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Abstract
Noise is the principal physical hazard in many workplaces that affects work effi-
ciency and human health; consequently, reducing noise by utilization sound adsor-
bent is a major method for controlling noise. Synthetic materials such as fiberglass 
and rock wool are utilized as sound absorbers in developing countries are harmful to 
the environment and health. Thus, this has motivated the initiative to develop natural 
fibers and their reinforced composites as candidates to replace the synthetic materi-
als utilization theoretical study and life cycle assessment (LCA). In addition to light-
weight and low CO

2
 emission advantages, the natural vegetable fibers are non-toxic 

and recyclable. The characterization of these green composites will develop for uti-
lization in engineering applications. Nowadays, their sound absorption properties 
have been extensively studied and are applied in many components for airplanes and 
cars. This research aimed to study the sound absorption properties of tea waste fib-
ers and their reinforced composites. It was observed that adding 5 wt% nanoclay in 
samples improved the sound absorption coefficients (SAC), especially at lower fre-
quencies. A 60% increase in tea waste had a special role in absorbing sound waves 
at a frequency of 1000 Hz and a frequency range of 2500 to 6300 Hz. The Scanning 
Electron Micrographs (SEM) images showed that the different sound absorption 
properties of nanocomposites were due to the high porosity of tea waste.
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Introduction

With the rapid urbanization and fast growth of transportation, noise pollution has 
been considered a major environmental problem [1, 2]. One of the most common 
problems in exposure to high-level noise is a hearing loss so that, 10% of hearing 
loss is due to exposure to noise in the work environment [3]. According to the 
World Health Organization (WHO), noise pollution can cause heart attacks and 
sleep disturbance [4]. Various techniques are suggested for controlling or mini-
mizing excessive noise levels. For example, sound absorbers are utilized as an 
impressive noise control method in interior and exterior environments, and these 
are necessary to create convenient conditions for speech communication [5, 6].

Porous synthetic materials, such as rock wool, fiberglass, and plastic foams, 
are harmful to human health and cause global warming [7, 8]. Life cycle assess-
ment has shown that natural materials have the lowest environmental damage [9]. 
In recent years, greater attention to human health and environmental protection 
has led to study for the utilization of natural fibrous material, such as rice husk 
[10], bagasse [11, 12], coir fiber [13], coffee chaff [14], sunflower [15], corn husk 
[16], date palm branches [17], coconut husk, and sugar cane fibers [18]. Natural 
fibers have positive mechanical properties [19] and are biodegradable [20], cost-
effective, and environmental-friendly, and they can reduce noise pollution [21, 
22]. For these reasons, the utilization of natural materials for noise reduction is 
gradually evolving [23–25].

Tea is a world popular drink that prepares from brewing tea leaves. About 
4.5 million tons of teas are consumed annually in the world [26]. Tea leaves are 
resistant to fungi and termites and have high durability [27]. They are available 
in excess and can be utilized in enormous quantities without spending money. 
Ahsan et al. [28] worked on spent tea leaf fiber-filled polyurethane foam compos-
ite because tea leaves are resistant to fire, fungal, and termites. Ekici et al. [29] 
demonstrated that utilization tea-leaf fibers in polyurethane foams significantly 
improved sound absorption. Moreover, the results of previous studies indicate 
that polyurethane foams loaded with tea-leaf fibers have higher positive effects on 
sound absorption [30].

Recently, nanoscience and nanotechnology materials have been utilized for 
improving mechanical and physical properties in the manufacture of composites 
[31, 32]. Among the nanoparticles, nanoclays are utilized widely as a filler [33]. 
Gayathri et al. [34] demonstrated that adding nanoclays to the polyurethane foam 
improves sound absorption. Nanofibrous materials have a high surface area and 
effective airflow resistance; therefore, they can increase the absorption of acous-
tic energy [35].

Researchers have focused on the acoustic characterization of natural materi-
als and published numerous studies. However, very few publications are avail-
able in the kinds of literature that discuss the issue of the sound absorption of 
tea waste fibers. This research aims to study the behaviors and characteristics of 
sound absorption of tea waste from the leftovers brewed reinforced polypropylene 
and nanoclay as a biomaterial that have not been utilized in previous studies. The 
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normal incidence absorption coefficients of samples were examined by an imped-
ance tube, and the effect of nanoclay on the sound absorption coefficient was 
studied. The relation between the sound absorption coefficient and density, poros-
ity, airflow resistivity, and thickness were investigated, too. The previous studies 
that have studied tea waste fiber have not investigated these variables exactly.

Materials and methods

Materials and preparation samples

The studied natural fibers are tea waste fibers. Tea wastes were taken from the 
tea residue of brewing Iranian tea to eliminate the variable of tea type. They were 
spread under the sun for three days and dried frequently into an oven at 80 ◦ C for 
20 minutes. The relative humidity is calculated by utilization Eq. (1) based on the 
wet weight that was less than 2%. Finally, size 1 to 5 mm of dried tea wastes were 
separated.

Polypropylene (PP) was produced by a company in Iran. It was in the form of 
homopolymer pellets whit grade HP552R, a density of 0.9 g/cm3 , Vicat-softening 
point (10 N) of 152.

The 2% Maleic Anhydride (MA) was utilized for improving the connection 
between tea wastes and polypropylene. It was a product of German Merck with a 
density of 1.48 g/cm3.

Nanoclay montmorillonite (MMT) was obtained from SIGMA-ALDRICH whit 
particles sizes 1–2 nm and moisture content 1–2%.

Firstly, polypropylene granules were melted at a temperature of 250 ◦ C. In the 
second stage, tea waste, maleic anhydride, and nanoclays were mixed for 120 min 
by a magnetic stirrer with a 10 rpm at the temperature of 152 ◦ C. Then prepared 
combination was blended with melted polypropylene for 15 min at 152 ◦ C. Different 
mixtures were prepared with a diameter of 28 mm for subsequent testing (Table 1).

(1)M
w
=

W
w
−W

d

W
w

× 100

Table 1  The blend weight 
percentage of nanocomposite 
and composite samples

Sample code Tea waste (%) MA (%) MMT (%) PP (%)

TW
0

0 2 0 98
TW

30
30 2 0 68

TW
40

40 2 0 58
TW

60
60 2 0 38

TW
0
 N 

5
0 2 5 93

TW
30

 N 
5

30 2 5 63
TW

40
 N 

5
40 2 5 53

TW
60

 N 
5

60 2 5 33
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From each mixture, two samples were obtained, one in the thicknesses of 3 cm 
and one in the 4 cm, to examine the effect of the thickness in the sound absorption. 
Figure 1 illustrates the sample preparation process.

Sound absorption measurement

Acoustic absorption coefficient measurement is performed by the two microphones 
impedance tube BSWA SW477 and based on the standard of ISO10534-2. Dur-
ing the measurement, the ambient temperature, atmospheric pressure, and relative 
humidity were T = 20 ◦ C, Pa = 101.4 kPa, and � = 50% , respectively. The micro-
phones are calibrated with a calibrator at a frequency of 1000 Hz. The sample is 
held tightly by the holder and the end of the impedance tube. The sound absorption 
coefficient of the samples was measured by utilization VA-Lab4 software at frequen-
cies of 1/3 octave bands. The precision and accuracy of the experimental measure-
ments were verified by conducting three times repeated.

The density

According to ASTM 1622-08, Eq. (2) is utilized to determine the bulk density. 
Where m is the mass of the sample measured by precision of 0.0001 and V is the 
volume of the sample.

Fig. 1  Nanocomposite samples preparation process for sound absorption experiment
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Airflow resistivity and porosity

The diameter of natural fiber, thickness, and mass of samples affect the amount of flow 
resistance and porosity [9]. The flow resistance of each sample is calculated by utiliza-
tion Eq. (3) and having a density of sample ( �bulk ) and diameter of fiber ( dfiber ) [36]. 
SEM pictures are utilized by the SEM device AIS-2100 model to obtain the diameter 
of tea waste fiber. The samples were immersed in liquid nitrogen for a few minutes to 
reduce the possibility of deformation when they were broken. All fractured surfaces of 
samples were prepared by sputtering with gold before the examination.

Porosity represents the ratio of the total pore volume to the total volume of the 
sound-absorbing material and can vary between 0 and 1 [37]. The porosity of each 
sample can be defined using Eq. (4). Where �fiber is fiber density and �bulk is bulk 
density [38].

Water absorption

The water absorption experiment is performed by the ASTM-D1037 standard [39]. 
The weight of all samples was measured before being immersed in distilled water. The 
nanocomposite samples were immersed in distilled water for 2, 24, and 72 hours and 
then taken out and weighed again. The percentage of water absorption is determined by 
using Eq. (5).

where W 
t
 is the weight of the sample after immersion in distilled water at time t and 

W 
i
 is the dry weight of the sample [40, 41].

(2)�bulk =
m

V

(3)� = 3.18 × 10−9 ×
�1.53
bulk

d2
fiber

(4)� = 1 −
�bulk

�fiber

(5)WA
t
=

W
t
−W0

W0

× 100
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Results and discussion

Sound absorption coefficient

Figure 2 shows the curves of the SAC of samples with different weight percent of 
tea waste and 5 wt% nanoclay, and Fig. 3 shows variations of the SAC without nano-
clay in 3 cm thickness.

In composites without nanoclay, increasing the weight percentage of tea waste 
to 30% does not make a noticeable change in the sound absorption coefficient com-
pared to samples without tea waste, while the samples treated with 60% tea wastes 
have the highest value of the SAC, especially at frequencies of 1000, 1250, and 4000 
to 6000 Hz. The composite porous structure has an excellent sound absorption coef-
ficient at higher frequencies, especially above 4000 Hz [42].

Fibrous material is one particular type of porous material that is composed of an 
assembly of continuous filaments. As the sound waves travel through the material, 
they provide resistance to acoustic wave motion and lose energy by the frictional 

Fig. 2  The sound absorption coefficient of tea waste nanocomposites with nanoclay

Fig. 3  The sound absorption coefficient of tea waste composites without nanoclay
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forces [43]. Thus, an increase in the amount of natural fiber leads to an increase in 
the sound absorption coefficient, and the highest sound absorption coefficient is in 
the range of 1000 to 2000 Hz. When the weight of tea waste in composites without 
nanoclay is increased from 30% to 40%, the peak absorption coefficient is shifted 
from 1600 Hz to 1250 Hz.

When the sound waves pass through the pores, the air in the pores is forced to 
vibrate and causes the pore wall to vibrate. The diminutive pore size makes more 
contact area for sound waves to get dampened that consequently attenuating the 
wave strength [44–46].

The comparison between curves of Figs. 2 and 3 demonstrates that adding nano-
clay to samples causes the sound absorption coefficient to increase; for instance, at 
the frequency of 1250, the SAC of TW60N5 is equal to 0.95, while the SAC of TW60 
is 0.89.

Hajizadeh et al. [47] demonstrated that adding nanoclay partially can improve the 
sound absorption coefficient at all frequencies, especially at low frequencies. Nano-
particles act as fillers inside the composites and cause the creation of tortuous paths 
for the sound transmission and increased contact area; thus, the sound energy loss in 
the form of heat and the sound absorption coefficient increases.

Effect of density

The previous studies indicate that the increase in the amount of natural fibers in the 
samples decreases the density and subsequently enhances the sound absorption coef-
ficient [48]. When the amount of tea waste increases and the percentage of polypro-
pylene decreases, the bulk density decreases, and the sound absorption coefficient 
also increases. As shown in Fig. 2 at the same thickness, the SAC of sample TW60N5 
with a density of 0.474 g/cm3 is higher than sample TW0N5 with a density of 0.809 
g/cm3 at all frequencies.

The denser sample can reduce the porosity of the sample and significantly 
increase the airflow resistance; therefore, the sound reflection increases from the 
surface of the sample, which causes the sound wave to penetrate the sample dif-
ficulty, and as a result, the sound absorption coefficient reduces at high frequencies 
[49]. Thus, the decreasing density of samples increases the sound absorption coeffi-
cient at the frequency range of 4000 to 6300 Hz; for example, The SAC recorded by 
0.474 g/cm3 TW60N5 achieved 0.74 at 4000 Hz, while for 0.524 g/cm3 TW60 sample 
achieved 0.66 at 4000 Hz. On the other hand, the samples with nanoclay have lower 
bulk density compared to samples without nanoclay; therefore, nanoclay affects the 
bulk density value, which results improvement of the sound absorption properties.

When sound waves are absorbed at middle and low frequencies, with an 
increase in the bulk density, the flow resistance becomes stronger; thus, the inner 
voids become smaller, and sound waves have friction with fibers and the frequent 
interaction between air and voids. Then, sound waves reflect in the inner part of 
the sample and become impermeable, which causes sound energies to lose, and 
the sound absorption properties improve at middle and low frequencies [50]. 
As shown in the measurement result, that the SAC for the 0.754 g/cm3 TW30N5 
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sample is 0.65 at 2000 Hz, while the 0.717 g/cm3 TW40N5 sample achieves the 
SAC value of 0.46 at the same frequency.

Based on the result, it is found that if the thickness of the samples is preserved 
constant, density imports much in sound absorption.

Fig. 4  The effect of thickness on the sound absorption coefficient of nanocomposite and composites sam-
ples with 30% tea waste

Fig. 5  The effect of thickness on the sound absorption coefficient of nanocomposite and composites sam-
ples with 40% tea waste

Fig. 6  The effect of thickness on the sound absorption coefficient of nanocomposite and composites sam-
ples with 60% tea waste
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Effect of thickness

For effective sound absorption, the thickness of the samples should be at least 
one-tenth of the incident sound wavelength. Under similar conditions of density 
and the amount of tea waste with thicknesses of 3 and 4 cm as a variable, the 
sound absorption coefficients are illustrated in Figs. 4, 5, and 6.

In thicker samples, the peak sound absorption coefficient moves toward lower 
frequencies (1000 Hz and 1250 Hz), and the SAC increases at higher frequencies, 
too. For instance, the first peak value of the SAC of the sample TW40N5 is 0.95 at 
1600 Hz for the 3 cm thick, but an increased thickness (4 cm) the first peak value 
of the SAC is 0.94 at 1000 Hz.

Qui et al. [1] demonstrated that the thickness affects the sound absorption coef-
ficient positively at high and low frequencies. An increase in the sample thickness 
creates more pore channels, which allow acoustic waves to pass through tortuous 
passages. Thus, the kinetic energy of the incident sound wave is converted to heat 
energy because of frictional loss between sound waves and fiber [42]. In addition, 
when the thickness of the material increases, the time and the distance for passing 
sound through the composite will be longer, and the sound could be reflected and 
refracted multiple times. Consequently, the sound energy losses, and the sound 
absorption coefficient increases [51].

Fig. 7  Relations between the density and the porosity and flow resistivity

Table 2  The physical 
characterizer of samples with 
different weight percentages tea 
waste

Sample code � (%) Fiber diameter 
( �m)

� (Pa s m −2)

TW
30

64 10.48 758,156
TW

40
65.66 11.44 613,695

TW
60

78.57 9.37 524,233
TW

30
 N 

5
64.55 10.81 687,311

TW
40

 N 
5

68.56 13.04 437,437
TW

60
 N 

5
79 10.62 350,041
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Effect of airflow resistivity and porosity

Figure 7a shows a linear regression between porosity and density. It is completely clear 
that density has a reverse effect on the porosity; furthermore, it is observed in Table 2 
that a decrease in the density increases the porosity percentage of composite samples. 
Fouladi et al. [38] demonstrated that the blend of natural fibers with binder makes the 
binder and fiber that acts as a part of the material, and the porosity is decreased; thus, 
increasing the natural fibers compared to binder cause the porosity increase.

According to the results, the TW60 N 5 sample has the lowest density and airflow 
resistivity and the highest porosity. Figure  7b illustrates a reverse linear regression 
between porosity and airflow resistance. Therefore, porosity alone cannot provide a 
perfect picture of the structure of a porous material; thus, other physical properties like 
airflow resistance must be investigated to determine the sound absorption coefficient 
[52]. Flow resistivity is the principal parameter influencing the sound absorption coef-
ficient [53].A reducing of the fiber diameter of tea waste increased airflow resistance, 
however it was not a linear regression (Table 2).

Regression analysis showed the highest Re-square values ( R2 = 0.999 ) were 
observed between the porosity and airflow resistance and density, and there is a signifi-
cant correlation between these variables. Equation (6) illustrates the measured regres-
sion line that indicates the relation between the porosity and airflow resistance, and 
density in composite and nanocomposite samples.

(6)porosity = 99.867 − (38.299 × density) − (9.001E−6 × airflow)

Fig. 8  Scanning electron micrographs (SEM) of a dispersion of Tea waste fiber among polypropylene 
and nanoclays, b dispersion of nanoclays among polypropylene × 10,000, c the cell structures of tea 
waste, d–f porosity of tea waste respectively × 2000, × 10,000, × 500
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SEM and FTIR

Figure 8 shows the SEM micrographic of the open-cell structures, the size, and the 
shape of the porous cells of tea waste. As shown in Fig. 8d–f, TW60 made of 60 wt. 
% tea waste has the structure of connected open pores that completely have formed; 
consequently, the disposition of fibers is caused by a longer path for the sound 
waves, so the internal path (tortuosity) increases which energy loss and the sound 
absorption coefficient is increased significantly [54]. The structure of open pores is 
one of the most important factors for achieving a great sound absorption coefficient. 
In Fig. 8c, the cell structures of tea waste are almost uniform.

In Fig. 8a is shown the morphology of the TW/PP (60–33 wt%) material where it 
is possible to see the stretching of the PP between the tea waste fibers, and in Fig. 8b, 
images suggest that the surface of the nanoclays interacted well with the polypropyl-
ene since voids or vacant spaces between the two phases were not detected. There 
is a significant difference in polarity of utilization components, tea waste and nano-
clay are hydrophilic, and polypropylene is the hydrophobic matrix. This is related 
to MAPP coupling agent that results in a more homogeneous mixture of tea waste 

Fig. 9  FTIR spectra of the prepared samples
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fibers, nanoclays, and PP together. Reddy et al. [55] demonstrated that the surface 
modifications with the addition of a coupling agent improve the adhesion between 
fibers and polymer matrix interface.

Figure 9 shows the FTIR spectra for TW30 N 5 and untreated TW100 samples that 
were scanned at a range of 400–4000 cm−1.

In Fig. 9, the region of the broad absorption band at 3500 cm−1 to 3000 cm−1 for 
the tea waste fibers are characterized with O–H stretching and H– bonding structure 
that contains phenols, alcohols and water functional group [56]. The O–H stretch-
ing and H– bonding broad absorption band in the regions is absent in TW30 N 5 ; it is 
likely for taking 63 wt% PP that causes breaking of O–H bond to eliminate waterish 
(hydroxide) structure [36].

The region of 1500–1200 relates to the deformation modes of the CH3/CH2 spe-
cies [57]. Absorption at 1455 cm−1 is attributed to the scissor vibrations of C–H 
bonds in CH2 groups of aliphatic chains. The presence of absorption bands at 1455 
cm−1 is related to asymmetric methyl bending modes [58]. The signal at 1375 cm−1 
is associated with C–H bonds in CH3 end groups. FTIR analysis provides insight 
into the interactions between the fibers and polymer because of the existence of 
these two new spectrums.

Water absorption behavior

The results in Fig. 10 show that WA is increased 11–27% by adding tea waste of 
about 40–60 wt% compared to boards made without tea waste after immersion in 
water for 24 hours. Natural fibers have hydroxyl groups that interact between water 
molecules and hydrogen bonds that predispose them to water absorption. However, 
the water absorption of natural fibers surrounded by thermoplastic composites is less 
than that of lignocellulose materials because thermoplastic materials have hydro-
phobic plastics [59, 60].

Fig. 10  Water absorption behavior of tea waste
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When water retention time increases, water absorption is also increased; for 
example, water absorption of sample TW60 N 5 after 2 hours immersion in water is 
equal to 10.42%, while after 72 hours, water absorption is equal to 69.127%.

The water absorption of sample TW60 N 5 is higher than TW60 . The water absorp-
tion of samples with nanoclays increased compared to samples made without nano-
clays. According to the SEM analysis, it can be supposed that a significant increase 
in the water absorption ability of nanocomposites in the case of materials containing 
5 wt% of the nanoclay happens as a result of structural changes. According to the 
previous literature, composites that formed hybrid nanocomposites have increased 
the water absorption capability, and this effect is related to the hydrophilic particles 
of the filler [61].

Conclusion

The results indicated by increasing the tea waste weight percent compared to the 
polypropylene, the sound absorption coefficient increased. In addition, the sound 
absorption coefficient was increased by adding nanoclays to composite samples. 
Another important point is that an increase of tea waste percentage decreased the 
density of samples and increased the porosity, which can effectively enhance the 
high-frequency sound absorption coefficient, however the effect of density at mid-
dle and low frequencies is slightly low. Increasing the thickness can improve the 
high and low-frequency sound absorption coefficient, and the sound absorption peak 
moves towards the frequency of 1000 Hz. In the SEM analysis was observed that the 
presence of pores in tea waste fibers allows to air to flow into the cellular structure, 
and the sound energy converts into thermal energy. The decrease in sound inten-
sity by utilization of tea waste biocomposites discloses that they can be utilized as a 
great sound absorber especially controlling noise at high and medium frequencies.

With proper design, it can meet a variety of applications, from small to enor-
mous items. This application has the potential to reduce the noise level in the vehi-
cle, automotive, road noise, and engine noise; other than that, it can be utilized in 
the interior design of aircraft. The materials that have been utilized in this study are 
safer compared with the traditional absorbing materials produced in the market. Fur-
thermore, they are devoid of harmful effects on human health and environmentally 
friendly substances. However, a limitation might exist for the tea waste reinforced 
nanoclay and polypropylene; for example, providing tea waste in enormous quanti-
ties could be difficult.
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