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Abstract

In recent years, water purification by membrane desalination techniques has been
growing drastically; after all, water scarcity is a significant issue to deal with in
some parts of the world. To put one step forward toward resolving the issue of water
scarcity, the best way is to upgrade the current desalination technique and mem-
branes so that the output of clear water will be improved. In this review, we will
focus on enhancing some crucial properties of the Polyamide (PA) and Polyimide
(P) membranes by incorporating some functional additives. Ag NPs (Silver nano-
particles), Cu NPs (Copper nanoparticles), GO (Graphene oxide), SWCNT (Single-
walled carbon nanotube), and MWCNT (multi-walled carbon nanotube) are some
of the additives which can be used with PA/PI active layer to improve some essen-
tial properties of membrane-like antifouling, biofouling, low water flux, selectivity,
permeability, hydrophilicity, hydrophobicity, etc. The deposition of such additives
onto the surface of the Polyimide/Polyamide coat or membrane can be done using
interfacial polymerization or phase inversion. Membrane filtration can be done using
reverse osmosis and electrodialysis techniques. A thin-film composite membrane
comprising PA and MWCNTSs, yielded a water flux of almost 25.9 L m~> h™!, with a
salt rejection of 98.1% exhibiting excellent hydrophilicity with a water contact angle
of 59.6°.
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Silver phosphate-loaded acidified graphitic carbon nitride
Silver

Silver nanoparticles

Silver nitrate

Carbon nanotube

Copper

Dehydrated copper chloride

Copper nanoparticles
1,4-Bis(3-aminopropyl)-piperazine propane carboxylate
Electrodialysis

Graphene oxide

Graphene oxide nanoparticles

Graphene oxide quantum dots

Interfacial polymerization

Multi-effect desalination

Metal organic framework

Multistage flash desalination
Multifunctional thin-film nanocomposite
Mix matrix membrane

M-phenylene diamine

Muti-walled carbon nanotube
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Na,SO; Sodium sulfite

Na,SO, Sodium sulfate

NaCl Sodium chloride

PA Polyamide

PAN Polyacrylonitrile

PEI Polyethyleneimine
PES Polyethersulfone

PI Polyimide

PIP Piperazine

PSF Polysulfone

PVDF Polyvinylidene fluoride
PVP Polyvinyl pyrrolidone
RO Reverse osmosis

SPI Sulfonated polyimide
SWCNT Single-walled carbon nanotube
T (°C) Temperature

TFC Thin-film nanocomposite
TiO, Titanium dioxide

TMC Trimesoyl chloride
TNT Titania nanotubes
Introduction

Water scarcity is a significant issue in the upcoming days which means deficient
availability of water resources to satisfy the amount of water usage within a par-
ticular country. This water scarcity results in more demand for water desalination
[1, 2] as seawater is a significant source of salinated water [3]. So it is essential to
have evolution in the current desalination processes as well as membranes employ-
ing upgrading technology or improving membrane properties by adding particular
additives. The desalination process is a consumable energy process that utilizes non-
conventional energy sources for operations. There are two main categories of desali-
nation techniques: [4] membrane-based desalination and thermal desalination. The
thermal desalination process has many sub-types like multistage flash (MSF) desali-
nation, solar desalination, multi-effect distillation (MED), etc. Membrane desalina-
tion processes can be categorized into three major types, including forward osmo-
sis, electrodialysis (ED), and reverse osmosis (RO) [5]. The desalination process
involves the elimination of salts or unwanted minerals and impurities from water
sources (which can be seawater, wastewater, etc.) [6], and it serves as an effective
remedy for obtaining clean water for daily use for humans [5]. Membrane technol-
ogy has brought about essential enhancements to the desalination sector, as it tends
to be an energy-saving technique and is easily upgradable as compared to the ther-
mal desalination process [7]. The reverse osmosis process is generally used for sea-
water desalination, while electrodialysis is widely used for brackish water [7]. Sev-
eral examples of polymeric materials extensively used as desalination membranes,
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along with their chemical structures and desalination properties (salt rejection and
flux), are enlisted in Table 1.

Membranes [4] made of polymeric materials have ruled the commercial market
of desalination membranes since the initial stages of desalination [8]. A polymeric
membrane comprising technical feasibility [9] enhances desalination membranes’
performance in terms of permeability and selectivity [10]. An extensive array
of materials capable of efficacious waste water treatment have been explored by
researchers in this domain [4, 6, 11-23].

Desalination membranes can also be made of ceramics or inorganic substances,
as well as mix matrix membranes (MMM). Mix matrix membrane (MMM) is a
membrane consisting of both organic as well as inorganic elements in it, for exam-
ple, nanoparticles/polymer (TiO,/Polyamide, etc.), carbon nanotubes/polymer
(CNT/Polyimide) [8, 25], as illustrated in Fig. 1. Incorporating inorganic substances
within organic desalination membranes significantly improves various membrane
properties discriminatingly rendered by the individual component like exceptional
biological, thermal and chemical stability of inorganic membranes combined with
the favorable permselectivity, extended operation and greater packing density of pol-
ymeric membranes [10, 26-28].

This review emphasizes on specific polymers, including Polyamide (PA) and
Polyimide (PI), and the mix matrix membrane (MMM) employing these polymers
as desalination membranes [29]. The property alteration of these polymers through
incorporation of some organic additives into the matrix material of the membrane
to enhance various membrane properties [30-32] will be explored [1, 33] effec-
tively without hindering the basic properties of the membrane. There can be many
more permutations and combinations of these polymers with other additives [34] to
achieve more enhanced desalination, on which further research can be done. A lit-
erature survey for this review article has been done in accordance with the SCOPUS
data, Fig. 2 represents the number of yearly published articles based on Polyamide
and Polyimide desalination membranes.

Polyamide-based system

Polyamide (PA) desalination membranes that are prepared through IP (interfacial
polymerization) have played a significant role for the drastic growth of desali-
nation techniques [35-37]. The inovation of a thin-film composite membrane
made from Polyamides demonstrated excellent desalination performance, remov-
ing salt up to 99% from seawater by desalination through reverse osmosis. Cad-
otte and his coworkers, who discovered thin-film membrane in the late 70s, con-
cluded that PA desalination membranes exhibited better performance compared
to cellulosic desalination membranes [36, 38]. Interfacial condensation between
m-phenylene diamide (MPD) and trimesoyl chloride (TMC) results in a wholly
aromatic polyamide membrane [36, 37]. The interfacial polymerization technique
consists of multiple condensation chemistries, involving the synthesis of Polyam-
ide, Polyurethanes, Polycarbonate, etc. [37, 39, 40]. Polyamides also referred to
as Nylons are primarily utilized for manufacturing synthetic fibers. Polyamides
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Fig. 1 Illustration of the concept
of mix matrix membrane
(MMM) [A]-polymeric mem-
brane, [B]-particles of additives,
[C]-MMM

(A)

No. of Document per year

m2018
m 2019
w2020
m2021
2022

Fig.2 SCOPUS analysis of the number of documents published in the domain of Polyamide and Polyim-
ide desalination membranes from 2018 to 2022

Table 2 Properties of multifunctional thin-film nanocomposite (MTFN) membranes [53]

S. no Name Percent of Water flux CaCl, rejection (%) Antibacterial properties
additive Lm2h™)
MTEN-1 0.05 45 71 Good
MTFN-2 0.2 52 76 Better
3 MTEN-3 0.4 55 73 Best (100%)

MTEN-1: TEN membrane comprising 0.05 wt% Ag@rGO@TiO,; MTFN-2: TFN membrane comprising
0.2 wt% Ag@rGO@TiO,; MTFEN-3: TFN membrane comprising 0.4 wt% Ag@rGO@TiO,

can be synthesized through self-condensation of amino acids or their cyclic lac-
tum or via ring-opening polymerization and polycondensation of diamines and
dibasic acids. Polyamides are a class of thermoplastic polymers. Recently many
researches have been carried out on Polyamide, leading to the development of
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their nanocomposites. Newly developed Polyamides are filled with nanofibers
resulting in the enhancement of various polymer properties [41].

Polyamide with metal-based additives

PA is compounded with different additives, resulting in the enhancement of perfor-
mance [23] and efficiency of desalination membranes [42]. PA can be blended with
an extensive array of additives while this review will be focusing on silver (Ag),
copper (Cu), graphene oxide (GO), and carbon nanotubes (CNTs): Single-walled
carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) nanopar-
ticles (NPs). Silver nanoparticles possessing very good bactericidal properties are
employed in the manufacturing of anti-biofouling thin-film composite-membranes
to enhance the antibactericidal capacities of the membrane material. It has been
recorded that silver ions and silver nanoparticle compounds can hinder intracellular
protein transportation and force the active bacteria to be inactive. Also, whenever
the light is used as a catalyst in a reaction, Ag ions might form oxygen sensitive spe-
cies, which helps in the application of membrane sterilization [3, 43].

Ming Qiu and his coworkers have studied the Zwitterion-silver nanocomposite
used for forward osmosis technique in order to enhance the water flux as well as
biofouling resistance properties of desalination membranes, in which they firstly
synthesized a Polyethersulfone membrane by a non-solvent induced phase separa-
tion methodology [44]. The thickness of casted membrane was kept up to 150 um.
They synthesized a PA coat onto the exterior face of the support membrane via
interfacial polymerization [45] with subsequent deposition of silver nanoparti-
cles onto the Polyamide active layers via in-situ formation [46]. As a result of this
experiment, the water flux was improved from 4.92 to 7.26 L m™> h™! while the
hydrophilicity and water bounding properties of membrane were also ameliorated.
Both membranes mean normal TFC membrane, and the Zwitterion-silver thin-film
composite-membrane was suspended into bacteria for 2 h. The pristine thin-film
membrane showed 58% E.coli retention, whereas the zwitterion-silver thin-film
membrane showed E.coli retention of about only 4% and the antimicrobial efficiency
was found to be greater than 96% [46]. Similar to this work, one group of research-
ers studied the incorporation of hydrophilic silver NPs onto the TFC Polyamide
membrane which included the primary manufacturing of Polysulfone substrate by
conventional phase inversion technique [47]. Silver nanoparticles were deposited
onto the Polysulfone substrate via in-situ formation [48], leading to the generation
of Polysulfone-silver nanoparticle substrates. The thin-film composite was prepared
by interfacial polymerization [49] involving reactions on normal Polysulfone mem-
brane as well as the Polysulfone-silver substrate. According to the concentration of
AgNO;, they categorized membrane as TFCAgl, TFCAg5, TFCAg20, TFCAg50
and TFCAg100. TFC-Ag20 showed a water flux of 50+4.2 I/m*h, 170% more than
a thin-film membrane without an additive, silver. TFC-Ag20 demonstrated NaCl
rejection up to 99.1 +£0.1%, while membranes without any additives showed rejec-
tion of 97.4+0.5%. The size of the nano-channel produced was about 2.5 nm. Over-
loading silver nanoparticles (TFC-Ag100) resulted in lower water permeability as
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well as poor salt rejection [50]. Also, graphene oxide (GO), silver (Ag), and titanium
dioxide (TiO,) NPs can also be combined to form a nanocomposite of Ag@rGO@
TiO, and desalination membrane having an active Polyamide layer. Hamidreza
Abadikhah and his colleagues performed research on the similar topic in which gra-
phene oxide was synthesized via the Hummer’s method [51]. They prepared a sus-
pension of TiO, and AgNOj; in ethylene glycol solution followed by the subsequent
incorporation of the GO susupension (prepared via Hummer’s method) to the sus-
pension containing TiO, and AgNO; nanoparticles. Following the homogenization
of these two suspensions, the mixture of these suspensions was subjected to micro-
wave irradiation at 600 W for 5 min. Figure 3 depicts various stages involved in the
synthesis of Ag@rGO@TiO, composite via microwave irradiation technique.

The synthesis of Si;N,/Polyethersulfone substrate via phase inversion technique
was reported [52]. In order to fabricate the TFC membrane, interfacial polymeriza-
tion between m-Phenylenediamine (MPD) and Trimesoyl chloride (TMC) onto the
deposited active layer of Polyamide on the PES/Si;N, surface layer was performed
resulting in the generation of a multi-functional thin-film membrane. Membrane
nanofiltration experiments revealed that the flux of the multi-functional thin-film
membrane was 1.7 times higher than the new TFC membrane. The as-prepared mem-
brane exhibited an Na,SO; salt rejection capacity of upto 96% [53]. Table 2 enlists
the characteristics of MTFN membranes comprising 0.05-0.4 wt% Ag@rGO@TiO,.

Incorporation of metal-organic frameworks (MOFs) [54] into the membrane
comprising of Polyamide can also improve the membrane properties. Alireza
Zirehpour and his co-workers focused on studying the performance of desalina-
tion membranes along with their structural properties. They fabricated nano-scaled
metal-organic framework particles by combining 1,3,5,-benzene tricarboxylic acid
and silver to enhance forward osmosis technique. Firstly, the substrate membrane
was synthesized using Polyvinylpyrrolidone (PVP) and Polyethersulfone. Then

Dispersion in EG

Microwave Irradiation
5 min and 600W

Ag@rGO@TiO,

Fig.3 Schematic illustration of the preparation of Ag@rGO@TiO, composite by microwave irradiation
technique
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thin-film membrane of Polyamide was manufactured onto the surface of the Poly-
ethersulfone layer via IP technique followed by the subsequent deposition of MOFs
onto the surface of the Polyamide active layer through interfacial polymerization. It
was ascertained that the water permeability was improved by 126% when the mem-
brane consisted of 0.04% MOF (metal-organic frameworks). Modified TFN mem-
branes showed enhanced desalination through forward osmosis. Table 3 enlists the
water flux of TFN membranes incorporating MOF in different proportions.

Also, the surface of the Polyamide layer has become more hydrophilic in nature,
thereby improving the fouling resistance of the membrane [55]. Silver nanoparti-
cles can also be combined with some carbon nitrides to enhance the forward osmo-
sis technique; Dong wang and his coworkers tried to improve the forward osmosis
performance by using a triple-layered TFN (thin-film nanocomposite) membrane.
They prepared carbon nanotube dispersion according to the following method [56,
57]: aCN/AP (Silver phosphate-loaded acidified graphitic carbon nitride) was syn-
thesized by mixing carbon nitride with AP solution [3] followed by the deposi-
tion of carbon nanotubes (CNT) onto the Polyethersulfone substrate membrane by
mixing distinct amount of CNT dispersion solution onto the substrate membrane.
Polyamide active coat was formed on the upper surface of the support membrane,
resulting in the generation of TFN membrane. With a similar process, i.e., interfa-
cial polymerization, they prepared TFN-aCN/AP membrane. The hydrophilic nature
of membrane was enhanced by this technique. The optimized TFN-aCN/AP mem-
brane demonstrated greater water flux of 67.0 L m~2 h™! while the backward salt
flux was found to be lower than 3 g m™2 h™!. TFN-aCN/AP membrane exhibited
very good antimicrobial properties toward both E. coli as well as S. aureus with
sterilization rates of 99% and 92%, respectively [3]. Graphene oxides’ quantum dots
could also be used in conjunction with silver NPs, this is another viable way for
altering the properties of TFC membrane, and work contingent with this combina-
tion has been reported in this domain. Shuya li and their team worked on improv-
ing the antibacterial properties of Polyamide TFN. They added GOQD (graphene
oxide quantum dots) filled with silver phosphate (GOQD/AP) into a PA active coat.
The AP/GOQD nanocomposite was fabricated facilely via an electrostatically driven
technique [58, 59]. They prepared thin-film nanofiltration (TFN) membranes and
thin-film nanocomposites comprising AP/GOQD nanocomposite membranes via
interfacial polymerization carried on Polyethersulfone (PES) membrane. The final
structure included a base layer of PES substrate membrane onto a Polyamide active
layer with a subsequent PA active layer on its top, deposited with GOQD/AP nano-
composite through interfacial polymerization. TFN containing GOQD/AP exhibited

Table 3 Water flux of TFN membranes with different concentrations of MOF [54]

S. no Membrane type Concentration of MOF Water flux (compared with
incorporated (%) the flux of pristine TFN)
TFN-1 0.02 -
TFN-2 0.04 129
3 TFN-3 0.08 238
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a good water flux of 39.6 L m=2 h™! at the pressure of 15 bar. Salt rejection was
retained at 98.2%. TFN membrane consisting of 50 mg L™! GOQD/AP membrane
exhibited robust antibacterial properties toward E.coli when the rate of sterilization
was 99.9%. Furthermore, TFN-GOQD/AP50 demonstrated excellent anti-biofouling
performance while performing RO technique [60]. Addition of silver NPs on the
surface of TFC membrane showed ameliorated antifouling properties [61]. In this
work, Ulrike M. Hirsch and their colleagues focused on improving the antifouling
properties of the TFC membrane with help of plasma-enhanced magnetron sputter-
ing for easing the reverse osmosis technique. They coated an active layer of Poly-
amide onto TFC membrane followed by plasma-activation to incorporate functional
groups onto the membrane surface. Employing radio frequency magnetron sputter-
ing at 13.56 MHz, Ag NPs were incorporated from a spherical sputter target onto
the TFC membrane. The average diameter size of Ag NPs was around 30 nm. As a
result of this experiment, the formation of biofilm consisting of Pseudomonas sp.
was decreased by 64.6% at an average after a cultivation period of 14 days [62].

Table 4 enlists the properties demonstrated by Polyamide-based membranes inte-
grated with different forms of functionalized silver nanoparticles.

Many researchers have concluded that incorporating metal nanoparticles like
copper, etc., into polymeric membranes improved the antibacterial, fouling resist-
ance, and anti-biofouling properties. Copper has been well known for its antibacte-
rial activities for ages. Also, it is economically affordable. It is a perfect option as
a biocidal agent [42]. Similar to silver, copper can also used in desalination mem-
branes due to its various advantageous properties. In 2018, B. Rodrigues and his
group members studied the incorporation of copper (Cu) nanoparticle and m-Phe-
nylenediamine (MPD) onto the active coat of the TFC membrane to enhance their
anti-biofouling properties, in which they firstly prepared a Polysulfone support
membrane by using the phase inversion technique [63—65]. The TFC membrane was
fabricated by interfacial polymerization of MPD and TMC onto the base membrane
according to their methodology [65-67]. The modified membrane was fabricated by
incorporating Cu-MPD by in-situ formation. Then the membrane was dipped into
TMC solution, and interfacial polymerization was carried out, thereby curing the
membrane. The modified membrane showed a decrease in hydrophilicity but had
higher surface roughness. The membrane will possess copper toxicity because of its
ability to release Cu®* ions from the surface. Hence, while showing excellent anti-
bacterial properties [68], it also possesses good anti-adhesion properties. Modified
membrane showed salt removal of 97%. Modified membrane permeates the flux of
1.6 L m>2h! bar‘l, which is 1.3 times higher than that of the pristine TFC mem-
brane [69]. In a similar way as silver, copper could also be used with GO to improve
various particular properties of the fabricated membrane. E. A. Ali and his group
of researchers focused on improving membrane performance via surface modifica-
tion and chelation to improve desalination. Firstly, they prepared a thin-film mem-
brane containing PA active layer by IP onto the commercial PS support membrane.
Employing the similar process, i.e., IP, they incorporated GO onto the surface of
Polyamide active layer. Then, this modified membrane was immersed in the aqueous
solution of dehydrated copper chloride (CuCl,-2H,0). In conclusion, the PA-Cu?*-
GO membrane possessed greater clean water permeability of 44.25 L m~2 h~'and
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solute water flux of 33.77 L m~2 h™!, whereas the unmodified membrane exhib-
ited a clean water permeability of 21.36 L m~2 h™!. Modified membrane showed
excellent salt rejection of >98.5% while improving the chlorine resistance as well
as fouling resistance property of TFC membrane [70]. In 2014, Moshe Ben-Sasson
and his coworkers tried to functionalize the surface of the TFC membrane with Cu
nanoparticles to incorporate anti-microbial properties [71]. A thin-film composite
membrane of Polyamide [72], was then impregnated into isopropanol and deion-
ized water solution, followed immersion of the membrane into a Cu NPs disper-
sion solution in order to functionalize the membrane surface. Salt rejection of Cu-
modified membrane was found to be 98.86+0.27%. The water contact angle of the
functionalized membrane was 45.6 +8.4°, while the pristine membrane showed a
contact angle of 52.6+5.3° thereby slightly improving its hydrophilicity. The sur-
face roughness of the TFC membrane got enhanced from 95+ 11 nm to 102+ 17 nm
[42]. Table 5 summarizes the antibacterial characteristics (% bacterial removal) of
functionalized TFC membranes.

Polyamide with graphene oxide nanoparticles (GO NPs)

Shahrzad Shokrgozar Eslah and his team attempted to improve the forward osmosis
water desalination technique by incorporating GO (graphene oxide) nanosheet into
polyamide TFC membrane. Firstly, a TFC support substrate was prepared via the
phase inversion technique. Then, a PA active coat was incorporated onto the surface
of the base substrate via interfacial polymerization, followed by the integration of
GO nanosheets onto the surface of the TFC membrane via the same process, i.e., IP.
As per the loading of the GO nanosheet, the properties of the modified membrane
were altered. As a result of this experiment, water permeability was improved upto
2.02 L m™2 h™! by incorporating 0.1 wt% GO, but the addition of 0.2 wt% of GO
into the membrane resulted in lower water flux values. The surface roughness of the
TFC membrane increased with GO loading [73, 74]. Salt rejection was improved up
to 88% with the GO loading of 0.1 wt%, and the salt reverse diffusion was decreased
upto 39% [75, 76].

Research on "PA/ GO composite membrane for enhancing pervaporation desali-
nation process" was performed by Xiaoying Zhao and his fellow researchers. GO in
its nanoform was deposited onto the Polyacrylonitrile (PAN) substrate via pressure-
assisted ultra-filtration with consequent interfacial polymerization. After deposition
of GO on the membrane, the PA active layer was formed onto the GO composite
membrane through IP. Figure 4 illustrates different layers present in the synthesized
PA/GO/PAN-thin-film composite membrane.

Table 5 Antibacterial properties

L . S.no Name of bacteria Bacterial removal (%)
of functionalized TFC
membrane [42] 1 E.coli 87+02
P.aeruginosa 96+3
S.aures 79.5+12
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' \ ,' PA Layer

4 PAN Support Membrane

Fig.4 Schematic representation of PA/GO/PAN-thin-film composite membrane

Through experimental analysis it was ascertained that the hydrophilicity of the
TFC membrane was ameliorated. The maximum water flux recorded was upto
37.1 L m~2 h™'. With a 50 nm layer of GO, the salt rejection was 99.80%, but
the flux decreased to 28.1 L m~2 h™! [77]. Coating of GO could be done on the
support substrate in order to improve the hydrophilicity [78]. Saira Bano and her
teammates were working on increasing the flux as well as the antifouling proper-
ties of the PA TFC membrane by the addition of GO NPs. GO was synthesized
via Hummer’s method and a coat of PA was incorporated via IP on the PSF ultra-
filtration membrane [79]. Table 6 represents various characteristics of Polyamide-
based composites incorporating functionalized copper nanoparticles.

Figure 5 illustrates the various stages involved in the fabrication of PA/GO
TFC membranes. The blue-colored beads represented the GO particles depicting
a color change of the membrane, while the IP shows the curing of the PA/GO
TFC membrane.

The synthesized membrane with 0.3 wt% loading of GO showed a contact
angle of 60+ 1°, resulting in an enhancement of the hydrophilicity. Roughness
(R,) of the modified membrane was up to 16.38. Salt rejection of GO/PA TFC
membrane was 87% and 97% for NaCl and MgSO,, respectively. The water
flux of the modified TFC membrane was maintained above 80 L m~2 h™' [80].
Polyamide can also be functionalized with bactericidal graphene quantum dots;
S.Fatemeh Syedpour and their teammates focused on improving the shortcom-
ings associated with the forward osmosis method like biofouling detrimentally
impacting the operational expenses, the lifetime of membrane and flux efficiency
through the incorporation of bactericidal graphene quantum dots (GQDs). GQD
was synthesized by the direct pyrolysis of CA [81]. Polyethersulfone membrane
was manufactured via the conventional phase inversion method, and an active
Polyamide coat was formed onto the surface of the membrane via IP. As a result
of incorporating GQD, the hydrophilic nature of the membrane was improved,
and the contact angle decreased from 72.9° to 51° (for TFC with 0.5wt.% load-
ing of GQD). The antibacterial properties of the modified membrane is shown

@ Springer
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P o
MPD+GO &~

(B)

Interfacial
+TMC
Polymerization

(©)

Fig.5 Steps involved in the synthesis of PA/GO TFC membrane. (A) Polysulfone support membrane,
(B) substrate with MPD and GO, (C) synthesized PA/GO-TFC membrane

in Table 7. When GQD loading was 0.1 wt%, the water permeability was 150%
higher than that of the pristine TFC membrane [82].

Table 7 enlists the bacterial inactivation (%) of the TFC membranes modified
with GQD.

Table 8 depicts the characteristics of Polyamide-based membranes encompassing
functionalized GO nanoparticles.

Polyamide with carbon nanotube (CNT)

Hao Sun and his team of researchers were concentrated on improving the permeabil-
ity of the TFC membrane by adding a Polyamide matrix to the MWCNT framework.
They initially prepared PVDF [88] (Polyvinylidene fluoride) via a non-solvent-
induced phase separation technique, followed by the production of a TFC membrane
by synthesizing an active layer of PA onto the MWCNT framework. A framework
of MWCNTSs was deposited onto the substrate via vacuum filtration of the MWCNT
suspension, with subsequent precipitation of the PA layer onto the support layer
through IP. After analyzing the test results, they found out that the modified mem-
brane demonstrated an excellent salt rejection of >99%. The contact angle property
shown by the PA/MWCNT-TFC was 55.5°, whereas the pristine membrane showed

Table 7 Antibacterial property

- e Sr. no Name of bacteria Bacterial
(% bacterial inactivation) of inactivation
GQD-modified membrane [82] (%)
E.coli 90
2 S.aureus 95
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a contact angle of 91.2° and the surface roughness was increased upto 53.11 nm
[89]. A similar combination of materials could be used to improve the chlorine
resistance and other important properties of the membrane. Junwo park and their
teammates performed research on improving chlorine immunity of reverse osmosis
membranes by incorporation of CNTs and they fabricated a TFC membrane encom-
passing MWCNT/PA via the interfacial polymerization technique.

The experiment resulted in a membrane permeate flux of 13.4 L m™ h™! and salt
rejection of upto 92.5%. The chlorine resistance was determined by the decrease in
the rejection after immersing the membrane in NaOCI1 (3000 ppm) solution for 4 h,
after the test, the salt rejection had decreased from 92.5 to 76.5% [90]. CNTs could
also be used in conjunction with titania nanotubes. I.wan Azelee and their coworkers
focussed on improving the desalination of the Polyamide-TFC membrane by incor-
porating acid-treated carbon nanotubes-titania nanotubes (TNT). Initially, they had
prepared the MWCNT and TNT hybrid composite via the hydrothermal method,
after which, these hybrid composites were incorporated onto the surface of the sup-
port membrane simultaneously during IP of the polyamide coat. As a result of this
experiment, researchers found NaCl salt rejection to be 97.9%. The contact angle
property shown by the membrane was 69.66+4.79° [91].

Table 9 represents various characteristics of Polyamide-based membranes encom-
passing functionalized CNTs.

In 2017, Javad Farahbaksh and his colleagues studied the effect of incorporat-
ing pristine and oxidized MWCNT onto a PA membrane to enhance the antifoul-
ing properties and performance efficiency. Pristine and oxidized MWCNTSs were
embedded within Polyamide reverse osmosis membranes via IP technique. Mem-
branes with pristine MWCNT exhibited a water flux of 25.9 L m™2 h™!, while the
membranes modified with oxidized MWCNT demonstrated a water flux of 28.9 L
m~2h7!. 98.1% and 97.8% were the salt rejection of membrane when modified with
pristine and oxidized MWCNT, respectively. The membrane modified with oxidized
MWCNT showed a water contact angle of 59.6° [92].

Polyimide (Pl)-based system

Bo Feny and his team of researchers synthesized a mixed matrix membrane (MMM)
of graphene oxide/Polyimide for desalination. An aqueous suspension solution of
GO was prepared, and it was synthesized by the modified Hummer’s method [97]
by utilizing graphite as the starting material. PI composite membranes integrating
asymmetric GO/PI MMMs were fabricated using the water bath technique. Modify-
ing the as-prepared membrane with GO/PI, rendered a water contact angle of 59°.
At 90 °C, water flux becomes 36.1 L m~2 h™!, and the salt rejection stays unchanged
at 99% [98]. Additionally, Chaoyi Ba and co-workers modified P84 co-Polyimide
membrane with Polyethyleneimine (PEI) to enhance nanofiltration. The P84 mem-
brane was synthesized by the solution casting technique, followed by phase inver-
sion. The chemical modification of P84 membrane within PEI solution engendered
the formation of TFC membrane. As a result of this trial, the optimized membrane
demonstrated salt rejection of 50.9+5.1% and flux of 54.16 L m™> h™! at 13.88 bar
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pressure [99]. Apart from pristine Polyimide system, modified Polyimides were also
studied, for instance, Geetanjali Shukla and her teammates focused on enhancing
the desalination performance of the membrane by adding phosphorylated GO-sul-
fonated Polyimide (SPI) composite. Phosphorylated GO was synthesized by treat-
ing oxygenated GO with 3-aminopropyltrimethoxysilane [100]. Sulfonated Polyim-
ide (SPI) was manufactured by sulfonation of 4,4’-bis(4-aminophenoxy)biphenyl
as per their technique[101]. Finally, SPI/PGO -TFC membrane was fabricated via
solution casting. Encompassing PGO with the membrane improved the membrane’s
oxidative, mechanical, and thermal resistant characteristics. The optimum SPI/PGO
membrane possessed an ionic conductivity of 6.8 x 1072 S/cm, which was most suit-
able for electrodialytic water desalination [102]. Chengyu Yan and their coworkers
researched on improving the desalination of nanofiltration membranes by crosslink-
ing PI with PA (MPD). Nanofiltration TFN membranes were synthesized via IP of
Piperazine (PIP) and MPD [38, 103—-105]. The as-prepared modified membranes
demonstrated Na,SO, and NaCl rejection upto 99.13% and 97.45%, respectively.
The modified membranes also exhibited a water contact angle of 54.28° indicat-
ing hydrophilicity of the prepared membranes. After soaking the membrane insol-
vent for several weeks, the membrane showed more than 90% rejection of Na,SO,,
indicating excellent solvent resistance [106]. Table 10 represents the characteris-
tics of Polyimide-based composite desalination membranes incorporating different
additives.

Conclusion and future scope

In upcoming days, the central issue of shortage of drinking and usable water will
arise someday since there are minimal resources of usable water. So, in the future,
there will be a significant need to improve desalination technology and apply desali-
nation techniques on a large scale to meet the necessary water supply for daily use
in the world. The heart of the desalination technique is at its membrane use since
the actual salt removal is caused by a membrane only. Polymeric membranes are
predominantly employed for desalination applications. Being lightweight, polymeric
membranes provide better strength-to-weight ratio, and most importantly, they are
corrosion resistant and readily available. In order to enhance the membrane charac-
teristics, many researchers have combined various polymeric materials to synthe-
size a TFC membrane, for example, PSF/PA, PSF/PI, PAN/PA, etc. Another way to
alter the membrane properties is to incorporate various functional additives into the
membrane like silver, copper, CNTs, GO nanoparticles etc. These additives can be
added to the surface of the membrane via a particular process to improve a particu-
lar property/set of properties of TFC membranes.

In this review, we have deeply emphasized on desalination membranes compris-
ing Polyamide and Polyimide. Polyamide and Polyimide are used in combination
with certain additives that are deposited on the surface of the membrane to improve
a diverse array of membrane properties like water flux, salt rejection, hydrophilicity,
fouling resistance, anti-bactericidal properties, etc. The following conclusions can
be drawn from this review:

@ Springer
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e Anti-bacterial capabilities of silver NPs and copper NPs are the best, resulting
in improved anti-biofouling properties.

e The addition of graphene oxide to the TFC membrane enhances mechanical
strength and increases hydrophilicity.

e Incorporating CNT onto the membrane improved desalination at slightly
higher temperatures without any membrane distortion.

¢ Even a little excess loading of GO and CNTs in the TFC membrane can result
in a significant reduction in permeability.

e A life cycle evaluation of any modified TFC membrane may be performed to
determine the membrane’s effective life duration.

e There can be desalination consisting of two different mixed matrix mem-
branes, for example, the system containing PA/GO/PSF TFC membrane and
A/PI/PSF TFC membrane arranged in an alternating manner to achieve maxi-
mum rejection or other requirements through a single system.

e In most cases, Polysulfone, Polyethersulfone, Polyacrylonitrile and Polyvi-
nylidene fluoride have been used as membrane support materials.
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