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Abstract
A new green approach was developed in the present study to pre-activate and mod-
ify the cellulose/polyester blended fabrics surfaces using atmospheric plasma, as a 
green alternative to non-eco-friendly conventional chemical modification processes, 
followed by post-dyeing/functional finishing to obtain high value-added, multifunc-
tional, protective and colored blended fabrics. The obtained results demonstrated 
that the imparted antibacterial and anti-UV functional properties and the increase 
in color strength are greatly improved owing to plasma pre-modification step. Type 
of plasma gas, O2− or N2−, blended substrate, cotton/polyester (C/PET) or viscose/
polyester (V/PET), kind of coloring agent: pigment, basic dye or curcumin natural 
dye, as well as the chemical nature of functional additive: thyme oil, clove oil, lav-
ender, tulsi, ginger, vanillin, ascorbic acid or salicylic acid, ZnO − or Al2O3− NPs 
have a significant impact on extent of coloration and bi-functionalization of the final 
products. The extent of surface modification as well degree of fixation and immobi-
lization of the used coloring and functional agents as well as the durability to wash 
were confirmed by SEM & EDX analysis and washing test, respectively.
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Introduction

Cellulose-based textiles have many inherent desirable properties such as hydro-
philicity, wettability, comfortability, biodegradability and softness [26, 34]. How-
ever, they lack antibacterial functionality, UV-blocking ability, and easy-care 
property [26]. Blending of cellulosic fibers like cotton and viscose with polyester 
(PET) fibers results in minimizing the total production costs and upgrading the 
performance and functional properties of the fabricated textiles quality [16].

On the other hand, there are many negative impacts and environmental con-
cerns in the conventional textile wet processing industry, i.e., pretreatment, col-
oration, and chemical finishing stages, of cellulose-containing fabrics that nega-
tively affect both the product and ecology quality and hinder its own sustainable 
development such as high clean water, energy and chemicals consumption along 
with the associated environmental hazards [10, 15, 21].

Recently, a great efforts and attention have been paid for the adoption and 
implementation of emerging, environmentally friendly and sustainable technolo-
gies such as plasma [1, 18], nano- [14, 17, 24], and/or bio-technologies [7, 10, 
21] in textile wet processing industry taken into account product and environ-
ment quality, water-shortage and energy crisis, cleaner production principles, 
consumer demands and awareness for hygienic, durable, sustainable, high perfor-
mance multifunctional, and fashionable textile products with high value-added to 
suit the ever-growing end use requirements, environmental, economic and social 
concerns [10, 26].

Therefore, it is expected that pre-surface modification and activation of 
blended substrates with appropriate plasma gas, as an eco-friendly, dry, energy 
efficient and economic green alternative to the conventional chemical finishing 
process [8, 25], followed by simultaneous dyeing and functional finishing in a 
single step using various dyestuffs along with selected functional additives and 
different functional finishing formulation constituents can be considered as a 
new strategy for surface modification, dyeing, and multifunctionalization of the 
blended fabrics to get textile products with advances or novel properties cope 
with both the textile user demands and the environmental requirements. To date, 
there are few articles focused on coloration and multifunctionalization of blended 
fabrics using emerging technologies [2, 3, 13, 19, 20, 25, 27, 32].

Herein, a new environmentally sound strategy has been adopted and imple-
mented to develop multifunctionalized dyeings. A combination of atmospheric 
plasma preactivation, using O2- or N2-working gas, followed by post-treatment 
with different dyeing/functional finishing formulations in a 37- KHz sonicator 
bath at 50 W, squeezing and microwave fixation at 450 W for 6 min resulted in a 
remarkable improvement in the imparted antibacterial and UV-protection proper-
ties along with a significant increase in the color strength of the obtained dye-
ings. The change in the extent of functionalization and coloration was governed 
by type of coloring agent (pigment, basic dye or curcumin), kind of bio-active 
ingredient (thyme oil, clove oil, lavender, tulsi, ginger, vanillin, ascorbic acid, or 
salicylic acid) as well as metal oxide nanoparticles (ZnO NPs or Al2O3 NPs). The 
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imparted functionalities, extent of dyeability and nitrogen content of the devel-
oped products were assessed, and the possible interactions among the preacti-
vated substrates, additives and coloring agents were also proposed and discussed.

Experimental procedure

Mill-scoured and bleached cotton/polyester (C/PET, 50/50, 230 g/m2) and viscose/
polyester (V/PET, 50/50, 220 g/m2) were used in this study.

Nano-Zinc Oxide (ZnO NPs, particle size 40–100 nm, APS powder Alfa Aesar, 
Germany), and nano-Aluminum Oxide (Al2O3 NPs, NanoArc ™ AL-0450, 50% in 
H2O colloidal dispersant, 45 nm APS, for dry powder, Alfa Aesar, Germany) were of 
commercial grade.

Environmentally sound pigment colorant namely Bezaprint® Blue Got (CHT, 
Bezema, Germany), Printofix® binder MTB01 EG Liq. (anionic binder based on 
self-crosslinking acrylate copolymer, Egcodar), Basic dye 18 (Aizen Cathilon Red 
GTLH, Astrazon Red GTL, Ciba) and curcumin (powder, 99.8% pure and anhy-
drous, Sigma-Aldrich, Germany) was used.

Ascorbic acid, salicylic acid, citric acid, Na- hypophosphite monohydrate 
(NaH2PO2), Ammonium persulfate ((NH4)2S2O8) and vanillin were of laboratory 
reagent grade.

All the used green functional additives based on natural products like thyme oil, 
lavender, clove oil, ginger oil, and tulsi oil were purchased from the local market.

Plasma pretreatment

C/PET and V/PET blended fabrics were preactivated with atmospheric pressure 
plasma for 45 s through placing between the two electrodes of dielectric barrier dis-
charge (DBD) plasma: power supply (20,000 Hz), frequency (50 W), output (5 kV) 
using N2– or O2– as working gas at fixed flow rate: 3L/min. [31].

Post‑pigment dyeing and functional finishing

Immediately after O2-plasma pre-modification, the preactivated cotton/polyester (C/
PET) and viscose/polyester (V/PET) blended fabric samples were post-dyed/func-
tional finished in a single stage using the exhaustion technique with the following 
bath constituents:

Pigment (10  g/L), binder (20  g/L), (NH4)2S2O8 (2  g/L) alone and in combina-
tion with: Ascorbic acid (10 g/L), Thyme oil (20 g/L), Clove oil (20 g/L), Lavender 
(20 g/L), Tulsi (20 g/L), Ginger (20 g/L), Vanillin (20 g/L), ZnO NPs (10 g/L) or 
Al2O3 NPs (10 g/L) as active ingredient with an LR of 1/20 at 80  °C for 30 min 
in a 37-kHz sonicator bath at 50 W. The preactivated/dyed/finished fabric samples 
were then squeezed to wet pickup of 70% followed by microwave fixation at 450 W 
for 6 min, thoroughly washed to remove unfixed/unreacted constituents and finally, 
dried and conditioned before evaluation.
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Post‑basic dyeing and functional finishing

Immediately after O2-plasma pre-activation, the plasma-pretreated substrates 
were post-dyed with basic dye/functional finished simultaneously using the 
exhaustion method with the following bath ingredients:

Basic dye (2.5 g/L, citric acid (CA, 20 g/L), and NaH2PO2 (SHP, 10 g/L) in the 
absence and the presence of the following additive namely Tulsi (20 g/L), Vanil-
lin (20 g/L), Ascorbic acid (10 g/L), Salicylic acid (10 g/L), ZnO NPs (10 g/L) or 
Al2O3 NPs (10 g/L) as active ingredient with an LR of 1/20 at 80 °C for 30 min in 
a 37-kHz sonicator bath at 50 W. The treated fabric samples were then squeezed 
to wet pickup of 70% followed by microwave fixation at 450 W for 6 min, thor-
oughly washed to remove unfixed/unreacted molecules and ingredients and 
finally, dried and conditioned before characterization and evaluation.

Post‑curcumin dyeing and functional finishing

Immediately after N2-plasma pre-activation, the treated fabric samples were post-
dyed/functional finished in one step using the exhaustion method with the follow-
ing bath constituents:

Curcumin (2.5 g/L), CA (10 g/L), and SHP (5 g/L) alone and in combination 
with: Tulsi (20 g/L), Vanillin (20 g/L), Ginger (20 g/L), Ascorbic acid (10 g/L), 
Salicylic acid (10 g/L), ZnO NPs (10 g/L) or Al2O3 NPs (10 g/L), as functional 
additive, with an LR of 1/20 at 80 °C for 30 min in a 37-kHz sonicator bath at 
50 W. The treated samples were then microwave fixed at 450 W for 6 min, thor-
oughly washed to remove unfixed finishing bath constituents, and finally dried 
and conditioned before evaluation.

Characterization

The surface morphology of selected fabric samples was observed using SEM 
Model Quanta SEM 250 FEG (Field Emission Gun) attached with EDX unit 
(Energy-Dispersive X-ray analysis with accelerating voltage – 30  kV FEI Co. 
Netherlands) for the surface composition analysis of MONPs-loaded fabric 
samples.

Testing

Nitrogen content (N%) of Treated fabric samples was evaluated by Kjeldahl method.
The antibacterial activity of untreated and post-treated fabric samples was tested 

by using plate count agar method according to the AATCC Test Method 100–1999. 
The reduction percentage of bacterial colonies was calculated using the following 
equation: R (%) = (B−A)/B × 100, where R% is the reduction percentage of bacterial 
colonies, A is the number of bacterial colonies on the agar plate for treated fabric, 
and B is the number of bacterial colonies on the agar plate of untreated one.
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UV-protection factor (UPF) of both untreated and treated fabrics was assessed 
according to the Australian/New Zealand standard Method AS/NZS 4366–1996 
and rated as follows: good (UPF: 15–24), very good (UPF:25–39), and excellent 
UV-protection (UPF˃ 40). The higher the UPF value, the better the UV-protecting 
efficacy.

Color strength (K/S) values of the obtained dyeings were calculated using 
kubelka–Munk equation: K/S = (1−R)2/2R, where K, S, R are absorption, scattering 
coefficient, and reflectance of colored fabrics, respectively, at maximum absorbance 
wavelength, respectively.

Durability to washing was determined according to AATCC Test method 
2A-1996, after 10 launder cycles.

All the tests have performed in triplicate and presented as mean values.

Results and discussion

In the present study, cotton/polyester (C/PET) and viscose/polyester (V/PET) 
blended fabrics were preactivated and modified using O2- or N2- atmospheric 
plasma to enhance the extent of fixation of the used dyestuffs and immobilization of 
included bioactive ingredients and nano-metal oxides in the subsequent union dye-
ing and functional finishing treatments. The extent of coloration and multifunction-
alization of the developed substrates was investigated as a function of type of plasma 
gas and substrate, kind of dye and bio-active ingredient as well as nanometal oxide 
additive.

Simultaneous pigment dyeing and functional finishing

As far as the change in % N, the extent of post-pigment dyeing, expressed as K/S 
value, the imparted antibacterial activity, expressed as R %, against both the G + ve 
(S. aureus) and G−ve (E.coli) pathogenic bacteria, as well as the UV-protection 
ability, expressed as UPF, as a function of type of blended substrate and kind of 
active ingredient, the data in Table 1 signify that incorporation of any of the used 
active ingredients along with pigment in the dyeing/finishing bath results in an 
increase in the % N, a remarkable improve in the K/S value, a noticeable increase 
in the imparted antibacterial activity against the tested harmful bacteria as well as a 
significant improve in the imparted UV-protection ability against the harmful UV-B 
radiation, keeping O2-plasma pretreatment step constant.

The extent of increase in post-pigment dyeing and functional finishing of 
O2-plasma premodified and activated substrates is governed by type of substrate, C/
PET ˃ V/PET, as well as kind of active ingredient and a functional agent [16, 30].

The variation in the extent of post-coloration and functionalization of the treated 
substrates reflects their differences in fabric construction, fiber chemistry and 
hydrophilicity [34], extent of surface modification and preactivation by O2-plasma 
[20, 42], number, location and accessibility of created O2- containing reactive 
sites such as -OH, -C = O and -COOH groups [5, 42], which in turn affects fabric 
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hydrophilicity, wettability as well as degree of fixation and immobilization of post-
dyeing/finishing bath constituents, i.e., pigment molecules, binder, and functional 
additives, onto/within the fabric structure during the microwave fixation step [20, 
33].

On the other hand, the variation in the performance and imparted antibacterial 
and anti-UV functional properties upon using various active ingredients namely 
Ascorbic acid, Thyme oil, Clove oil, Lavender, Tulsi, Ginger and Vanillin along 
with the pigment and binder in the union pigment dyeing/functional finishing bath 
could be discussed in terms of differences among them in number of active com-
pounds and their concentration, chemical structure mode of interaction and fixation 
or entrapment along with pigment dye during microwave fixation step, extent of 

Table 1   Effect of post-pigment dyeing and functional finishing of O2-plasma-treated substrates on some 
performance and functional properties

O2-plasma pre-activation: power supply (20,000 Hz), output (5 kV), frequency (50 W), flow rate (3L/
min), time 45 s
Pigment bath constituents: pigment (10 g/L), binder (20 g/L), (NH4)2S2O8 (2 g/L)
Functional additive: Ascorbic acid (10 g/L); Thyme oil (20 g/L); Clove oil (20 g/L); Lavender (20 g/L); 
Tulsi (20 g/L), Ginger (20 g/L); or Vanillin (20 g/L)
Combined pigment dyeing and functional finishing: LR (1/20); at 80 °C for 30 min in a 37-kHz sonicator 
bath at 50 W; squeezed to wet-pickup of 70% followed by microwave fixation at 450 W for 6 min, thor-
oughly washed and finally dried
N (%): nitrogen content, K/S: color strength at ʎ = 570; R: reduction percentage of bacterial colonies; 
G + ve: S. aureus, G−ve: E.coli, UPF: UV-protection factor

Substrate Post-treatment bath constituents N (%) K/S R (%) UPF

G + ve G−ve

Cotton/polyester (C/PET) Pigment 0.046 6.48 74.5 67.0 137
Pigment + Ascorbic acid 0.138 6.67 98.62 90.45 268
Pigment + Thyme oil 0.088 10.96 88.76 80.15 304
Pigment + Clove oil 0.245 12.96 77.58 69.82 156
Pigment + Lavender 0.266 18.83 71.52 65.18 685
Pigment + Tulsi 0.318 17.16 86.43 77.10 584
Pigment + Ginger 0.311 15.07 87.17 78.20 393
Pigment + Vanillin 0.111 16.45 90.34 87.90 508

O2-plasma treated None 0.00 0.00 15.20 10.11 44
Viscose/polyester (V/PET) Pigment 0.040 3.98 56.80 45.80 110

Pigment + Ascorbic acid 0.107 4.47 86.02 82.92 249
Pigment + Thyme oil 0.085 7.50 74.53 68.20 240
Pigment + Clove oil 0.145 10.59 75.88 67.00 148
Pigment + Lavender 0.160 16.54 70.01 62.50 615
Pigment + Tulsi 0.293 15.96 82.43 73.60 558
Pigment + Ginger 0.251 12.83 85.05 75.20 310
Pigment + Vanillin 0.091 14.89 88.40 83.75 490

O2-plasma treated None 0.00 0.00 13.00 7.85 35
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modification and functionalization of the preactivated substrate, antibacterial mech-
anism as well as UV-shielding, blocking and/or absorbing capability [29, 30].

Additionally, the obtained data in Table  1 signify that inclusion the aforemen-
tioned active ingredients along with binder, and pigment in the union dyeing and 
finishing bath not only imparts multifunctional properties namely antibacterial, anti-
UV [4, 30, 46] to treated substrates but also acts as a dye provider or supporter and 
good fragrance in most cases. (except in case of using ascorbic acid as additive).

The extent of improvement in the imparted antibacterial activity of the obtained 
functional dyeings follows the decreasing order: G + ve (S. aureus)> G−ve (E.coli), 
keeping other parameters constant, which reflects their differences in their mem-
brane structure as well as amenability to cell wall structure damage [11, 37, 44].

Union pigment dyeing and nano‑finishing

As far as the change in the extent of post-pigment dyeing and nanofinishing of 
O2-plasma preactivated substrates as a function of type of blended substrate and 
kind of nano-metal oxide, i.e., ZnO NPs or Al2O3 NPs, the experimental data in 
Table 2 demonstrate that inclusion of ZnO NPs or Al2O3 NPs into post-pigment dye-
ing followed by sonication and microwave fixation results in a reasonable increase in 
% N, a significant improvement in the color strength, K/S, of the obtained dyeings 
along with outstanding enhance in the imparted antibacterial activity against both 
the G + ve (S. aureus) and G−ve (E.coli) bacteria and excellent UV-protection prop-
erty, irrespective of the used substrate.

The variation in the aforementioned properties is governed by type of substrate as 
discussed earlier and follows the decreasing order: C/PET > V/PET, as well as kind 
of metal oxide nanoparticles, MONPs, and follows the descending order: ZnO NPs 
> Al2O3 NPs, keeping other parameters constant.

The improvement in both % N and K/S values upon using MONPs along with 
pigment and binder could be discussed in terms of the positive role of nanometal 
oxide particles, binding agent along with the created -COOH groups onto O2-plasma 
pre-treated fabric surface in enhancing the extent of pigment fixation and/or 

Table 2   Effect of post-pigment dyeing and nanofinishing of O2-plasma preactivated substrates on some 
performance and functional properties

O2-plasma treatment, pigment bath constituents, combined pigment dyeing and functional finishing con-
ditions, as well as abbreviations are as in Table 1 footnotes

Substrate Post-treatment bath constituents N (%) K/S R (%) UPF

G + ve G − ve

C/PET pigment 0.046 6.48 74.5 67.0 137
Pigment + ZnO NPs (10glL) 0.093 9.72 98.70 90.06 1024
Pigment + Al2O3 NPs (10glL) 0.186 9.25 98.09 88.20 410

V/PET pigment 0.040 3.98 56.80 45.80 110
Pigment + ZnO NPs (10glL) 0.064 8.80 93.51 86.28 975
Pigment + Al2O3 NPs (10glL) 0.107 8.37 91.70 85.93 375
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developing darker depth of color [19, 20] during the microwave fixation step, under 
acidic condition.

Additionally, the variation in the imparted antibacterial efficacy against the tested 
G + ve and G−ve bacteria upon using ZnO- or Al2O3- NPs as functional additive 
could be discussed in terms of their differences in: i) extent of fixation and immo-
bilization onto the treated substrates during microwave fixation step, ii) ability to: 
damage the cell wall, disrupt bacterial membrane and inhibit the growth of the 
bacterial cell as in case of using Al2O3 NPs, iii) extent of deactivation of essential 
enzymes in bacterial cells, iv) generation of reactive oxygen species ROS, e.g., •OH, 
•O2

–, H2O2, etc., through photocatalysis, as in case of using ZnONPs, and v) disrup-
tion of vital components, e.g., DNA, lipid, protein, etc., in bacterial cells via oxida-
tive stress, which is turn results in the death of microbial cells [22, 48].

Moreover, the excellent improvement in UV- protection functionality of post-
dyed/ nano-finished substrates could be attributed to the positive role of immobi-
lized and fixed MONPs onto the developed substrates in refracting, scattering and 
blocking of the harmful UV-B radiation and hindering its transmittance from fabric 
to the textile user skin [34].

Post‑basic dyeing and functional finishing

As far as the change in % N, K/S, R% and UPF values of O2-plasma pretreated sub-
strates followed by cationic dyeing, the data in Table  3 reveal that: i) post-basic 
dyeing of O2-plasma-treated substrates results in an increase in % N, K/S, R% and 
UPF values, regardless of the used substrate, ii) the variation in these properties fol-
lows the decreasing order: C/PET > V/PET, keeping other parameters fixed, iii) The 
imparted antibacterial activity against both the G + ve and G−ve bacteria is attrib-
uted to the interaction between cationic active sites ( N+) of the used basic dye and 
the negatively charged cell membrane of pathogenic bacteria which is turn results in 
damaging of cell membrane, denaturing protein, inhibiting DNA and avoiding mul-
tiplication [28], and iv) the excellent protection against the harmful UV-B radiation 
reflects the positive role of fixed dye in absorbing and shielding the harmful UV-
radiation thereby avoiding its negative impacts on human body [6, 28].

The experimental results in Table 3 demonstrate also that inclusion of Tulsi, Van-
illin, Ascorbic acid or Salicylic acid, as functional additive, along with the basic dye 
is accompanied by an increase in %N, K/S, R% and UPF values regardless of the 
used substrate and follows the decreasing order: Basic dye + Salicylic acid ˃ Basic 
dye + Ascorbic acid > Basic dye + Tulsi > Basic dye + Vanillin > Basic dye alone. 
The variation in the imparted performance and functional properties of the devel-
oped basic dyed/functional finished substrates reflects the differences among the 
used additives in: chemical structure, active ingredients, extent of interaction and 
fixation during the microwave fixation step, its positive role in improving the extent 
of cationic dyeing, inherent functional properties, i.e., antibacterial action and UV-
blocking absorbing and/or scattering effect [29, 30], which in turn affects the extent 
of modification and functionalization of the treated substrates.
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The improvement in the imparted coloration and functionalization properties of 
O2-plasma treated substrates followed by combined basic dyeing and functional finish-
ing using the abovementioned additives could be discussed as follows [20]:

(1)
HO − Cell∕PET

Blend

O2−Plasma
⟶

Pre−treatment

HOOC − Cell∕PET − COOH

Modified blend

I

(2)HO. − Cell∕PET + CA
SHP
���������������→

Δ

HOOC − Cell∕PET − COOH

Ester - crosslinkedblend

II

(3)(I) and∕or (II) + Basic dye− +N −
Sonication

→

Δ
Post − dyed substrate

Table 3   Effect of post-basic dyeing and functional finishing of O2-plasma pretreated substrates on some 
performance and functional properties

O2-plasma preactivation: power supply (20,000  Hz); output (5  kV), frequency (50  W), flow rate (3L/
min), time 45 s
Basic dyeing bath constituents: Basic dye (2.5 g/L), Citric acid (CA, 20 g/L) and NaH2PO2 (SHP,10 g/L)
Functional additive: Tulsi (20 g/L); Vanillin (20 g/L), Ascorbic acid (10 g/L) or Salicylic acid (10 g/L)
Combined basic dyeing and functional finishing: LR (1/20), at 80 °C for 30 min in a 37-kHz sonicator 
bath at 50 W, squeezed to wet pickup of 70%, followed by microwave fixation at 450 W for 6 min, thor-
oughly washed and finally dried
N (%): nitrogen content, K/S: color strength at ʎ = 480; R: reduction percentage of bacterial colonies; 
G + ve: S. aureus, G−ve: E.coli, UPF: UV-protection factor

Substrate Post-treatment bath constituents N (%) K/S R (%) UPF

G + ve G − ve

Cotton/polyester (C/PET) Basic dye 0.090 9.62 85.35 76.71 786
Basic dye + Tulsi 0.120 11.25 88.90 81.95 940
Basic dye + Vanillin 0.098 10.97 91.77 88.32 1134
Basic dye + Ascorbic acid 0.139 9.38 76.12 70.50 1029
Basic dye + Salicylic acid 0.191 13.01 99.60 94.12 985

O2-plasma treated None 0.00 0.00 15.20 10.11 44
Viscose/polyester (V/PET) Basic dye 0.079 5.59 65.70 60.51 423

Basic dye + Tulsi 0.095 7.40 85.84 81.81 539
Basic dye + Vanillin 0.082 6.75 88.20 82.50 740
Basic dye + Ascorbic acid 1.092 7.22 70.50 65.30 639
Basic dye + Salicylic acid 1.145 7.68 93.55 91.66 564

O2-plasma treated None 0.00 0.00 13.00 7.85 35
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where HO.Cell = cotton or viscose component.

Combined basic dyeing and nanofinishing

For a given set of O2-plasma pretreatment followed by subsequent union basic 
dyeing and nanofinishing using ZnO NPs or Al2O3 NPs, the experimental results, 
Table 4, successfully classify that inclusion of ZnO NPs or Al2O3 NPs into the cati-
onic dyeing bath results in an increase in the %N, K/S, the imparted anti-bacterial 
activity, R%, as well as in UV-protection ability, regardless of the treated substrate. 
The enhancement in the aforementioned properties follows the decreasing orders:

Substrate: C/PET > V/PET,
N% and K/S values: Al2O3 NPs > ZnO NPs > None, and.
R% and UPF values: ZnO NPs >Al2O3 NPs >None, keeping other parameters 

constant.
The %N and K/S differences are attributed to the differences between the used 

MONPs in extent of catalyzation and fixation of the used cationic dye in the micro-
wave fixation step [28]. On the other hand, the extent of loading ZnO NPs or Al2O3 
NPs onto the O2-plasma pretreated substrate due to the generation of new active 
sites, especially polar -COOH groups, as well as the created -COOH groups as a 
direct consequence of ester crosslinking using CA/SHP system which could attach 
and anchor the MONPs as follows [22, 25, 38, 40]:

(4)(I) and∕or (II) + functional additive
Sonication
⟶ functional additives − loaded blends

(5)
(I) and∕or (II) + Basic dye −+N − + functional additives

Sonication
⟶
Δ

Basic − dyed∕functional finished substrate

(6)(I) and or (II) + MONPS
Sonication
⟶

Δ
MONPS − loaded substrate

Table 4   Effect of post-basic dyeing and nanofinishing of O2-plasma pre-treated substrates on some per-
formance and functional properties

O2-plasma treatment, Basic dyeing bath constituents, combined basic dyeing and functional finishing 
conditions as well as abbreviations are as in Table 3 footnotes

Substrate Post-treatment bath constituents N (%) K/S R (%) UPF

G + ve G − ve

C/PET Basic dye 0.090 9.62 85.35 76.71 786
Basic dye + ZnO NPs (10glL) 0.099 12.11 97.50 93.85 1878
Basic dye + Al2O3 NPs(10glL) 0.164 15.37 95.60 92.59 1352

V/PET Basic dye 0.079 5.59 65.70 60.51 423
Basic dye + ZnO NPs (10glL) 0.086 6.97 92.17 89.24 670
Basic dye + Al2O3 NPs(10glL) 0.102 8.57 88.39 85.55 548
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On the other hand, fixation and entrapment of the used MONPs via the cationic 
active sites in the dye structure during cationic dyeing and nano-finishing step can-
not be ruled out.

On the other hand, the remarkable improvement in the imparted antibacterial 
activity of simultaneously basic dyed and nanofinished substrates is ascribed to: i) 
introduction of cationic active site N+, onto the dyed substrate, ii) photo-catalysis 
activity of the loaded ZnO-NPs onto fabric surface which in turn Leads to genera-
tion of highly reactive oxygen species, ROS, e.g., •OH, •O2, H2O2, etc., as follows 
[22]:

which in turn causes the disruption of vital bacterial cell components, e.g., pro-
tein, DNA, lipids, etc., via oxidative stress, iii) disruption of the bacterial membrane 
by MONPs, and/or iv) interaction between thiol groups and ZnO-NPs thereby deac-
tivating of essential enzymes in the pathogenic bacterial cell [36].

Additionally, the variation in the imparted antibacterial functionality is gov-
erned by type of MONPs and mode of action, by generation of ROS as in case of 
using ZnO-NPs as mentioned before or by inhibiting the production of ROS as in 
case of using Al2O3-NPs [39]. The imparted antibacterial activity in case of using 
Al2O3-NPs is ascribed to its binding ability onto the bacterial cell wall, thereby 
causing its damage followed by subsequent penetration into the cell which in turn 
negatively affects and inhibits the growth of the bacterial cell.

The data in Table 4 also signify that inclusion of ZnO-NPs or Al2O3-NPs along 
with the dyeing/nanofinishing formulation results in a remarkable increase in UPF 
value, regardless of the used substrate as a direct consequence of increasing the 
UV-blocking and shielding efficacy along the positive role of the used basic dye in 
upgrading the UV-absorption capacity [22, 28].

Post‑curcumin dyeing and functional finishing

For a given set of N2-plasma pretreatment and subsequent natural dyeing using 
curcumin dye and functional finishing, the results in Table  5 demonstrate that i) 
N2-plasma pretreatment results in an increase in the %N, an improve in antibacte-
rial activity due to the created cationic sites, -NH2 groups, at fabric surface as well 
as an improve in UPF values, irrespective of the used substrate, and ii) the extent 

(7)ZnONPs + hv
UV∕Vis irraditaion

→

ZnONPs + h
+ + e

−

(8)h+ + H2O →
∙OH + H+

(9)e− + O2 → O∙−
2

(10)O∙−
2
+ H+

→ HO∙
2

(11)2HO∙
2
→ H2O2 + O2
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of variation in these properties is governed by type of substrate and follows the 
decreasing order: C/PET ˃ V/PET.

Inclusion of Tulsi, Vanillin or Ginger along with other constituents in curcumin 
dyeing bath, i.e., CA + SHP, is accompanied by an increase in the %N, K/S of the 
obtained dyeings, a noticeable improvement in the imparted antibacterial activity 
against both the G + ve (S. aureus) and G−ve (E.coli) bacteria along with an excel-
lent increase in the UPF values of the obtained natural dyed/functional finished 
substrates, regardless of the used fabric blend. The variation in the aforementioned 
properties reflects the differences among the included active ingredients in: chemi-
cal structure, active ingredients such as: eugenol, carvacrol, methyl eugenol, B-car-
yophyllene and oleanolic acid ingredients in Tulsi [41], active phenolic groups in 
Vanillin [29], and α-pinene, borneol, camphere and linalool in Ginger [47] and their 
antibacterial activity and UV-blocking and/or absorbing ability [12, 35], mode of 
interaction with other constituents in dyeing/functional finishing formulation during 
the microwave fixation step [30].

Table 5   Effect of post-curcumin dyeing and functional finishing of N2-plasma preactivated substrates on 
some performance and functional properties

N2-plasma preactivation: power supply (20,000  Hz); output (5  kV), frequency (50  W), flow rate (3L/
min), time 45 s
Curcumin bath constituents: curcumin (2.5 g/L), Citric acid (10 g/L), NaH2PO2 (SHP- 5 g/L)
Functional additive: Tulsi (20 g/L); Ginger (20 g/L), Vanillin (20 g/L), Ascorbic acid (10 g/L), or Sali-
cylic acid (10 g/L)
Combined curcumin dyeing and functional finishing: LR (1/20), at 80 °C for 30 min in a 37-kHz sonica-
tor bath at 50 W, squeezed to a wet pickup of 70%, followed by microwave fixation at 450 W for 6 min, 
thoroughly washed and finally dried
N (%): nitrogen content, K/S: color strength at ʎ = 440; R: reduction percentage of bacterial colonies; 
G + ve: S. aureus, G − ve: E.coli, UPF

Substrate Post-treatment bath constituents N (%) K/S R (%) UPF

G + ve G − ve

Cotton/polyester (C/PET) Curcumin dye 0.026 0.96 49.80 43.15 142
Curcumin + Tulsi 0.080 1.33 79.20 73.20 291
Curcumin + Vanillin 0.027 1.22 75.70 70.30 173
Curcumin + Ginger 0.042 1.58 68.20 60.35 319
Curcumin + Ascorbic acid 0.040 1.14 85.97 80.50 167
Curcumin + Salicylic acid 0.058 1.97 98.80 93.12 185

N2-plasma treated None 0.021 0.00 25.10 20.25 49
Viscose/polyester (V/PET) Curcumin dye 0.019 0.57 43.50 40.24 107

Curcumin + Tulsi 0.086 1.01 79.12 68.10 252
Curcumin + Vanillin 0.021 1.09 70.10 60.20 149
Curcumin + Ginger 0.039 1.03 63.80 56.00 289
Curcumin + Ascorbic acid 0.044 0.930 80.12 73.95 125
Curcumin + Salicylic acid 0.049 1.620 94.50 91.60 143

N2-plasma treated None 0.015 0.00 21.15 18.20 38
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It is also observed that incorporation of ascorbic or salicylic acid in post-dyeing/
functional finishing bath results in an increase in the % N, K/S values along with a 
remarkable improvement in the imparted antibacterial activity and anti-UV func-
tionality of the developed substrates. The extent of coloration and functionalization 
is governed by type of acid as discussed earlier, and mode of interaction and extent 
of damaging the tested bacteria. The antibacterial effect of ascorbic acid is ascribed 
to its ability to act as a barrier for oxygen availability to the tested pathogenic bac-
terial [9]. However, the damaging effect of phenolic compound on the DNA is 
believed to be responsible for the antibacterial activity of salicylic acid [23, 45].

It can be included that creation of cationic active sites -NH2 groups, by N2-plasma 
pre-modification [20, 25], fixation of curcumin dyestuff onto the preactivated sub-
strate via ionic attraction and Van der Waals forces [49], antibacterial activity of 
methoxy and hydroxyl active groups of fixed curcumin dye [43], along with the 
loaded bioactive ingredients during the microwave fixation step under acidic condi-
tion exhibited a remarkable improvement in extent of coloration, antibacterial and 
anti-UV functionalization of the developed products.

Combined curcumin dyeing and nano‑finishing

As far as the change in %N, K/S, R% and UPF values of simultaneously dyed and 
nano-finished substrates after N2-plasma pre-modification, the data in Table 6 sig-
nify that: i) curcumin dyeing of N2-plasma pre-treated substrates results in an 
increase in K/S, antibacterial activity and anti-UV properties of the simultane-
ously dyed and nano-finished substrates, ii) the enhancement in the aforementioned 
properties is attributed to fixation of curcumin dye with its methoxyl and hydroxyl 
groups onto the obtained products via ionic attraction and Van der Waals forces 
which in turn positively affects dye fixation and functionalization iii) inclusion of 
ZnO or Al2O3-NPs along with other constituents in the dyeing/finishing formulation 
brings about a slight increase in %N, a noticeable increase in the K/S value, along 
with a remarkable improve in the imparted antibacterial and UV- shielding property 
of the developed products. The extent of improvement in the imparted properties is 

Table 6   Effect of post-curcumin dyeing and nanofinishing of N2-plasma preactivated substrates on some 
performance and functional properties

N2-plasma treatment, Curcumin dyeing bath constituents, combined curcumin dyeing and functional fin-
ishing conditions, as well as abbreviations are as in Table 5 footnotes

Substrate Post-treatment bath constituents N (%) K/S R (%) UPF

G + ve G − ve

C/PET Curcumin dye 0.021 0.96 49.80 43.15 142
Curcumin dye + ZnO NPs (10 glL) 0.056 1.90 91.66 85.69 233
Curcumin dye + Al2O3 NPs (10 glL) 0.042 1.52 81.99 76.80 180

V/PET Curcumin dye 0.015 0.57 43.50 40.24 107
Curcumin dye + ZnO NPs (10 glL) 0.032 1.38 85.20 80.20 156
Curcumin dye + Al2O3 NPs (10 glL) 0.025 1.05 74.50 69.92 123
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Fig. 1   SEM and EDX spectra of untreated C/PET (a, b) and V/PET (c, d) fabric samples

Fig. 2   SEM and EDX spectra of C/PET (a, b) and V/PET (c, d) fabric samples preactivated with 
O2-plasma followed by pigment dyeing and ZnO NPs nanofinishing in one step
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Fig. 3   SEM and EDX spectra of C/PET (a, b) and V/PET (c, d) fabric samples preactivated by 
O2-plasma- followed by basic dyeing and ZnO NPs nanofinishing in one step

Fig. 4   SEM and EDX spectra of C/PET (a, b) and V/PET fabric samples preactivated by N2-plasma – 
followed by Curcumin dyeing and Al2O3 NPs nanofinishing in one step



12368	 Polymer Bulletin (2023) 80:12353–12372

1 3

governed by kind of MONPs, i.e., ZnO NPs > Al2O3 NPs, as well as type of blended 
fabric, i.e., C/PET/V/PET, keeping other parameters fixed, as discussed before.

Cationic modification of blended substrates by N2-plasma, as well as ester-
crosslinking via CA/SHP during microwave fixation step, enhance bonding of cur-
cumin dye/MONPs and fixation of the curcumin/MO nanocomposites onto and/or 
within the fabric structure, which in turn positively affects the extent of simultane-
ous coloration and functionalization of the dyed/finished substrates [20, 28].

SEM and EDX analysis

Figures 1, 2, 3 and 4 (a and c) show the surface morphology of untreated C/PET 
and V/PET fabric samples as well as plasma preactivated, post-dyed/functional fin-
ished fabric samples (Figs. 2, 3, and 4). While the untreated ones (Fig. 1 a and c) 
showed a smooth and even surfaces, preactivated post-dyed/functional finished fab-
ric samples show a noticeable change to the surface morphology regardless of the 
used substrate, dye type and kind of MONPs. The extent of variation in the surface 
morphology of treated fabric samples is governed by type of substrate, extent of pre-
activation and modification by plasma gas, surface morphology, location and extent 
of dye fixation as well as MONPs immobilization onto the preactivated substrates 
during the microwave fixation step.

On the other hand, EDX analysis of premodified post-dyed/functional finished 
fabric samples showed clearly the presence of carbon, oxygen, nitrogen elements 
along with Zn or Al element as shown in Figs. 2, 3 and 4 (b & d), which in turn 
confirms the fixation of the used dye along with ZnO NPs or Al2O3 NPs on the 
developed dyed/functional finished substrates especially during the microwave fixa-
tion step.

Table 7   Washing durability of developed color and functional properties

Durability to wash, after 1 or 10 launder cycles, was evaluated according to AATCC Test Method 
61(2A)-1996

Treatment sequence Substrate Wash cycle N (%) K/S R (%) UPF

G + ve G− ve

O2-plasma → Pigment/ZnO NPs C/PET 1 0.093 9.72 98.70 90.06 1024
10 0.088 9.13 94.65 86.72 982

V/PET 1 0.064 8.80 93.51 86.28 975
10 0.060 8.42 89.04 82.08 932

O2-plasma → Basic dye/ZnO NPs C/PET 1 0.099 12.11 97.50 93.85 1878
10 0.090 11.47 93.02 89.04 1792

V/PET 1 0.086 6.97 92.17 89.24 670
10 0.080 6.66 87.50 85.07 640

N2-plasma → Curcumin/Al2O3 NPs C/PET 1 0.042 1.52 81.99 76.80 180
10 0.038 1.40 78.74 73.46 168

V/PET 1 0.025 1.05 74.50 69.92 123
10 0.023 0.98 71.52 66.44 115
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Durability to wash

As shown in Table 7, increasing washing cycle up to 10 is accompanied by a slight 
or a reasonable decrease in nitrogen content (%N), color strength (K/S), as well as 
in the imparted antibacterial (R%) and UV-blocking (UPF) properties of the selected 
substrates, regardless of the used finishing regime. The higher is the extent of pre-
modification and subsequent fixation/immobilization of the used coloring agent and 
the MONPs, the better is the durability to wash.

The experimental results demonstrate again that the suggested strategy for pre-
activation of the blended substrates with O2- or N2-plasma followed by subsequent 
coloration and functionalization in a single stage develops various colored/multi-
functionalized cellulosic blends with a remarkable functionality and durability even 
after 10 laundering cycles. The extent of improvement in coloration, functionaliza-
tion and durability to wash is governed by type of blended fabric, kind of plasma 
gas as well as constituents of union dyeing/functionalizing formulation as discussed 
earlier.

Conclusion

The main task of the present work is to explore the feasibility of using O2- or 
N2-plasma as an eco-friendly tool for preactivation and surface-modification of C/
PET and V/PET blended fabrics followed by subsequent pigment, basic or curcumin 
dyeing and functional finishing in one step, to develop various colored/multifunc-
tional textile products taking in consideration both the product and ecology quality 
as well as the ever-growing consumer demands. The functional additives considered 
were Thyme oil, Clove oil, Lavender oil, Tulsi, Ginger, Vanillin, Ascorbic acid, Sali-
cylic acid, ZnO NPs and Al2O3 NPs.

The data so obtained demonstrate that plasma pretreatment followed by simulta-
neous coloration and functionalization results in a remarkable enhancement in the 
imparted antibacterial and anti-UV protection functions to the obtained dyeings. 
The variation in the extent of coloration and functionalization of the developed tex-
tile products is governed by type of blended fabric, kind of plasma gas, as well as 
the used dye and functional agent chemistry.

Also, SEM and EDX analysis for selected untreated and treated fabric samples 
confirm both the change in surface morphology as well as deposition and immobili-
zation of the used color and active ingredients onto the premodified, dyed/functional 
finished surface.
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