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Abstract
Chitosan is one of the most environmental purification functional natural polysac-
charides that can successfully prohibit the reproduction and growth of harmful 
Gram-negative and Gram-positive bacterial pathogens and also control the toxic 
pollutants. Nowadays, pathogenic microorganisms have multidrug resistance to anti-
microbial drugs; therefore, successful identification and management of contagious 
disorders has become a major impediment. For combating the multidrug resistances 
in microorganisms’ the latest innovations in nanotechnology-based medications have 
released novel prospects. More attention has been paid to the use of silver nanoparti-
cles (AgNPs) as an effective antibacterial agent. Silver nanoparticles have been used 
to prevent and cure numerous contagions and disorders due to their strong bacteri-
cidal effects. Silver nanoparticles have high bactericidal and antimicrobial actions 
against methicillin-resistant bacterial strains, e.g., Pseudomonas aeruginosa, Staph-
ylococcus aureus, and Escherichia coli, etc. The formation of  nanoparticles  from 
chitosan sources has been paid pronounced consideration due to hydrophilic charac-
teristics, biodegradability, and biocompatibility. The first part of the literature high-
lights a general mechanism of antibacterial activity of chitosan, whereas the second 
part focus on the antibacterial activity of chitosan conjugated silver nanoparticles 
against broad-spectrum Gram-negative and Gram-positive microbial pathogens. 
Chitosan is selected as a protective mediator in the formation of silver nanoparticles 
because chitosan act as a stabilizing agent as well as the capability to sorb silver ions 
via chelation and ion exchange mechanisms. Chitosan conjugated silver-nanocom-
posites were suggested as coatings for food packaging, biomedical-engineering as 
well as wound-dressing applications.
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Abbreviations
CH  Chitosan
NPs  Nanoparticles
Ag NPs  Silver nanoparticles
ROS  Reactive oxygen species
OH  Hydroxyl group
TEM  Transmission electron microscopic
MDR  Multiple drug resistant

Introduction

Chitosan is the second most natural polysaccharide in the universe after cellulose 
that can be attained through the deacetylation processes of chitin. Outer shells of 
mollusks, lobsters, microorganisms, and cuticles of insects are the main sources 
of chitin or chitosan [1]. Table 1 and Fig. 1 show the various sources of chitosan. 
Decalcified cuticles of the crustacean members possess approximately 55–85% 
chitin. Secretion of chitin occurs by a single layer of epidermal cells whereas; 
the endocuticle contains mineral salts, e.g., phosphates of calcium and carbon-
ates [2]. Chitosan possesses prospective uses in medicine, agriculture, paper, tex-
tile, pharmaceutical, and food industries. It has been reported as an antioxidant, 
anti-tumor antifungal antibacterial, anti-inflammatory anti-thrombogenic, immu-
noadjuvant, and anti-cholesteric agent due to its non-toxicity, biocompatibility, 
non-allergenicity, and biodegradability properties [3]. Furthermore, it has also 
numerous uses in the biomedical field, e.g., tissue engineering, gene delivery, 
drug delivery, and regenerative rehabilitation [4]. Many applications have been 
attributed at the industrial level due to its solubility in an acidic aqueous medium. 
Its solubility depends upon the molecular weight, dispersion of the amino and 
acetyl groups along the chain, and degree of acetylation [5]. Chitosan possesses 
broad-spectrum anti bactericidal actions against both Gram-Positive and Gram-
negative microbes. Additionally, the anti-bacterial activity of chitosan at low pH 
has been detected higher due to the occurrence of amino groups in the cationic 
form [6].

Table 1  Sources of chitosan 
[1, 7, 8]

Microorganisms Insects Marine animals

Green and brown algae Beetles Mollusks
Spores Brachiopods Annelids
Fungi (cell wall) Cockroaches Coelenterates
β-type yeast Ants Prawn
Chytridiacea Scorpions Shrimps
Blastocladiaceae Spiders Lobsters
Mycelia penicillium Crustaceans
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Biological and physiochemical characteristics of chitosan

Solubility of Chitosan is found maximum in dilute organic acids, e.g., acetic acid, 
lactic acid, formic acid, and malic acid insoluble in water due to high viscosity. 
Chemical features of the chitosan include linear polyamine, reactive –OH groups, 
the occurrence of reactive amino groups, and a chelating effect with abled transition 
metal ions. Therefore it could be utilized in numerous high versatility physical forms 
gels, nanoparticles as filaments and nano-fibers, films, globules, scrubbers, scaf-
folds, and films [9]. Chitosan contains the following biological features, e.g., DNA 
binding ability in microbial and mammalian cells, eco-safe, hemostatic, biocom-
patibility, biodegradability, spermicidal, fungistatic, immunoadjuvant, accelerating 
effect for bone formation, antitumor, and anti-cholesteremic [10, 11]. Physiochemi-
cal features of chitosan (CH) and its determination methods are depicted in Table 2.

Antibacterial effect and mechanism of chitosan

Chitosan in diverse formulas such as solutions, composites, and films has been 
studied as an antibacterial agent for an extensive range of target entities for exam-
ple microbes, algae, mushrooms, and fungus in various in vitro and in vivo experi-
ments [14]. Abdel-Razek [15], first proposed the broad-spectrum antibacterial activ-
ity of CH and its products. The voyage of investigation, assessment, and technical 
improvement in the antimicrobial properties of chitosan began two decades ago, on 

Fig. 1  Sources of Chitosan
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soil–borne and foodborne pathogenic fungi in agriculture as well as food production 
[16]. Many extrinsic and intrinsic aspects, e.g., molecular weight and pH, relied on 
the antibacterial actions of chitosan and its by-products [17].

The polycationic chitosan interacts to the anionic charged cell wall of the patho-
gen then alters the permeability of the plasma membrane, inhibiting the replication 
of DNA,and disrupts the entire cell which results in apoptosis occurs [18]. Due to 
chelating activity, it inhibits bacterial growth by binding to trace metal elements 
and production of toxins [19]. Even, high molecular weight solid and water-soluble 
chitosan containing larger size nanoparticles obstructive the transference of vital 
solutes into the cell. It has been stated that two positively charged sites asparagine 
N-conjugated chitosan oligosaccharide offers resilient communication with the cell 
wall of bacteria that possess carboxyl-negative charges [20]. The polyatomic struc-
ture of chitosan predominantly shows a major function against microbes via electro-
static interaction among the negative constituents of the microbes for example cell 
surface proteins and lipopolysaccharide [14]. It has been described that the antimi-
crobial effect is enhanced in the incidence of an abundance of carboxyl group[21]. In 
acidic conditions, the polycationic structure forms superfluously, because the pKa of 
chitosan at a higher pH value may change due to protonation [22]. Chandrasekaran 
et  al. [21] described that the antibacterial property of chitosan metal complex as 
well as chitosan will increase when the concentration of chitosan increases. Various 
states of the cells situated on the surface of the chitosan microsphere (some were 
leaking intracellular substances, some were intact)that destroy pathogens via interfa-
cial communication [23].

Aspects affecting the antibacterial property

Concentration of chitosan

In a previous study, it is reported that at different concentrations chitosan can pro-
hibit the growth of bacteria depending upon the acetylation degree. Chitosan with (a 

Table 2  Physiochemical 
characteristics and 
Determination methods of 
chitosan [12, 13]

Physicochemical characteristics Determination methods

Molecular weight High performance liquid chroma-
tography (HPLC), Viscometer 
matrix-assisted laser desorption/
ionization-mass spectrom-
eter (MLMS), gel permeation 
chromatography (GPC), light 
scattering

Crystallinity X-ray diffraction
Fourier transform infrared 

spectroscopy, nuclear magnetic 
resonance spectroscopy, infrared 
spectroscopy
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7.5% acetylation degree) was more effective than a solution of chitosan with a 15% 
acetylation degree [24]. Higher concentrations of protonated CH can hide the recep-
tors on the surface of a cell and stop the outflow of internal constituents whereas, 
CH binds to the negatively charged cell surface at lower concentrations then disrupts 
the plasma membrane and cause the decease of the microbes via inducing escape 
of entire constituents and eventually leads to death of bacteria [25]. It has also been 
found that chitosan bind to Gram-negative bacteria especially only at lower concen-
trations [26]. It has also been stated that at the lower concentration (20 ppm) chi-
tosan killed almost all bacterial strains when compared to a higher concentration at 
50 ppm [27]. The antibacterial experiment results showed that when cotton fabrics 
were treated with diverse concentrations of chitosan (0.5–0.75%) a significant anti-
bacterial activity has been found and increasing the concentration of CH (1%) leads 
to a reduction in antibacterial activity [28].

Molecular weight

Various studies reported that low Mw and high Mw of CH have equivocal results 
for B. subtilis and E. coli [14]. Xia et al. [14] stated that the molecular weight of 
chitosan either low or high depends on situations of genetic testing and the bacte-
rial strains. Moreover, HMw (9.3 kDa) and Low molecular weight (4.6 kDa) chi-
tosan and its imitative exhibited enhanced action for mold, fungi, as well as other 
pathogens. It has also been found that chitosan with high molecular weight (1671, 
and 1106  kDa) can intermingle with the membrane of the bacteria and stops the 
transport of nutrients into the plasma membrane of microbes by altering the cell per-
meability and resulting in cell lysis [29]. However, CH with a low molecular weight 
(746 kDa) can interact with the nuclei of the microbes and prohibit the synthesis 
of mRNA [30]. In previous studies, it has also been specified that LMW chitosan 
revealed stronger bactericidal effects on Gram-negative bacteria, e.g., E. coli and 
Pseudomonas fluorescens, whereas, chitosan with high HMW (1671 kDa) is more 
effective against Gram-positive bacteria such as Vibrio parahaemolyticus and Sal-
monella typhimurium [31].

pH

The antibacterial action of CH depends upon the pH of chitosan [25]. Alarfaj [32] 
reported that chitosan showed the tougher prohibitory effect at lower pH, due to 
solubility of chitosan in an acid whereas, the antibacterial activity becomes weak 
when the pH increases. Some researchers reported that under neutral conditions or 
at pH 7.0 chitosan and its derivatives finally failed to show their antimicrobial activi-
ties because it was tough for chitosan to dissolve in water at pH 7.0 and the amino 
groups of chitosan were no longer significantly charged at neutral pH [33]. Chitosan 
is polyatomic due to the high density of amino groups present on the polymer and 
at pH 6.0 it intermingles freely with negatively charged constituents, e.g., anionic 
polysaccharides, proteins, fatty acids, phospholipids, and bile acids [34]. However, 
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Yu et al. [23] stated that the chitosan microsphere exhibited antibacterial outcomes. 
Hosseinnejad and Jafari [22] found that N-alkylated chitosan derivatives indicated 
the maximum antibacterial activity for E. coli when pH enhanced from 5.0 to 6.0 
pH. In another study antibacterial activity of chitosan was investigated at pH 7.4 and 
6.2 against Staphylococcus aureus, and at pH 6.2 chitosan more inhibited the growth 
of bacteria than pH 7.4 [35]

Temperature and time

Specific characteristics of chitosan and its derivatives such as viscosity/molecular 
weight might be altered during storage [36]. Therefore, for commercial applications, 
the stability of prepared chitosan solution should be monitored before storage or fur-
ther use. After four months of storage, stability of chitosan and antimicrobial action 
against Gram-negative (S. enteritidis and E. coli) and Gram-positive (S. aureus and 
L. monocytogenes) bacterial strains were inspected at 5  °C and 28  °C [37]. After 
investigation, it was found that after four months of storage chitosan solutions exhib-
ited less antiseptic action than before storage. In another study, it was also found that 
Chitosan solutions showed more antibacterial activity at 4 °C as compared to 25 °C. 
The antibacterial activity of chitosan solutions at different temperatures depends 
upon the bacterial strains [38]. It was found that E. coli showed higher antibacterial 
activity as temperature increased from 4 to 37 °C. Xia et al. [14] reported that low 
temperature can decrease the electronegativity for derivatives of CH by changing the 
cell surface structure.

Chitosan nanoparticles

Nowadays, (NPs) are used as drug-delivery mediators or nanocarriers to develop 
safer and more effective treatments for diagnosing, monitoring, and preventing syn-
dromes [39]. Alqahtani [40], found that CNPs exhibited greater antimicrobial action 
against both Gram-positive and Gram-negative bacteria, and an extensive variety 
of fungus strains as compared to chitosan. Several approaches have been found for 
the preparation of chitosan NPs, e.g., microemulsion, ionic gelation, spray drying, 
reverse micellar method, and emulsion droplet coalescence [21, 41]. Among sev-
eral approaches, ionic gelation was observed to be the better one. According to the 
ionic gelation scheme, chitosan (w/v) was liquefied in acetic acid (v/v) and the solu-
tion was retained under magnetic stirring at room temperature for 24 h. Then 1 mL 
0.1% w/v TPPsolution was added dropwise to 5 mL of CH solution at 800 rpm for 
1  h under continuous magnetic stirring. Then the nanoparticles were formed and 
the solution containing nanoparticles was spinned at 10,000 rpm for 15 min. Then 
NPs were liquefied in double distilled water and then centrifuged for purification 
[42]. For further characterization and experiments, the CNPs were kept at room tem-
perature. The synergistic effect of chitosan and metals (gold-, silver- or copper) was 
explored to prepare a novel nanocomposite against human bacterial strains [43].



4725

1 3

Polymer Bulletin (2023) 80:4719–4736 

Chitosan conjugated silver nanoparticles

The production of NPs from chitosan sources has been given prodigious devotion 
due to their biocompatibility, hydrophilicity, and biodegradable possessions [44]. 
It intermingles with negatively charged polymers and molecules due to its posi-
tive nature. In the formation of metal NPs, CH has been selected as a protecting 
agent due to the interface of active α-amine groups in CH with metal nanoparti-
cles [45]. Toward some human cells, chitosan displays an antibacterial action for 
disease resistance due to the occurrence of both active OH functional and amino 
groups [46]. Suresh et al. [47] described that recently chitosan has been used as 
both the stabilizing and reducing agents for the production of Ag NPs. Silver 
nanoparticles (Ag NPs) possess unique physicochemical properties in the field of 
biomedicine such as antiviral, antibacterial, anti-inflammatory antiplatelet activi-
ties, antifungal, and anti-angiogenesis [47, 48]. In various areas of nanotechnol-
ogy, the syntheses of metal nanoparticles through the improvement of proficient 
and greener routes have become a major concern. Among several metal nanopar-
ticles, silver nanoparticles are extensively useful in numerous organic and medic-
inal areas due to their potential as antimicrobial agents, e.g., wound healing, bio-
sensors, curing the burns, and treating the numerous forms of cancers [49, 50].

Chitosan and PVA are well-recognized polymers with tremendous immersion 
capacities for various metal ions due to the occurrence of (–NH2) and (–OH) 
groups in their configuration [51]. It has been documented that CH itself pos-
sesses antimicrobial action due to its cationic characteristics that cause a mem-
brane-disrupting effect. However, chitosan–silver nanoparticles (CS/AgNP) 
signifies a bio-nanostructured hybrid material due to their biodegradability and 
biocompatibility [52].

Antibacterial mechanism of chitosan conjugated silver nanoparticles

Interaction between chitosan and metal nanoparticles takes place due to the posi-
tive amino groups chitosan and negatively charged molecules in bacteria [53]. 
Chitosan has been selected as a therapeutic mediator in the production of metal 
NPs. Chitosan shows several noteworthy organic functions such as antimicrobial 
action for diseaseresistant toward several human cell categories due to the inci-
dence of both active NH and OH groups [45]. For many years silver products 
have been utilized to inhibit and medicate numerous inflammation and disorders 
due to their resilient prohibitory and bacteriostatic actions. Silver nanoparticles 
have high bactericidal and antimicrobial actions against methicillin-resistant 
bacterial strains such as  S. aureus, E.  coli,  and P. aeruginosa  [54]. Apart from 
stabilization, chitosan also prevents the agglomeration of AgNPs below a criti-
cal concentration [55]. Furthermore, the antimicrobial action upsurges with the 
increased concentration of AgNPs and silver molecules. The greater effective 
surface area of silver nanoparticles increases the antimicrobial action because 
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chitosan prevents aggregation of AgNPs. The surface area of both silver ions and 
nanoparticles decreases in the presence of agglomerates and thus the efficiency of 
antibacterial is greatly diminished [56]. Shah et al. [52] reported that chitosan can 
sorb silver ions via chelation and ion exchange mechanisms. Chitosan and silver 
ions interact with each other through a reduction process as a result of electro-
spinning among single carboxyl and single amino groups of CH with the mole-
cules of silver. A dual mechanism of action of chitosan-based silver nanoparticles 
is the effect of cationic chitosan and the bactericidal effect of AgNps [52].

The distraction of plasma membrane and destabilization of entire 
structures

The mechanism of the antimicrobial act of positively charged chitosan-based sil-
ver nanoparticles is interacting with  the anionic charged cell membrane of bac-
teria leading to accretion of NPs on the bacterial cell surface. These NPs cause 
disruption in the permeability of the plasma membrane, altered configuration, 

Fig. 2  Antibacterial mechanism of chitosan conjugated silver nanoparticles
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transportation action, and destabilization of the cell envelope as shown in Fig. 2 
[57]. These nanoparticles release the silver ions from particles and can enter the 
cell via intermingling with phosphorus- and sulfur-containing compounds, e.g., 
protein and DNA [58].

Images of Transmission electron microscopy have shown that the antimicro-
bial activity of the AgNPs can enhance by the usage of anionic detergents such as 
sodium dodecyl sulfate and Phosphorus-containing heterocyclic surfactants, and 
non-heterocyclic ammonium and phosphonium surfactants s that are potent stabiliz-
ers of AgNPs with significant cytotoxic activity. Silver nanoparticles with phospho-
nium surfactants were found to be more stable and exhibited substantial antibacte-
rial effects against Gram-negative and Gram-positive pathogens [59, 60]. The outer 
membrane of the Gram-negative bacteria consists of “porins (water-filled channels) 
that are responsible for the acceptance of AgNPs into the microbial cells. These 
NPs also disrupt DNA replication, various enzymes such as DNA-dependent RNA 
polymerase and DNA gyrase, division, and respiration by binding to mesosomes, 
thus damage the entire cell [61]. Thiruvengadam Bansod, [62] also stated that the 
interaction of AgNPs with ribosomes leads to the prohibition of protein synthesis 
due to the deactivation of SH functional group of the amino acids existing in the 
cell surface. Ag ( +) ions and AgNPs block active binding sites by interacting with 
disulfide bonds and modifying the 3D structure of proteins which leads to complete 
functional imperfections in the bacterial strains [63]. It has also been reported that 
AgNPs inhibit the metabolism of sugar through the deactivation of the phosphoglu-
cose isomerase [64]. Silver ions can affect the transportation and the discharge of 
potassium (K +) ions, and escape of cellular constituents, e.g., proteins, reducing 
sugars and ions from the microbial cells, can also alter [65]. It has been found that 
Ag ( +) ions disrupt the double-helical structure of microorganisms by breaking the 
H-bonds found within nucleotides of the antiparallel strands of DNA [66]. Yun’an 
et al. [67] stated that AgNPs also inhibited the cell division and reproduction of S. 
aureus in its initial stages.

Formation of ROS

Accumulations of NPs on the plasma membrane of the bacteria produce oxidative 
stress which results in the release of ROS. These ROS can decline the production of 
ATP as well as respiration [68]. A higher concentration of Ag ( +) ions causes cellu-
lar oxidative stress in microbes due to the generation of free radicals, e.g., hydroxyl 
radical (OH•),  H2O2, singlet oxygen, superoxide anion, as well as hypochlorous acid 
[69]. During mitochondrial oxidative phosphorylation ROS are also generated intra-
cellularly. Productions of free radicals in excessive amounts cause necrosis in the 
mitochondrial membrane. It has also been reported that higher production of ROS 
causes hyper oxidation of DNA proteins and lipids. Silver nanoparticles disrupt and 
inactivate the catalytic activity of various enzymes due to the production of carbon-
yls which are protein-bound in the environment through catalyzing the chemical 
reaction of the amino groups which result in the destruction of polymers occurs [70].
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Genotoxicity and inhibition of signal transduction

For bacterial growth and cellular action, the sequence of dephosphorylation and 
phosphorylation cascade mechanism of signal impart plays a vital role [64]. 
Therefore, bacterial growth can be repressed by the reticence of phosphorylation 
of amino acids that will obstruct their catalytic action [71]. Silver NPs interre-
late with the DNA/RNA due to their electrical possessions and inhibit the sig-
nal transduction by harmful effect on the reproductive procedure of chromosomal 
and plasmid DNA [72]. A higher antimicrobial of CH-based AgNPs was found 
against Gram-negative (E. coli) and Gram-positive microbial strains (S. aureus, 
and B. subtilis) when matched to ionic silver and chitosan itself for S. aureus and 
E. coli [65].

Effects of physicochemical properties on antibacterial action 
of AgNPs

In biomedical applications production of metallic derivative nanoparticles relies 
upon various thermal, chemical, physical, electrical, and photosensitive charac-
teristics [59]. Omran et  al. [73] stated that microbial possessions of the silver 
nanoparticles are intensely affected by their concentration, size, shape, and colloi-
dal state as shown in Fig. 3. It has also been found that the stability and biocom-
patibility of AgNPs can enhance by reducing their size [74]. Interaction between 
AgNPs and microorganisms (viruses, bacteria, and fungus) takes place according 
to shape. Therefore, it is essential to develop applicable shaped and sized NPs 
with desired superficial characteristics [75]. Treatment with different shaped Ag 
NPs showed modifications in the plasma membrane of the (E. coli) via energy-
filtering TEM images [76]. Antibacterial action of truncated triangular shaped 
AgNPs has been found better with respect to rod shaped / sphere-shaped. The size 
of AgNPs is another important physicochemical characteristic that is accountable 
for the conformation of nanoparticles. The size of silver nanoparticles should not 
be larger than 50 nm [77]. Liao et al. [78] stated that AgNPs with smaller sizes 
(< 30 nm) showed more antibacterial action against K. pneumoniae and S. aureus. 
Both bactericidal as well as bacteriostatic effects against S. aureus have also been 
found at 5–10 nm dimensions of AgNPs as shown in Table 3 [79]. Small-sized 
AgNPs attached with the plasma membranes, increased membrane permeability, 
and  modifications in lipid bilayer lead to impairment and apoptosis. Crystallo-
graphic surface structures and surface area to volume ratio are significant aspects 
that describe the antimicrobial action of AgNPs [80].

Due to the multidrug resistance of the pathogenic microbes to the antibacte-
rial medications, successful treatment and diagnosis of pathogenic infections 
of fungal and bacterial origin have become a major concern [85]. Table 4 com-
prises a list of antibiotics to which the most communal drug-resistant, pathogenic 
strains of microbes have developed resistance. Nowadays, to overcome MDR, 
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more consideration has been paid to the development of novel, non-traditional 
antibacterial agents [86]. In clinical and therapeutic applications the benefit of 
using silver nanoparticles is comparatively less responsive than silver ions [74]. It 
has been found that both, non-multidrug resistant, as well as multidrug-resistant 
bacterial strains, showed more antimicrobial activity against AgNPs [87]. Severe 
clinical and medical problems, e.g., disorders in the urinary tract, diarrhea, neo-
natal meningitis, and pneumonia, etc., are associated with Gram-positive patho-
gens including Enterococcus, Nocardia, Clostridium, Actinomyces, Mycobacte-
rium Staphylococcus, Bacillus, Corynebacterium, Listeria, Streptomyces, and 
Streptococcus [88]. Among them are antibiotic-resistant microbes; E. faecium is 
vancomycin-resistant, methicillin- and vancomycin-resistant S. aureus, penicillin-
resistant Streptococcus pneumonia, and multidrug-resistant Listeria Corynebac-
terium and macrolides resistant Streptococcus pyogenes. The two most dominant 
and pathogenic Gram-negative bacteria enterotoxin Escherichia coli (ETEC) and 
Vibrio cholerae have high morbidity and mortality rate through severe secretory 
diarrhea [89]. Among Gram-negative bacterial strains K. pneumoniae, Acineto-
bacter baumanii, and Pseudomonas aeruginosa some are opportunistic microor-
ganisms that infect mainly immune-compromised patients and are intrinsically 

Fig. 3  Factos affecting the antibacterial activity of chitosan
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resistant to multiple drugs [90]. Niño-Martínez et al. [91] stated that the antisep-
tic action of silver nanoparticles has been found in contradiction to drug-resistant 
pathogenic strains of bacteria, e.g., E. faecalis, Bacillus subtilis, E. coli, P. aer-
uginosa, S. aureus, and K. pneumonia. Antimicrobial effect of silver nanoparti-
cles has also been found against S. typhi, S. pyogenes, methicillin-resistant Staph-
ylococcus epidermidis, and K. pneumonia and methicillin-resistant S. aureus 
(MRSA). Antibacterial effect of AgNPs only or amalgamation with antibiotics 
against drug-resistant bacterial strains has also been found [92].

Conclusion

The current study showed that nowadays pathogenic microorganisms have multidrug 
resistance to antimicrobial drugs therefore, successful diagnosis and management of 
infectious disorders has become a foremost barrier. Significant antibacterial action 
of CH has been found against a broad spectrum of microorganisms. Chitosan-silver 
nanoparticles (CS/AgNPs) signify bio-nanostructured crossbreed constituents due to 
their biocompatibility, and biodegradability with improved antimicrobial character-
istics. Bactericidal possessions of the AgNPs can be intensely affected through their 
size, concentration, shape, and colloidal state. Silver nanoparticles of smaller size 
(< 30 nm) showed more antibacterial action against Gram-positive and Gram-nega-
tive bacterial pathogens. Chitosan-conjugated silver-nanocomposites were suggested 
as coatings for food packaging, biomedical-engineering as well as wound-dressing 
applications.

Table 4  Resistance in bacterial strains to common antibiotics [86]

Microbes Antibiotic-resistant

Acinetobacter baumannii Carbapenems Imipenem
E. coli Cephalosporins Sulfamethoxazole Rifampin Streptomycin Tetracycline 

Ampicillin Chloramphenicol
V. cholera Tetracycline, Fluoroquinolones
P. aeruginosa Tetracycline, β-lactams, Trimethoprim Chloramphenicol, Fluoroqui-

nolones Novobiocin, Sulfonamides
S. flexneri Nalidixic acid, Ciprofloxacin
Salmonella typii Ampicillin, Trimethoprim, Amoxycillin Chloroamphenicol, Fluoroqui-

nolones
Gram-positive
Bacillus subtilis Erythromycin, Streptomycin, Penicillin Chloramphenicol, Lincomycin, 

Tetracycline
Streptococcus pneumonia Penicillin, Erythromycin
Staphylococcus aureus Vancomycin, Methicillin
Corynebacterium diphtheriae Tetracycline, β-lactam antibiotics, Chloramphenicol, Sulfamethoxazole 

Trimethoprim
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