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Abstract
The yield criterion of pressure-sensitive materials based on the elliptic model is 
obtained, and an elasto–plastic constitutive model in generalized plastic mechan-
ics has been proposed by combining the associated flow rule and linear hardening 
model. This criterion is validated with the basic tension, compression, and combined 
compression-shear experimental results for the material PMMA. The elasto–plas-
tic model is implemented into the Finite Element Method software using a properly 
conceived UMAT subroutine in an implicit fashion. The nanoindentation behavior 
of PMMA is investigated via numerical simulation, and simulation results are vali-
dated with the nanoindentation experimental results. Then, the distribution law of 
the plastic deformation gradient under the indenter is obtained based on the numeri-
cal simulation results.

Keywords  Constitutive equation · Nanoindentation · Pressure-sensitive materials · 
UMAT · Multiscale analyses

Introduction

Nanoindentation is often used to test the mechanical properties of materials. The 
plastic response of materials can be characterized by indentation hardness [1]. The 
Oliver–Pharr analytical method [2] is generally used to calculate the elastic modulus 
and indentation hardness of materials in the nanoindentation test. Due to the lots of 
assumptions including homogeneous, linearly elastic, isotropic, incompressible, etc., 
the method is limited with regard to determining the mechanical properties of the 
heterogeneous and multiscale structural materials. Although the different hardness 
techniques commonly used vary in test setup, indenter geometry, test methodology, 
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etc., techniques mentioned above essentially involve applying a known amount of 
load and determining the volume of the plastic zone beneath the indenter [3].

Indeed, the strain field under the indenter is very heterogeneous and complex. 
One significant problem in the indentation modeling of the elastic–plastic materi-
als is to determine the volume of the plastic zone, due to the coupling of elastic and 
plastic deformation beneath the indenter. In most studies of indentation, the con-
tact radius between the indenter and the specimen is assumed to be the plastic zone 
radius [4]. However, Durst et al. deem that the radius of the plastic zone is bigger 
than the contact radius for most materials [5]. In the study by Durst et al., they did 
not give detailed research results about the radius of the plastic zone. The relation 
between the indentation depth and the radius of the plastic zone needs to be deter-
mined by finite element (FE) simulation because the deformation process under the 
indenter cannot be observed during the nanoindentation experiment.

At present, the FE approach has become essential for investigating the mechani-
cal properties of materials. The constitutive models are the bases of describing the 
mechanical behavior of materials, and the FE simulation of complex problems [6]. 
In the phenomenological theory of plasticity, the constitutive model of materials is 
described by a yield surface and an associated flow rule [7]. For the associated flow 
rule, the plastic potential function is equal to yield function. The yield function did 
dual role-playing, in associated plasticity flow, it not only models the yielding of 
materials, but also acts as the plastic potential function. Therefore, the yield crite-
rion lies at the core of the phenomenological description of the plastic deformation 
for materials [8].

A number of yield surface development are already visible in recent researches 
[9–11], to mention just a few representative approaches that have led to further 
developments. It is widely accepted that metal deformation occurs with zero or 
negligible plastic dilatancy, i.e., permanent volume change after plastic deforma-
tion [12]. However, for many engineering materials such as polymer, amorphous 
materials, cellular materials, and rock-like materials, their yield behavior exhibits 
a dependence on hydrostatic pressure, and this type of material is called pressure-
sensitive materials [13, 14]. In addition, these materials also exhibit a difference in 
flow stress between tension and compression. This phenomenon is referred to as 
the strength asymmetrical effect. For example, the uniaxial compression strength is 
much higher than the uniaxial tensile strength for concrete, rocks, and ceramics. A 
number of studies have been devoted to the description of deformation and strength 
of various materials with a tension-compression asymmetry [15].

In this work, an elasto-plastic constitutive model considering the strength asymmet-
rical effect between compression and tension of pressure-sensitive materials has been 
proposed, and it is applied into the FE Method software ABAQUS by a reasonably 
designed UMAT subroutine. Through the FE analysis of the indentation, the plastic 
zone under the indentation is visualized, and the radius of the plastic zone under the 
indentation is obtained. The plastic zone radius plays an important role when analyz-
ing the indentation size effect of materials [16]. The relationship between the plastic 
zone radius and indentation depth will help to calculate accurately the strain below the 
indenter, and provides data support for the study of nanoindentation. In addition, the 
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significance of this research could provide a method to investigate the nanoindentation 
behavior by the macroscopic constitutive relation and numerical simulation.

Constitutive model based on ellipse yield criterion

The average normal stress ( �m ) and equivalent stress ( �e ) are the main variables for 
describing the mechanical response of pressure-sensitive materials. The average nor-
mal stress is calculated from the components of the diagonal of the Cauchy stress ten-
sor ( � ): �m = (�1 + �3 + �3)∕3 , �i are the principal normal stress. Similarly, equivalent 
stress can be calculated by second invariant of deviatoric stress tensor ( s = � − �

m
I, I 

is the identity matrix) [17]. So, the equivalent stress can be expressed by the principal 
normal stress as well:

To account for the strength asymmetry between compression and tension of pres-
sure-sensitive materials, the elliptic criterion similar to the one used by Kermouche 
et  al. [18] to discuss the plastic behavior of amorphous silica is modified. For the 
pressure-sensitive materials, the strength differential effects are usually considered to 
be caused by normal stress [19]. Thus, an ellipse yield function for pressure-sensitive 
materials is proposed as follows:

where a, b and c are material parameters. Thereinto, the parameter a is related to 
equivalent stress, i.e., the second invariant of the deviatoric stress, and the parameter 
c represented the contribution of hydrostatic pressure to the yield behavior of mate-
rials. The physical significance of the constant b is describing the strength differen-
tial effects of material, and based on the relationship between compression yield 
stress �

cy
 and tension yield stress �

ty
 , it can be written as:

The assumption is made that the hardening behavior of material is isotropic harden-
ing, because no loading path effect is involved in this study. The yield function is the 
isosurface of the hardening parameter and can be determined by the evolution of the 
parameter c. Hence, the yield function can be expressed as:
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where f is the hardening function and is related to material property. �pe is equiva-
lence plastic strain, and it can be obtained by the plastic work equivalence principle 
(i.e., �ij ∶ �ij = �e�

p
e).

According to the plastic theory, the total strain increment can be split into the 
elastic strain increment and the plastic strain increment, i.e., d�ij = d�e

ij
+ d�

p

ij
 . The 

generalized plastic potential theory can mathematically be formulated as the fol-
lowing general form [20]:

where G is the plastic potential function and dλ is called the “consistency param-
eter.” According to the associated flow rule, G should be equal to F. The consistency 
parameter can be evaluated by applying the consistency condition ( Ḟ = 0 ) on the 
introduced yield function:

Based on the classical plastic theory [21], the stress–strain relationship is 
expressed as follows:

where [Ce] is the usual matrix of elastic constants.
Then, by substituting the plastic strain tensor rate from Eq. (5) into Eq. (7), it 

reads:

In view of Eqs. (6) and (8), the following expressions can be obtained:

By incorporating the consistency parameter from Eq. (9) into Eq. (8) such as 
follows:

By reordering Eq. (10), the elasto-plastic continuum tangent is therefore:
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In this section, an elliptic model is modified based on theoretical analysis. The gen-
eralized elasto–plasticity model is established, and obtaining the theoretical Jacobian 
matrix. The generalized elasto–plasticity constitutive equation, especially, serves for 
the numerical solution and makes the implementation more convenient.

Calibration of proposed constitutive model for PMMA

Poly(methyl methacrylate) (PMMA) is a widely used pressure-sensitive material in the 
field of aircraft and automotive industries due to its excellent properties such as trans-
parency, low density, and high impact resistance [22, 23]. The mechanical properties of 
PMMA have been reported by a lot of researches. Qiu et al. [24] and Lin et al. [25] con-
ducted a series of quasi-static uniaxial compression and combined shear-compression 
tests. The compression stress–strain relationship of PMMA can be characterized well 
by the linear hardening function, as shown in Eq. (12),

where e is the strain hardening coefficient, and d is the initial yield stress. The sym-
bol f and �pe represent hardening function and equivalent plastic strain. Based on the 
results of Qiu et al. and Lin et al., the material parameters can be obtained, and the 
detailed results are shown in Table 1 [24, 25]. In addition, the physical meanings of 
parameters a and b in Table 1 are given in Eq. (2).

The experimental yield data (Qiu et  al. and Lin et  al.) [24, 25] and theory yield 
surfaces are summarized in principal stress space, as shown in Fig. 1. Obviously, this 
modified yield criterion can be successfully applied to describe the yield behavior of 
PMMA.

Application to nanoindentation FE analysis of PMMA

In this study, the software ABAQUS is used to simulate the nanoindentation of PMMA. 
The axisymmetric geometrical model is shown in Fig. 2, and it comprises two com-
ponents, conical indenter and tested sample. The angle θ between the surface of the 
conical indenter and the plane of the surface is 19.68 degrees, and it can ensure that the 
conical indenter is equivalent to the Berkovich indenter [26]. Thereinto, the sample is 
set to a cylinder with the diameter of 50 μm and height 30 μm, and it can ensure that 

(11)Cep = Ce −

Ce ∶
𝜕F

𝜕𝜎ij
⊗

𝜕F

𝜕𝜎ij
∶ Ce

𝜕F

𝜕𝜎ij
∶ Ce ∶

𝜕F

𝜕𝜎ij
−

𝜕F

𝜕f

𝜕f

𝜕𝜀
p
e

.

(12)f
(
�p
e

)
= d + e�p

e

Table 1   The values of material 
parameters [24, 25]

a b d e

146.08 98.52 132.13 −154.17
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the plasticity affected region does not exceed the boundary of the geometrical model, 
when the indentation depth (h) reaches 2000 nm.

In the nanoindentation experiment, the indenter is made of diamond, and its 
elastic modulus is 1141 GPa [26], which is much larger than the elastic modulus 
of the test material. Therefore, the conical indenter is set as a rigid body in this 
FE model. The displacement is applied in the -y direction, and the x direction is 
a fixed boundary, so that it does not move in the transverse direction. The contact 
type between the indenter surface and the sample surface is face-to-face contact, 
and the friction is ignored, because the load–displacement relationship and the 
simulated stress–strain field are not affected by the friction conditions [27]. The 

Fig. 1   The experimental yield 
loci (Qiu et al. and Lin et al.) 
and theoretical yield surfaces 
[24, 25]

Fig. 2   Axisymmetric FE model for the nanoindentation
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FE mesh of the conical indenter and tested sample is shown in Fig. 2. In order to 
ensure the convergence of numerical results, the minimum size of the element in 
the contact region is about 100 nm. The number of elements and nodes for the 
sample is 3767 and 3831, respectively. The convergence of mesh is verified, that 
is, further refinement of mesh size would not improve the accuracy of simulation 
results.

The proposed constitutive model is inputted via “User-Defined Material” in 
ABAQUS, and it is numerically implemented by static implicit algorithm UMAT. 
In the constitutive model, the elastic modulus and Poisson’s ratio of PMMA were, 
respectively, set as 4.40 GPa and 0.38, respectively [28]. Then, according to the 
calibrated constitutive relation and the established FE model, the indentation 
deformation of PMMA was analyzed by FE method. Figure 3 shows the Mises 
stress field in the deformed region. It is noticed that the deformation area below 
the indenter is hemispherical, and Mises stress is distributed gradient along the 
depth direction. The maximum stress is about 140 MPa.

The comparison of the depth–load obtained by experimental (dots) [25] and 
simulation models (lines) is given in Fig. 4. These two kinds of results are very 
close, and the maximum difference is approximately 9.93% for the indentation 
depth reaching 1370 nm. This comparison result proves the rationality of consti-
tutive model and FE model.

In order to further analyze the plastic deformation under the indenter, Fig. 5 
shows the graphical results of the plastic strain distribution for sample. Assume 
that it is plastic deformation zone when the strain reaches 0.2%. �1 and �2 repre-
sent the distance from the indenter tip in the y direction and x direction, respec-
tively. Hence, the plastic zone radius (R) can be expressed as:

Fig. 3   Distribution of the Mises 
stress (unit in MPa) for the 
nanoindentation of PMMA
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To calculate the plastic zone radius of different indentation depths, Fig. 6a and b 
shows the relationship �1 , �2 with the indentation depth. It can be seen that the strain 
decreases nonlinearly with the increase in �1 and �2 . In addition, when the deforma-
tion reaches the same strain level, �1 is larger than �2 at all indentation depths.

According to Fig.  6 and Eq.  13, when indentation depth reaches 420, 840, 
1260, 1280, and 2100 nm, the plastic zone radius is 1901, 4249, 6484, 7834, and 
10131 nm, respectively, as shown in Fig. 7. It can be seen that the radius of plastic 
zone changes linearly with the increase in indentation depth. The plastic zone radius 
is about 4.84 times of the maximum indentation depth based on the fitting result.

As is known to all, the plastic zone radius plays an important role when ana-
lyzing the indentation size effect of materials [4]. The contact radius of indenter is 
frequently used to replace the radius of the plastic zone in many studies [29, 30], 

(13)R =
�2
1
+ �2

2

2�
1

.

Fig. 4   Comparison of the load-
ing force-indentation depth rela-
tion between the experimental 
data (dots) [25] and simulated 
results (lines) for PMMA

Fig. 5   Distribution of plastic 
strain for the nanoindentation of 
PMMA
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because the plastic zone radius cannot be measured by experiment. However, based 
on the above analysis results, it can be seen that the radius of the plastic zone is 
much greater than contact radius of the indenter. Although the direct relationship 
between the plastic zone radius and the indentation depth cannot be verified by 
experiment, the high consistency of load-displacement curves between numerical 
simulation and experiment in Fig. 4 can indirectly prove the rationality and accuracy 
of the research results.

Conclusions

In this paper, a generalized elasto–plasticity constitutive equation is developed 
by the modified elliptic yield criterion. This criterion can be used to describe the 
strength asymmetry between compression and tension of pressure-sensitive mate-
rials. This constitutive equation is used to study the nanoindentation behavior of 
PMMA via numerical simulation. It shows that FE simulations using the developed 

Fig. 6   a �
1
–strain curves of different indentation depths and b �

2
–strain curves of different indentation 

depths

Fig. 7   Relation of plastic zone 
radius and indentation depth
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constitutive model reproduce the experimentally measured indentation load–dis-
placement curves with reasonable accuracy. Then, the plastic deformation of inden-
tation is discussed in detail, and the relation between the plastic zone radius and the 
maximum indentation depth is obtained. This relationship will help to accurately 
calculate the strain below the indenter and provides data support for the study of 
nanoindentation.
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