physicochemical and biological properties. To compare different meth-
ods, type of chitosan, pH and concentration of chitosan solution were kept constant 
in all methods. The obtained chitosan nanoparticles were characterized using FTIR, 
UV–Visible spectroscopy, and SEM. The anticancer activity of the nanoparticles 
was evaluated by MTT assay in MDA-MB-231 cells at different doses (0.5, 1, 1.5, 
2 mg/mL). The morphological alterations of cells were assessed by light inverted 
microscope. All three methods resulted in nanoparticle formation with the size and 
zeta potential range of 240–442  nm and + 19.1–34.6  mV, respectively. The iono-
tropic gelation method yielded smaller nanoparticles with higher zeta potential than 
those yielded by the microemulsion and emulsification solvent diffusion methods. 
The cytotoxicity assay showed a dose-dependent effect of nanoparticles. The nano-
chitosans prepared using the ionotropic gelation, microemulsion, and emulsification 
solvent diffusion methods showed maximum 77.87%, 63.12%, and 53.17% inhibition 
against MDA-MB-231 cells, respectively. The results concluded that all obtained 
nanoparticles have acceptable potency for cytotoxicity against MDA-MB-231 cells 
with IC50 ranged from 0.89 to 1.67 mg / mL. However, nanoparticles prepared using 
ionotropic gelation method exhibit the highest anticancer activity. Overall, chitosan 
nanoparticles obtained using all three methods could serve as anticancer agents and 
applied in the development of novel antitumor drugs.
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Introduction

Cancer is a multistep and progressive disease with a low cure rate, usually accompa-
nied by abnormalities in proliferation, metastasis, invasion, and metabolic disorders. 
A survey in 2020 by the World Health Organization (WHO) estimated about 19.3 
million new cancer cases and almost 10.0 million died of the disease worldwide 
[1]. Age, family history, sunlight and ionizing radiation, some viruses and bacteria 
including Human papilloma viruses (HPVs), Hepatitis B and hepatitis C viruses, 
Salmonella typhi, lifestyle, and exposure to some organic and inorganic chemicals 
such as asbestos, benzene, benzidine, cadmium, nickel, arsenic, radon and vinyl 
chloride are among the risk factors for cancer development [2]. Although the current 
approaches for the cancer treatment include chemotherapy, radiotherapy, surgery, 
and immunotherapy are effective against many types of cancer, but also carry a risk 
of acute side effects [3]. Therefore, the discovery of new anticancer agents is critical 
to prevent complications and drug resistance problems caused by common clinical 
treatment methods.

Over the last few decades, some new anticancer agents have been identified as 
less toxic and capable of overcoming the resistance induced by the common chem-
otherapy drugs. Glutamic acid and its derivatives [4], metal ion complexes [5], 
organic and inorganic nanostructure materials are examples of these new anticancer 
compounds [6].

Glutamine, a derivative of glutamic acid, plays very important roles in cancer 
cells. This amino acid is essential for the rapid growth of tumor cells because it 
acts as a nitrogen donor in the nucleotide and amino acid biosynthesis. It also helps 
in the uptake of other essential amino acids and maintains the activation of TOR 
kinase [7]. Therefore, glutamine derivatives are believed to be able to prevent the 
growth of cancer cells through glutamine antagonism. Ali et al. [8] synthesized glu-
tamic acid derivatives and their Cu (II) and Ru (III) complexes and showed their 
anticancer activities on a panel of human tumor cell lines.

However, among the new drugs and tools in the field of cancer detection and 
treatment, nanoparticles (1–100  nm) are one of the most interesting and prom-
ising therapeutic  approaches. As the size decreases to nanoscale, many special 
optical, electric, magnetic, and mechanical properties appear, making nanostruc-
ture differ from its bulk materials [9]. Nanoparticles generally used in medicine 
can be divided into three classes: inorganic nanoparticles, organic nanoparticles 
and composite nanoparticles according to their composition and physical and 
chemical properties [10]. In the group of inorganic nanoparticles commonly used 
in medicine, metal and metal oxide nanoparticles are the most suitable  candi-
dates for  next-generation anticancer treatment due to their unique physical and 
chemical properties like magnetic and plasmonic properties, making them effec-
tive for biomedical applications [11]. In addition, the decrease in the surface-to-
volume ratio of metal nanoparticles generally increases their reactivity, leading to 
the strong interactions with DNA and protein molecules [12]. Many studies in this 
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regard have focused on the efficiency of various metal and metal oxide nanoparti-
cles for the cancer treatment [13]. Hussain et al. [14] were synthesized zinc oxide 
nanoparticles from aqueous Pandanus odorifer leaf extract, and reported their 
cytotoxic activity against MCF-7, HepG2 and A-549 cells.

Among various organic compounds, polymers are of major interest in the prep-
aration of nanoparticles for cancer management. In addition to the size-depend-
ent properties, polymeric nanoparticles provide other advantageous properties 
such as flexibility and easily modifiable, stability in biological fluids, controlled 
release of anticancer drugs, biodegradability, biocompatibility, and affinity to 
cancer-specific Biomarkers [15]. Therefore, a variety of polymeric nanoparti-
cles have been developed over the years to treat cancer and other diseases, and 
they can be subdivided into two major groups of synthetic and natural polymers 
[16–18]. Although synthetic polymers have easily predictable mechanical fea-
tures, natural polymers also offer extensive advantages, especially in drug deliv-
ery such as the availability of natural resources, nontoxicity, biocompatibly and 
biodegradably, nonimmunogenicity, and site-specific targeting to particular tis-
sues [19]. Among polymeric-based nanoparticles, chitosan is one of most widely 
studied. Chitosan, deacetylated chitin, is a natural polysaccharide present in crab 
and shrimp sells that consists of β-(1, 4)-2-amido-D-glucose linked via (1–4) gly-
cosidic bonds. The amine groups of chitosan influence a large variety of its bio-
active features, including mucoadhesion and permeation enhancement. Chitosan 
nanoparticles are widely applied to deliver anticancer agents and inhibit tumor 
growth without systemic toxicity [20–22]. Anticancer activity of chitosan is asso-
ciated with induction of apoptosis and cell cycle arrest [23]. To date, different 
procedures have been developed for the preparation of chitosan nanoparticles 
such as ionotropic gelation method, microemulsion method, coacervation/precipi-
tation method, solvent evaporation method, etc. [24, 25].

Many studies have shown that the molecular weight and deacetylation degree 
of chitosan, as well as the concentration and pH of the chitosan solution used 
in different methods are among the main factors affecting the size, surface 
charge and morphology of chitosan nanoparticles [26–28]. On the other hand, it 
has been demonstrated that the size, zeta potential, and shape of nanoparticles 
greatly influence the cellular uptake ratio  and result in different biological and 
anticancer activities [29]. According to the available literature data, these influ-
encing parameters are not constant in different methods used to produce chitosan 
nanoparticles, leading to the incomparability of these particles in terms of their 
physicochemical and biological properties. Therefore, in the present study, chi-
tosan nanoparticles were produced using three different methods of the ionotropic 
gelation, microemulsion, and emulsification solvent diffusion. However, prior to 
production, type of chitosan (Medium MW, 75–85% deacetylated), pH (5) and 
concentration of chitosan solution (1 mg/ml) used were kept constant. So far, the 
characteristics of nanochitosans prepared using the aforementioned methods have 
not been well established. This study aimed to compare these three methods in 
terms of their product physicochemical and biological properties in order to find 
the most appropriate method to prepare chitosan nanoparticles before being used 
as anticancer agent.



830	 Polymer Bulletin (2024) 81:827–842

1 3

Experimental

Materials

The chemicals which were used in the chitosan nanoparticles preparation step 
were purchased from Sigma-Aldrich (Saint Louis, MO, USA) and their properties 
are given in Table 1. The chemicals which were applied in the cytotoxicity assays 
(Dulbecco’s modified eagle’s medium (DMEM), fetal bovine serum (FBS), 3-(4, 
5-dimethyl-thiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), dimethyl sul-
foxide (DMSO), and trypsin–EDTA were provided from Gibco (USA). All of the 
chemicals were of the highest analytical reagent grade.

Preparation of chitosan nanoparticles

To obtain homogeneous chitosan gel solution, 30 mg of chitosan was dissolved in 
acetic acid (1%  v/v,  30  mL) and stirred for 10  h. Afterward, the size of chitosan 
nanoparticle was modified using three different methods. The concentrations and the 
phase volume ratio were optimized to prepare chitosan nanoparticles with good col-
loidal stability.

In the ionotropic gelation method, 10 mL of STPP solution (1 mg/mL, pH 5) was 
slowly titrated (at a rate of roughly 1 drop/s) into 30 mL of chitosan solution (1 mg/
mL, pH 5). The resulting solution was then centrifuged in 13,000  rpm for 5 min. 
The supernatant was separated and stored at 4 °C for subsequent analysis [30].

In the microemulsion method, sodium chloride (2 mg) were dissolved in 20 mL 
of chitosan solution (1 mg/mL, pH 5) and stirred for 3 h. Then, this chitosan gel was 
added dropwise to the stirred olive oil and polysorbate 80 at 4 °C. Next, 5 mL of 
acetone was added, and the formed mixture was stirred for an additional hour. The 
particles were then solidified by glutaraldehyde cross-linking agent saturated with 
toluene and recovered by centrifugation and finally dried at 50 °C for 24 h [31].

In the emulsification solvent diffusion method, an oil-in-water emulsion was 
formed by injecting methylene chloride/acetone (3:1) organic solvent into aqueous 

Table 1   Main chemicals used in the chitosan nanoparticles production

Chemicals Purity Chemical formula

Chitosan Medium MW
75–85% deacetylated

[C6H11NO4]n

Sodium triphosphate (STPP)  ≥ 98.0% Na5P3O10

Acetic acid  ≥ 99.85% C2H4O2

Glutaraldehyde  ≥ 98.0% C5H8O2

Tween 80 (Polysorbate 80) Super-refined C64H124O26

Toluene  ≥ 99.9% C6H5CH3

Methylene chloride  ≥ 99.9% CH2Cl
Acetone  ≥ 98.0% CH3COCH3

Lecithin  ≥ 98.0% C35H66NO7P
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chitosan solution (1 mg/ mL, pH 5) containing lecithin as a stabilizing agent. The 
emulsion was then stirred to evaporate methylene chloride/acetone at room tempera-
ture. The obtained chitosan nanoparticles by centrifugation (21,000  rpm, 30  min) 
were then washed with distilled water and dried at 30 °C [32].

The nanochitosans prepared by three different methods were characterized for 
particle size, electrophoretic mobility, and morphology.

Particle size and zeta potential analysis

Particle size distribution (PDI) and size averages  were evaluated using a particle 
size analyzer (Horiba scientific SZ100, USA) equipped with a 90° scattering angle. 
Zeta potential was measured after sonication of the samples, and then subjecting to 
dynamic light scattering (DLS).

Fourier transform infrared (FTIR) analysis

The formation of chitosan nanoparticles by the three methods was confirmed using 
FTIR spectrometry (Bruker Tensor 27 IR spectrophotometer) between 400 and 
4000 cm−1 at room temperature.

UV–visible spectral analysis of chitosan nanoparticles

The absorbance of prepared chitosan nanoparticles was scanned using a UV–visible 
spectrophotometer (PerkinElmer, lambda 25, USA) at all wavelengths between 200 
and 600 nm.

Morphological evaluation

The morphological structure of developed chitosan nanoparticles was assessed using 
high resolution scanning electron microscope (Tescan MiRa II LMU) at an accelera-
tion voltage 15 kV. The samples were coated with a thin layer of gold.

In vitro cytotoxicity studies

MDA-MB-231 cells were purchased from the Pasteur Institute of Iran and main-
tained in DMEM medium supplemented with 10% FBS, penicillin and streptomycin 
(100  IU/100 μg). The cells were incubated at 37 °C and 5% CO2 in a humidified 
atmosphere. The efficacy and the inhibitory concentration (IC50) of the prepared chi-
tosan nanoparticles were determined using the MTT assay. Briefly, MDA-MB-231 
cells were seeded in a 96-well plate at a density of 1 × 104 per well for 24 h. The 
cells were subsequently exposed to 0.5–2  mg / mL of chitosan nanoparticles and 
incubated for an additional 24 h. Next, the culture medium was replaced with 100 
μL of the MTT solution (0.5 mg / mL), and the plate was incubated at 37 °C for an 
additional 4 h. Afterward, 100 μL of DMSO was added to each well to dissolve the 
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formazan crystals, and the optical density was read at 570 nm (BioTek, USA). The 
percentage of cell viability was calculated as followed:

Viability % = 100 × OD of treated cells/ OD of control cells.

Statistical analyses

Results were analyzed using an ANOVA, followed by Student’s t-test with Graph-
Pad Prism. Values were expressed as the mean with the standard deviation. The 
reported p values were considered statistically significant when p < 0.05.

Result and discussion

Preparation and characterization of chitosan nanoparticles

In our experiments, chitosan nanoparticles were first synthesized using three differ-
ent methods. The following describes each of the methods used to prepare the nano-
particle library:

To date, different approaches have been developed to produce chitosan nanoparti-
cles, but the most common approach is ionotropic gelation method since it is simple, 
cost-effective, and does not require organic solvents, but the nanoparticles obtained 
using this method shows poor mechanical strength in acidic medium. In this method 
as shown in Fig. 1, chitosan polymer is dissolved in an acetic acid solution and then 
mixed with the STPP aqueous solution under intensive stirring. Then, electrostatic 
cross-linking occurs between the positively charged amino groups (− NH3+) of chi-
tosan and the negatively charged phosphate groups in the STPP, leading to nanopar-
ticle production with a size range of 200–1000 nm [30, 33].

The microemulsion technique is used to prepare polymeric nanoparticles with a 
narrow size distribution. This technique uses a lipophilic surfactant such as poly-
sorbate 80 in an organic solvent such as acetone to produce reverse micelles [31]. 
Bovine serum albumin-loaded chitosan nanoparticles (80–180 nm) were produced 
using this approach [34]. An illustration of this strategy is shown in Fig. 2.

Fig. 1   Preparation of chitosan nanoparticles by ionotropic gelation method
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For preparation of chitosan nanoparticles by emulsion solvent diffusion method 
(Fig. 3), an organic phase such as methylene chloride and acetone was added to an 
aqueous solution containing chitosan and a stabilizer such as lecithin under stirring. 
Thus an O/W emulsion is formed. Next, methylene chloride evaporates at room tem-
perature and acetone transfers to the aqueous phase, decreasing chitosan solubility 
and thus, chitosan nanoparticles are produced upon polymer precipitation. Although 
the emulsion solvent diffusion method leads to better particle size control, strong 
cross-linking agents are commonly used in this technique and the total deletion of 
the residual cross-linking agents can be challenging [32].

Determination of particle size, PDI, zeta potential and morphology

The mean size, PDI, and zeta potential of nanoparticles prepared by the three meth-
ods are given in Table 2.

The mean size of chitosan samples was found to be between 200 and 450 nm. 
Although the mean size of the samples is within the expected limits, chitosan 
nanoparticles synthesized using ionotropic gelation method have a significantly 
lower size compared to chitosan nanoparticles prepared using O/W emulsion 

Fig. 2   Preparation of chitosan nanoparticles by microemulsion method

Fig. 3   Preparation of chitosan nanoparticles by emulsion solvent diffusion method
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solvent diffusion and microemulsion methods. In addition, the nanoparticles 
which were prepared using O/W emulsion solvent diffusion method, have a rela-
tively higher PDI compared to the nanoparticles prepared using ionotropic gela-
tion method, while their zeta potential was lower than the nanoparticles prepared 
with microemulsion and ionotropic gelation methods. Surface potential was posi-
tive for all the particles due to the presence of positively charged amine groups in 
the chitosan structure.

Zeta potential values of these nanoparticles are shown in Table  2, were sig-
nificantly different, decreasing from + 35 mv to + 12 mv. In detail, mean zeta 
potentials of the obtained chitosan nanoparticles were + 34.6 mv for the iono-
tropic gelation method, + 19.1 for the microemulsion method, and + 12.2 mv for 
the emulsion solvent diffusion method. The higher zeta potential in a particular 
range implies that the nanoparticles are stable in the formulation, suggesting the 
prevention of aggregation. The mean size and zeta potential of the chitosan nano-
particles were consistent with Rebbouh-Nouiouat et al. [35] and Hasanzadeh Kaf-
shgari et al. [36] studies.

Size distribution is also an important parameter for evaluating quality of the 
nanoparticles. As reported in Table 2, PDI values were determined as 0.26, 0.97, 
and 0.54 for the chitosan nanoparticles prepared by the ionotropic gelation, 
O/W emulsion solvent diffusion method, and microemulsion methods. PDI val-
ues should be between 0 and 1.0. PDI value in homogeneous dispersion is less, 
whereas heterogeneous dispersions have PDI values greater than 0.3.

The morphology of the synthesized chitosan nanoparticles was assessed by 
SEM. The SEM micrographs of chitosan nanoparticles are represented in Fig. 4. 
The chitosan nanoparticles obtained from ionotropic gelation method had smooth 

Table 2   Particle size, zeta potential and PDI of different chitosan nanoformulations

Method of preparation Particle size [nm]
Mean ± SD

Zeta potential
[mV]

PDI

Ionotropic gelation 253 ± 13  + 34.6 0.26
Emulsion solvent diffusion 426 ± 16  + 12.2 0.97
Microemulsion 386 ± 10  + 19.1 0.54

Fig. 4   SEM micrographs of chitosan nanoparticles produced by a the ionotropic gelation method b the 
microemulsion method, and c the O/W emulsion solvent diffusion method
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surfaces and spherical topography and less and more narrow size distributions, 
whereas the particles prepared by using the microemulsion method and emulsi-
fication solvent diffusion method showed irregular shape and pattern with some 
agglomerations.

Spectroscopic characterization

UV–visible spectroscopy

The recorded UV–visible spectral of chitosan and chitosan nanoparticles prepared 
using the microemulsion, the O/W emulsion solvent diffusion, and the iono-
tropic gelation methods are shown in Fig. 5. The UV–vis absorption of chitosan 
revealed an absorption band at 218 nm. But in the case of chitosan nanoparticles, 
the absorption bands were appeared at around 230 to 245 nm, which corresponds 
to the π- π* transition of the nanoparticles [37].

FTIR analysis

The characteristic spectrum of chitosan as shown in Fig. 6a  indicated N–H and 
O–H stretching (3430–3420  cm−1), C-H symmetric and asymmetric stretch at 
2951 cm−1and 2881 cm−1, C=O stretching of amide I at 1655 cm−1, N–H stretch 
at 1561 cm−1, CH2 stretch at 1429 cm−1, C–O stretch at 1072 cm−1, and C–O–C 
stretch at 1155  cm−1 and 895  cm−1 [38]. The chitosan nanoparticles produced 
using the three methods exhibited similar characteristic spectra as that of chitosan 
with several redshifts, indicating an increase in the hydrogen bonds or the inter-
action between amine groups of chitosan with aldehyde groups of glutaraldehyde 
(Fig. 6b–d).

Fig. 5   UV–visible spectra of 
pure chitosan and chitosan 
nanoparticles produced using 
ionotropic gelation method, 
emulsification solvent method 
and microemulsion method



836	 Polymer Bulletin (2024) 81:827–842

1 3

Anticancer evaluation of chitosan nanoparticles

The cytotoxicity of  chitosan nanoparticles obtained using three different meth-
ods was determined on MDA-MB-231 cells by MTT assay. To test the potential 
cytotoxicity of chitosan nanoparticles, MDA-MB-231 cells were treated with test 
samples at various concentrations (0.5, 1, 1.5, 2  mg/mL). As shown in Fig.  7, 
all samples tested induced dose-dependent cytotoxic effects on MDA-MB-231 
cells. Chitosan nanoparticles formed by the ionotropic gelation method at con-
centrations of 0.5, 1, 1.5, and 2 mg/mL significantly decreased the cell viability 
to 64.53%, 49.22%, 35.64%, and 22.13% of control group, respectively. However, 
under the corresponding conditions, chitosan nanoparticles produced by O/W 
emulsion solvent diffusion method at the same concentrations decreased the cell 
viability to 81.39%, 70.42%, 59.52%, and 46.83%. Moreover, the cytotoxicity of 
chitosan nanoparticles prepared by microemulsion method was lower than chi-
tosan nanoparticles obtained by ionotropic gelation method and higher than chi-
tosan nanoparticles obtained by O/W emulsion solvent diffusion method. They at 
concentrations of 0.5, 1, 1.5, and 2 mg/mL decreased the cell viability to 72.51%, 
56.79%, 47.12%, and 36.88% of control group, respectively. The IC50 values of 
chitosan nanoparticles obtained by ionotropic gelation, microemulsion, and O/W 
emulsion solvent diffusion methods on MDA-MB-231 cells were 0.89  mg/mL, 
1.24 mg/mL and 1.67 mg/mL, respectively.

In fact, chitosan nanoparticles produced by ionotropic gelation method, which 
had the smallest size and the largest zeta potential compared to the nanoparticles 

Fig. 6   FTIR spectra of a chitosan b chitosan nanoparticles prepared by microemulsion method c chitosan 
nanoparticles prepared by O/W emulsion solvent diffusion method and d chitosan nanoparticles prepared 
by ionotropic gelation method
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prepared by the other two methods, showed the highest cytotoxicity cell inhibition 
effect among all the groups tested.

The success of nanotherapeutics depends on effective cellular uptake of nano-
particles, which strongly rely on the nanoparticles’ size. Nanoparticles generally 
enter cells through the endocytosis process. Smaller nanoparticles could interact 
more effectively with cellular and subcellular compartments due to their higher 
surface/volume ratios and penetrate intracellular locations such as nucleus and 
mitochondria, making them more toxic [39]. In accordance with our results, some 
previous studies have demonstrated that nanoparticles with smaller sizes are more 
cytotoxic compared to larger nanoparticles. For example, Ko et al. [40] indicated 
that smaller gold nanoparticles (30–50 nm) have higher internalization efficiency 
to human adipose-derived stem cells compared to larger gold nanoparticles with 
sizes of 75 and 100  nm. Surface charge is another determining factor in cellu-
lar uptake and toxicity potential of nanoparticles [41]. It has been reported that 
tumor cells have a net negative charge. Therefore, it is considered that positively 
charged nanoparticles, in contrast to anionic and neutral nanoparticles, adhere 
easily to the cell membrane and increase the membrane-engulfing process due 
to electrostatic adhesion-mediated targeting [42]. Li and Malmstadt (2013) [43] 
revealed that the strong electrostatic interaction between cationic polystyrene 
nanoparticles and the phosphate groups of the membrane results in increasing 
nanoparticle–membrane binding and membrane surface tension which in turn, 
assists in the formation of pores. In this regard, we hypothesize that more potent 
anticancer activity of chitosan nanoparticles obtained using ionotropic gelation 
procedure compared to the nanoparticles produced using two other techniques is 

Fig. 7   The cytotoxic activity of the prepared chitosan nanoparticles using three different methods in 
MDA-MB-231cells. For 24 h, cells were exposed to various doses of chitosan nanoparticles. MTT assay 
was used to assess cell viability
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the result of an increased capacity to penetrate into cancer cells. Of course, it is 
well known that in addition to the size and surface charge, the cytotoxicity of 
nanoparticles depends on many other factors [44]. Therefore the exact cause for 
the marked differences in the cytotoxicity among these three different-sized and 
surface charged chitosan nanoparticles warrants further study.

Morphological changes

The morphological changes in MDA-MB-231cells exposed to various concentra-
tions of chitosan nanoparticles obtained using ionotropic gelation, microemul-
sion, and emulsion solvent diffusion methods are shown in Fig.  8. Alterations 
in the morphology of MDA-MB-231cells were observed under phase contrast 
inverted microscope. Results showed that MDA-MB-231 cells exposed to 1 and 
2  mg/mL concentrations of all samples for 24  h reduced the cell density. Most 
of the cells at 2  mg/mL of the nanoparticles lost their typical morphology and 
appeared smaller in size, shrunken, and rounded. The chitosan nanoparticles 
might enhance cell detachment by interacting with intercellular junctions. In 
addition, the extensive morphological changes (plasma membrane blebbing and 
vacuolation) observed in the MDA-MB-231 cells treated with 2  mg/mL of the 
nanoparticles, indicate an autophagic mechanism of cell death [45].

Fig. 8   Morphological changes in MDA-MB-231cells exposed to various concentrations of chitosan nan-
oparticles prepared using three different methods for 24 h. Images were taken using an inverted phase-
contrast microscope at 40 × magnification
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Conclusion

In the present study, chitosan nanoparticles were produced using three different 
methods (ionotropic gelation, microemulsion and emulsification solvent diffusion 
methods), and compared for the first time, in terms of their physicochemical and 
biological properties. The obtained nanoparticles were characterized by various 
techniques, including FTIR, SEM and UV–vis spectroscopy. The focus of this study 
was to prepare nanoparticles with anticancer activity. Hence, the anticancer activity 
of the prepared chitosan nanoparticles was evaluated in MDA-MB-231cells by MTT 
assay and phase-contrast microscopy. All the chitosan nanoparticles showed good 
cytotoxic activity against MDA-MB-231 cells but the best results were of the nano-
particles obtained using ionotropic gelation method with an average size of 253 nm. 
In fact, an inverse relationship was observed between the chitosan nanoparticles’ 
size and the cytotoxic activity, while a direct relationship between the nanoparticles’ 
surface charge and the anticancer activity was noticed. Taken together, the results of 
this study establish that the preparation of chitosan nanoparticles through any of the 
methods mentioned above leads to the formation of nanoparticles with anticancer 
activity. These nanoparticles could be considered as an effective anticancer agent for 
the treatment of human breast cancer but further investigations are needed.
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