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Abstract
Cationic polymerization of ɛ-caprolactone (CL) mediated by anhydrous iron (III) 
chloride  (FeCl3) or  FeCl3/nH2O systems (where n = 2, 4, 6 and 8) was investigated. 
Reaction proceeded in tetrahydrofuran solution at room temperature. Analysis of 
polymers by MALDI-TOF technique revealed in both cases the formation of linear 

 as well as cyclic PCLs macromolecules. It was proposed, 
that in the presence of anhydrous  FeCl3 polymerization occurs by active chain end 
(ACE) mechanism accompanied by inter- and intramolecular transesterification, the 
latter leads to the formation of cyclic macromolecules. However, in the systems con-
taining water two mechanisms operate simultaneously, i.e. ACE ones and activated 
monomer (AM) mechanism mediated witch  FeCl3 (catalyst)/H2O (initiator) system, 
which prevails and results exclusively in linear macromolecules. Unexpectedly, 
methanol and dipropylene glycol used as hydroxylic additives to  FeCl3/6H2O system 
were inert in the polymerization. Moreover, synthesized polymers appeared to be 
polymodal. The results obtained differ strongly from reported previously. The course 
of the studied processes was discussed. Molar masses and dispersities of polymers 
were determined by means of size exclusion chromatography (SEC). 13C nuclear 
magnetic resonance (NMR) was also used for analysis of the polymers. Thermal 
properties of the polymers obtained were also examined. Wide angle X-ray scatter-
ing was used to characterize phase composition of PCL.
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Introduction

Poly (ɛ-caprolactone) (PCL) is one of the most important synthetic polymers due to 
wide possibilities of applying, mainly to fabrication of fibriles and for potential medical 
applications. PCL has uses in different fields such as scaffolds in the tissue engineer-
ing [1–4], in long-term drug delivery systems [5–7], in microelectronics [8], as adhe-
sives [9] and in packaging [10]. It is semicrystalline polymer [11], which advantage 
is ease utilization by biodegradation [1–10]. PCL is synthesized by polycondensation 
of 6-hydroxycaproic acid [12] as well as ring-opening polymerization (ROP) of CL, 
i.e. anionic, cationic and coordinative ones [13]. The main classes of initiators used 
are alkali-based compounds (e.g. potassium hydroxide [14], potassium t-butoxide [14, 
15], potassium hydride [14], lithium diisopropyl amide [16, 17] or phenyllithium [18]), 
alkaline, earth-based compounds (e.g. magnesium alkoxide complexes [19–21], cal-
cium ammoniate [22–24] or strontium ammoniate isopropoxide [25], poor metal-based 
compounds (e.g. aluminium [26–48] or tin-based compounds [49–62], transition metal-
based compounds (e.g. zinc mono- and di-alkoxides [63], zirconium (IV) acetylaceto-
nate [94], iron (III) alkoxide complexes [64] and titanium complexes based on catechol 
ligands [65] or bisphenolate ligands[66], and rare earth metal-based compounds (e.g. 
scandium, yttrium, lanthanium, neodymium, cerium, gadolinium, and lutetium triflates 
[67–75] as catalysts with ethanol, butanol, and other hydroxylic compounds as initia-
tors). Even organic compounds as aza-compounds [76, 77], phosphazene bases [78, 79] 
and various carboxylic acids, as lactic acid, tartaric acid in the presence of benzyl alco-
hol [80, 81] as well as enzymatic systems [82–87] can initiate the ROP of CL. However, 
at present metal-based compounds have been studied the most. Recently [88], simple 
hydrated iron group chlorides, i.e.  FeCl3/6H2O,  FeCl3/4H2O and  RuCl3/H2O were used 
for cationic CL polymerization in bulk or toluene solution. Mechanism of this process 
was determined as activated monomer (AM) ones, in which metal chloride, as Lewis 
acid, is catalyst and  H2O or  H2O/ROH are initiators. In this paper we reported new data 
concerning polymerization of CL mediated by anhydrous or hydrated  FeCl3 in tetrahy-
drofuran (THF) solutions at room temperature. We changed toluene to polar THF in 
order to observe its influence on polymerization. The aim of this wok was determina-
tion of water effect on the process performed at various  FeCl3/H2O ratios. The effect of 
ROH added was also discused. Several mechanisms of processes were proposed basing 
of polymers analysis by MALDI-TOF and NMR techniques. Moreover, thermal prop-
erties of the prepared polymers were also examined.
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Experimental

Materials

ɛ-Caprolactone (CL) was purchased from Aldrich, dried and distilled prior to 
use. Methanol and dipropylene glycol (DPG) (ALDRICH) were used after drying 
by molecular sieves. Water was distilled twice before use. Anhydrous  FeCl3 and 
 FeCl3·6H2O were purchased from Aldrich and used as received. Anhydrous tet-
rahydrofuran (THF) (Acros Organics) was distilled over K/Na alloy prior to use. 
All materials were storage in glass ampoules equipped with Teflon valves under 
argon atmosphere at room temperature.

Polymerization procedure

All experiments were carried out at  [CL]o = 5.0 and  [FeCl]o = 0.01  mol/dm3 in 
the presence of various amounts of  H2O and also MeOH or DPG as additives 
in some cases. For example, anhydrous  FeCl3 (0.0324 g, 0.19 mmol) was intro-
duced into a glass reactor (50   cm3) with two Teflon valves, filled by dry argon 
and THF (9.0  cm3) was then added. Next,  H2O (0.021 g, 1.17 mmol) was added 
by microsyringe and mixed vigorously by magnetic stirred for 10  min at room 
temperature. Finally, CL (11.0 g, 0.877 mol) was slowly added to the system and 
mixed for 10 h. Arise in viscosity was observed and finally the stirring ceased. 
After the specified time, i.e. 170 h the reaction mixture was quenched by small 
amount of wet THF. The polymer was precipitated by pouring the mixture in cold 
n-hexane, filtered and further dried in vacuum at 60 °C for 20 h.

Measurements

100  MHz 13C nuclear magnetic resonance (NMR) spectra were recorded in 
 CDCl3 at 25 °C on a BrukerAvance 400 pulsed spectrometer equipped with 5 mm 
broad-band probe and applying Waltz16 decoupling sequence. Chemical shifts 
were referenced to an internal standard (TMS). To reveal microstructural details 
of the polymer main chain high quality spectrum must be recorded with 3000 
scans being satisfactory amount, however to observe the signals of the polymer 
chain ends more than 10,000 scans was necessary.

Molar masses and dispersities of polymers were determined by means of size 
exclusion chromatography (SEC) on a Shimadzu Prominance UFLC instrument 
at 40 °C on a Shodex 300 mm × 8 mm OHpac column using tetrahydrofuran as a 
solvent. PSs were used as calibration standards.

Molar masses and dispersities were also determined by SEC with a Viscotek 
GPC Max VE 2001 and a Viscotek TDA 305 triple detection (refractometer, 
viscosimeter, and low angle laser light scattering). The OmniSec 5.12 was used 
for data processing. The apparatus was used in the triple detection mode, and 
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absolute molecular weights and dispersities obtained with calibration with a poly-
styrene standard.

Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) spectra 
were recorded on a Shimadzu AXIMA Performance instrument with dithranol used 
as a matrix.

Differential Scanning Calorimetry (DSC) was performed using the Mettler 
Toledo apparatus. Samples were heated, cooled and reheated with a speed of 10 °C/
min, in the temperature range of −100–120 °C. The DSC curves taken for the analy-
sis were obtained from the second run. Temperature calibration was performed with 
indium (melting temperature = 156.6 °C), heat of fusion (∆Hf = 28.5 J/g).

Phase composition investigations of materials were performed by powder X-ray 
diffraction (XRD) method using a Empyrean Panalytical diffractometer and CuKα 
(λ = 0.1542 nm) radiation equipped with PIXcel3D detector. The data collection was 
over the 2-theta range of 5°–100° in of 0.02° steps.

The phase content of each sample was calculated from the XRD scattering pro-
files with peak deconvolution method using the Origin OriginLab 2020b software. 
We used the fitting method with Gaussian profiles assumed for all scattering peaks 
and halos as proposed by Stoclet et al. [89]. The content of each phase (amorphous 
and crystalline) was calculated based on the area under the diffraction peaks by 
calculating the ratio from one phase to the total scattering peaks. XRD scans were 
taken at room temperature.

Spectrophotometer measurements were performed on the FTIR ATR device (Shi-
madzu IR Prestige) equipped with diamond ATR crystal purified prior to measure-
ment with i-propanol. Data were analyzed using the LabSolutions program.

Results and discussion

Several PCLs were synthesized at the same  [CL]o/[FeCl3]o (monomer/catalyst) 
molar ratio, i.e. 500/1 without additives and with various initiators at different initial 
concentrations. The chemical structure of the polymers obtained was analyzed by 
MALDI-TOF spectrometry and 13C NMR spectroscopy. Molar masses and dispersi-
ties of polymers were determined by SEC chromatography and, comparatively, in 
one case also by light scattering (LS) technique.

Structural analysis and mechanistic considerations

Polymerization of CL catalyzed by anhydrous  FeCL3

In 2009 Chakraborty et  al. [88] reported, that anhydrous  FeCl3 alone, as Lewis 
acid can be used catalytically for the bulk polymerization of CL at 27  °C. The 
polymer prepared at  [CL]o/[FeCl3]o = 200/1 ratio has appreciably high Mn = 19 
400 (measured by SEC relative to polystyrene standards with Mark-Hou-
wink corrections for Mn in the case of CL polymerizations [90]) in the rela-
tion to Mn (calcd) = 22,800. Polymer is unimodal with relatively high dispersity 
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(Mw/Mn = 1.87). After 1 h the yield was 100%. However, the course of the process 
was not proposed. Therefore, we performed this polymerization at room tempera-
ture using THF as a solvent. At [M]o = 2.0 and  [Cat]o = 0.1 mol/dm3 after 150 h 
only oligomers and unreacted monomer were found solubilized in the reaction 
mixture. However, at much higher initial concentration of monomer and lower 
concentration of catalyst trimodal polymer was obtained (Table 1). SEC chroma-
togram of polymer (2) was shown in Fig. 1.

The chromatogram shows two main polymer’s fractions and low molar-mass 
tail. This phenomenon was unexpected and needs further studies. Comparatively, 
the result of analysis of this polymer by light scattering was presented below in 
Fig. 2. This method gives real molar mass values, however, none data concerning 
modality of polymer.

In order to determine chemical structure of the polymer several techniques, 
i.e. MALDI-TOF, NMR and FTIR were applied. Figure 3 presents MALDI-TOF 
spectrum of PCL (2).

MALDI-TOF spectrum reveals two main series of signals. First one contain-
ing signals with higher intensity at m/z 839.2 to 4284.7 represents polyester 

Table 1  Characterization of products prepared in the polymerization of CL catalyzed by anhydrous 
 FeCl3 in THF at room temperature

a Determined by 13C NMR
b  Mn (calcd) =  ([M]o/[Cat]o/MCL +  MH2O

No. [CL]o 
mol/dm3

[FeCl3]o 
mol/
dm3

Yield (%) Mn 
(calcd)b

Mn (SEC) Mw/Mn 
(SEC)b

Mn (LS) Mw/Mn (LS)

1 2.0 0.1 35.0a – – – – –
2 5.0 0.01 99.5 57,088 (a) 8500 

(85%)
(b) 2500 

(10%)
(c) 1000 (5%)

1.12 1.07 
1.05

14 500 1.20

Fig. 1  SEC chromatogram of PCL (2) synthesized by anhydrous  FeCl3
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macromolecules with carboxyl and hydroxyl end groups. For example, signals at 
m/z 1067.4, 1752.3 and 3006.3 belongs to macromolecules containing 9,15 and 
26 mers of CL as well as H and OH derived from initiator. They form adducts 
with  Na+ ions. (Mcalcd = 1068.3, 1753.1 and 3008.0 respectively). The second 
series reveals the signals with much lower intensity at m/z 795.8–2989.3. They 
presumably represent cyclic PCL macromolecules, which form adducts with  H+ 
ions. For example, signals at m/z 1138.2, 1708.7 and 2392.2 belong to cycles with 
10, 15 and 21 mers od CL (Mcalcd = 1142.4, 1712.9 and 2397.5, respectively).

13C NMR spectrum shows high signals of carbon atoms derived. From CL mers 
at 24.7, 25.7, 28.5, 34.3, 64.3 and 173.7 ppm and confirm the presence of—CH2OH 
(62.7 ppm) and—CH2COOH (33.4 ppm) end groups in linear macromolecules of 
the synthesized polymer (2) (Fig. 4).

Basing on the results obtained we proposed the course of CL polymerization cat-
alyzed by anhydrous  FeCl3 (Scheme 1). In the first step exocyclic oxygen atom of 

Fig. 2  SEC—MALS analysis of PCL (2)

Fig. 3  MALDI-TOF spectrum of PCL (2) prepared with anhydrous  FeCl3



6313

1 3

Polymer Bulletin (2023) 80:6307–6326 

the monomer attacks the catalyst. The propagation proceeds according to the prin-
cipal mechanism of the cationic ROP of oxygen-containing heterocyclic monomers 
called active chain end (ACE) mechanism by nucleophilic attack of oxygen atom in 
monomer on α-carbon atom in tertiary oxonium ion located at the growing chain 
end. The process occurs by alkyl-oxygen bond cleavage and is accompanied by 
inter- and intramolecular transesterifications as side transfer reactions. The former 
leads to linear products and caused increasing of polymer dispersity. The second one 
occurs by back-biting and/or end-to-end closure resulting in the formation of cyclic 
macromolecules and great decreasing of molar masses.

We considered also other mechanism of this process, involving attack of the 
endocyclic oxygen atom of CL on  FeCl3 catalyst (Scheme 2) and then on acylium 
cation. It also results in linear and cyclic macromolecules. However, this mechanism 

~~~CH2OH

~~~CH2COOH

Fig. 4  13C NMR spectrum of PCL (2) obtained with anhydrous  FeCl3

Scheme  1  Active chain end (ACE) mechanism in cationic CL polymerization catalyzed with  FeCl3 
(propagation proceeds by alkyl-oxygen bond cleavage)
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is less probable due to the fact, that the endocyclic oxygen is less nucleophilic, than 
the exocyclic one [90]. Moreover, in the first case delocalization of the positive 
charge strongly stabilizes the cation formed, therefore the mechanism on Scheme 1 
is preferred.

Polymerization of CL mediated by hydrated  FeCl3

In the second step of the work we studied the polymerization catalyzed by  FeCl3 in 
the presence of water used as initiator. Concentration of water was in the wide range 
from 0.02 to 0.08 mol/dm3. The results obtained were collected in Table 2.

Synthesized polymers (3)–(6) were bimodal or trimodal and their molar masses 
(Mn) estimated by SEC method were lower than calculated ones. In general, dis-
perisities of fractions (a) were relatively high (Mw /Mn = 1.11–1.52), whereas those 
of fractions (b) and (c) were extremely low (Mw/Mn = 1.01–1.05). Similar result 

Scheme  2  Active chain end (ACE) mechanism in cationic CL polymerization catalyzed with  FeCl3 
(propagation proceeds by acyl-oxygen bond cleavage)

Table 2  Characterization of PCLs synthesized in polymerization mediated by  FeCl3/H2O (catalyst/initia-
tor) system in THF at room temperature;  [CL]o = 5.0 mol/dm3;  [FeCl3]o = 0.01 mol/dm3

a Mn calcd = ([M]o/[I]o)/MCL +  MH2O

No. [I]o mol/dm3 CL/OH ratio Yield (%) Mn (calcd)a Mn (SEC)b Mw/Mn (SEC)b

3 0.02 250/1 98.5 28,553 (a) 7700 (60%) 1.11
(b) 350 (22%) 1.04
(c) 1400 (18%) 1.13

4 0.04 125/1 99.0 14,285 (a) 3500 (90%) 1.52
(b) 900 (10%) 1.01

5 0.06  ~ 83/1 99.2 9529 (a) 4100 (93%) 1.37
(b) 1000 (7%) 1.04

6 0.08  ~ 63/1 98.9 7151 (a) 6800 (60%) 1.12
(b) 3000( 30%) 1.04
(c) 1400 (10%) 1.05
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obtained by use of commercial  FeCl3·6H2O from ALDRICH. Comparatively, poly-
mers obtained in [88] by  FeCl3·6H2O were unimodal and had higher Mn and dis-
persity depending on initial concentration of monomer. Analysis of the polymers 
(3)–(6) by MALDI-TOF technique indicated the formation of linear and small 
amount of cyclic macromolecules in all cases, independently of amount of water 
added. The latter were not observed previously by Chakraborty et  al. [88] in the 
polymerization of CL mediated by  FeCl3·6H2O system at CL/OH ratios equal to 
200/1, 167/1, 133/1, 67/1 and 33/1 in bulk or toluene solution at 27  °C. We sug-
gested, that this polymerization proceeds predominantly by activated monomer 
(AM) mechanism shown on Scheme  3 adapted from [88]. In the first step of the 
process exocyclic oxygen atom of carbonyl and group in the monomer interacts 
with metal atom of catalyst and then water attacks carbonyl carbon atom. Then, CL 
ring opens by acyl-oxygen bond cleavage simultaneously with leasing of  FeCl3. The 
reaction product, i.e. ε-hydroxycaproic acid reacts with complex of CL with acti-
vated monomer, which induces further chain growth. However, activated monomer 
can also react with next  H2O molecules generating new macromolecules.

However, we proposed an alternative version of AM mechanism, in which endo-
cyclic oxygen atom in the monomer molecule interacts with metal atom of the cata-
lyst and water attacks carbonyl carbon atom. These way also leads to the same inter-
mediated product, i.e. ɛ-hydroxycaproic acid (Scheme 4). Similar mechanism was 
suggested by Basko et al. [91] for polymerization of β-butyrolactone performed in 
 CH2Cl2 solution at room temperature in the presence of  CF3SO2H as the catalyst and 
isopropanol as the initiator.

Formation of cyclic PCL fraction observed in our work was rather unexpected. In 
order to explain this phenomenon we suggested, that small part of  FeCl3 catalyzes 

Scheme 3  Activated monomer (AM) mechanism in cationic polymerization of CL mediated with  FeCl3/
H2O system (propagation proceeds by acyl-oxygen bond cleavage)
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polymerization without participation of water. Consequently, two mechanisms, i.e. 
AM, which prevails and ACE operate simultaneously in the polymerization medi-
ated by  FeCl3/n  H2O systems in THF solution at room temperature. This phenom-
enon can be explained by the presence of polar solvent, which interacts with water 
by formation of hydrogen bonds. It decreases the reactivity of water in the initiation 
step of polymerization.

Polymerization of CL mediated by FeCl3/6 H2O in the presence of alcohols

It was reported by Chakraborty et  al. [88], that in the CL bulk polymeriza-
tion mediated by  FeCl3/6  H2O addition of alcohol (EtOH, i-PrOH, BnOH or gly-
col at  H2O/ROH = 6/5 ratio) enhance the tendency to increase of molar masses 
(Mn = 59,800–82,000) and produce hydroxy- and alkoxy-end terminal functionalized 
product, e.g.   (CH2)5 OCOBnO Hn

 which prevails.
Using toluene as a solvent, Mn of the latter diminishes from 67,200 to 18,200 at 

the same concentrations of reagents. Comparatively we carried out similar polym-
erizations in the presence of MeOH or DPG in THF solution (Table 3).

Scheme 4  Cationic polymerization of CL mediated by  FeCl3/H2O system according to AM mechanism 
with alternative way of monomer activation (propagation proceeds by acyl-oxygen bond cleavage)

Table 3  Characterization of PCLs prepared by polymerization occurred with  FeCl3/6H2O/5MeOH or 
 FeCl3/6H2O/5DPG in THF solution at room temperature;  [CL]o = 5.0 mol/dm3;  [FeCl3]o = 0.01 mol/dm3; 
 [H2O]o = 0.06 mol/dm3;  [MeOH]o = 0.05 mol/dm3;  [DPG]o = 0.05 mol/dm3

a Mn calcd =  ([M]o/[I]o)/MCL  MH2O

No. [I]o mol/dm3 CL/OH ratio Yield (%) Mn (calcd)a Mn (SEC)b Mw/Mn (SEC)b

7 H2O/MeOH
(0.11)

45.5/1 96.6 5210 (a) 6500 (62%) 1.13
(b) 2800( 28%) 1.03
(c) 1100 (10%) 1.04

8 H2O/DPG
(0.11)

45.5/1 99.1 5210 (a) 9100 (50%) 1.12
(b) 3300 (40%) 1.05
(c) 900( 10%) 1.01
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Unexpectedly, in both studied systems alkoxy-end terminal functionalized prod-
ucts were not detected using MALDI-TOF and NMR techniques. It means, that alco-
hols used did not react as initiators. Polymerization occurred according to AM and 
ACE mechanisms resulting mainly in CO O HHO n(CH2)5  macromolecules as well 
as cyclic macromolecules as side products. Interestingly, in all studied systems sev-
eral polymer fractions were formed with various yields, molar masses and disper-
sity. Presumably, polarity of the solvent used influences the formation of ionic cent-
ers with various reactivities, which are responsible for such effect. However, this 
phenomenon is unexpected and needs further studies.

Properties of the obtained polymers

Differential scanning calorimetry (DSC)

One of the techniques for analyzing the thermal behavior of polymers is differential 
scanning calorimetry (DSC). It enables to description of the polymers structure by 
determining the temperature and effects associated with physical changes in these 
materials. The typical DSC curve of PCLs obtained are shown in Fig. 5.

The endothermic peaks at 29.28 °C (2), 33.26 °C (3), 30.07 °C (4), 30.57 °C (5), 
29.58 °C (6), 30.00 °C (7), 30.85 °C (8) without mass loss is due to the melting of 
the crystalline phase of PCL, which gives a ΔH values of 76.20 J  g−1 for polymer 
2; 74.74 J  g−1 for polymer 3; 77.48 J  g−1 for polymer 4; 76.63 J  g−1 for polymer 5; 
73.86 J  g−1 for polymer 6; 72.21 J  g−1 for polymer 7 and 78.62 J  g−1 for polymer 8. 
The similar results indicate that initiators and different initial concentrations used in 

Fig. 5  Thermograms for obtained polymers (2)–(8)
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the polymerizations do not affect the thermal properties of the obtained PCLs. The 
results obtained are consistent with those proposed by Ting Ting Sui et al. [92].

Wide angle X‑ray scattering

XRD was used to characterize phase composition of PCL. The amorphous phase 
content was estimated by the area of the amorphous halo with a peak at a 2θ value 
of approximately 21°. For all samples the peaks of (110), (111), and (200) ortho-
rhombic crystalline face were found [93]. The calculated crystalline content (%) is 
shown in Table 4. The samples display an isotropic scattering profile with a diffused 
amorphous halo and sharp crystalline peaks. Three peaks at 2θ values of 21°, 22° 
and 24 ° are repeatedly observed in all samples (Fig. 6). All of them are characteris-
tic to crystalline PCL. The diffraction at 21° is attributed to the (110) faces while at 
24° to the (200) faces corresponding to the orthorhombic crystal lattice of PCL [89]. 
A small peak seen at a 2θ value of 22° is associated with the (111) plane of the same 
unit cell [94]. These states of order are associated with both the LAMELLAR fold-
ing and intermolecular spacing specific to each crystal face. Variation of the peak 
intensities and peak widths among the samples can be seen—the broadening of a 
crystalline peak manifests either decreasing crystal size or increasing structural dis-
order within the sample.

The peak ratios of the faces is changing in the range of (I(110)/I(200)) in the studied 
group. The observed changes deliver information about possible formation of condis 
crystal mesophase orientation. Condis crystals (conformationally disorder crystals) 
were described as a type of mesophase in the solid state material with birefringent 
properties connected to positional and orientation order, and partial or full confor-
mational disorder.

Along with increase in initiator concentration (P3-P6) 3 diffraction peaks were 
observed for P3, P4 and P6, while P5 XRD pattern revealed presence of 2 main dif-
fraction peaks with side-shoulder. P5 is also the sample characterized with the low-
est value of I(110)/I(200)ratio. This observation may reflect the lowest content of the 
mesophase-type orientation in this sample. The calculated crystalline content (%) 

Table 4  Phase content based on the quantitative structural analysis obtained by peak deconvolution of 
the integrated XRD scattering profiles for PCLs (2)-(8)

No. Peak 1 position 
[2θ]

Peak 2 position 
[2θ]

Peak 3 position 
[2θ]

I(110)/I(200) Crystalline 
content 
(%)

Amorphous 
content (%)

2 21.53343 22.13742 23.84436 3.08085 58.35 41.65
3 21.27082 21.90107 23.58175 2.62145 34.18 63.82
4 21.53343 22.13742 23.84436 2.88138 62.28 37.72
5 21.58595 x 23.92314 2.43714 49.75 50.25
6 21.19204 21.79603 23.50297 2.54742 52.00 48.00
7 21.27082 23.58175 2.53888 26.32 73.68
8 21.13952 21.76977 23.45045 2.79518 46.89 53.11
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was the highest for P4 sample (62.28%), followed by P6 (52.00%), P5 (49.75%) and 
P3 (34.18%). By looking at this sequence one may indicate that in this series the 
proneness of the PCL to form crystalic–type package is influenced by the average 
molecular weight of the polymer. The lowest value of Mn was reported for P4 sample 
(Table 2), while the highest was calculated for P3 sample (Table 2). Additionally, P4 
was characterized with the highest dispersity, which is an indicator of greater extend 
of variation of macromolecules’ length. Additional presence of MeOH (P7) or DPG 
(P8) led to decrease in crystalline content to 26.32% (P7) and 46.89% (P8). P7’s 
XRD pattern revealed presence of 2 diffraction peaks with side-shoulder part and 
this sample is characterized with the lower value of  I(110)/I(200) ratio. Contrary to the 
previous series (P3-P6) the increased average molecular weight did not hampered 
crystalline phase formation. It seems that there are additional forces that favor align-
ments, which are induced by dipropylene glycol presence.

FTIR analysis

For P2 sample FT-IR spectrum is shown in Fig.  7. The most prominent charac-
teristic absorption peak of PCL, which is linear aliphatic polyesters, is located 
at 1720–1730   cm−1 and corresponds to the carbonyl stretching mode of the ester 
group [95]. The changes of the shape of this band correlates well with the melt-
ing and crystallization processes. Two separated carbonyl bands were prescribed to 
amorphous (1735  cm−1) and crystalline regions (1725  cm−1) [96]. Their intensities 
described as absorbances value are helpful in establishment of the relative amount 

Fig. 6  The integrated XRD profiles of polymers (2)-(8)
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of crystalline and amorphous fractions [97]. Additional strong band at 1174   cm−1 
is visible corresponding to stretching vibration mode of C–O–C part [98]. Further-
more, P2 spectrum shows peaks of  CH2 stretching vibrations corresponding to alkyl 
chain structure [99, 100]. The C-H both symmetric and anti-symmetric stretch-
ing are seen with peaks at 2864 and 2945  cm−1 respectively. A broad peak around 
3425  cm−1 is due to the OH stretching of PCL end group.

Conclusions

Both anhydrous and hydrated  FeCl3 mediated ɛ-caprolactone (CL) polymerization 
in tetrahydrofuran (THF) solution at room temperature. The main features of these 
processes are:

1. Anhydrous  FeCl3 catalyzed CL polymerization proceeding by ACE mechanism 
leading to linear macromolecules, however, cyclic macromolecules are also 
formed by intramolecular transesterification.

2. Addition of water as initiator resulted in occurrence of AM mechanism of polym-
erization, which operates simultaneously with ACE ones at wide range of  FeCl3 
/  H2O ratio (1/2,1/4,1/6 and 1/8), however, the AM mechanism prevails.

3. Alcohols, i.e. MeOH and DPG use together with water appeared to be completely 
inactive in the studied process.

4. The polyesters obtained were polymodal and consisted of two or three fractions 
with various yields, Mn and Mw/Mn.

Fig. 7  FTIR spectra of PCL (2)
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5. XRD analysis showed the coexistence of two phases, i.e. —crystal and amorphous 
ones with possible mesophase orientation formation. The calculated crystalline 
content (%) was the highest for P4 sample due to its lowest average molecular 
weight.

6. Addition of either MeOH (P7) or DPG (P8) led to decrease in crystalline content 
to 26.32% (P7) and 46.89% (P8). Still it seems that there are additional forces that 
favor alignments, which are induced by presence of dipropylene glycol.

7. Unexpectedly, the results obtained in this work differ strongly from these reported 
previously [88], probably due to the influence of THF used as a polar solvent.
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