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Abstract
Polymer-based nanocomposites are considered to be next generation key materials 
for the modern electronic and photo energy devices. In the current research, com-
putational and experimental investigations on Zn incorporated CdO-PVDF polymer 
composite thin films were carried out. After achieving a good optical response of Zn 
substituted CdO at various Zn concentrations using the Wien2k code, pure and Zn-
doped CdO nanorods were prepared using the co-precipitation method. Afterward, 
uniform thin films of Zn:CdO-PVDF polymer composites were deposited. SEM 
analysis reveals fiber like morphology of PVDF and rod-like morphology is noticed 
after adding Zn contents in CdO-PVDF matrix. These morphological changes lead 
us to tune the optical response of the selected polymer composites. Elemental com-
position analysis confirmed the presence of expected elements in dissolved amounts 
in each composition. An enhanced absorption trend of the polymer composites in 
the visible region is observed which points their potential uses in fabrication of vis-
ible modern optoelectronic devices.
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Introduction

Research on polymers has triggered the advancements in material science and 
these materials may commercially be used for the production of flexible electronic 
devices. The novelty of the polymer based materials emerges owing to their capacity 
and utility to fabricate inexpensive, portable, reliable, high output and rapid devices 
[1]. Their rapid progression in the fields of biomedical [2], microelectronic [3], opto-
electronics [4], and spintronics [5] involves polymer materials which lead to many 
important discoveries in material science. The development of the polymer based 
materials has been tremendously increased due to their biodegradability and green 
energy applications. However, low cost, excellent mechanical strength, and environ-
ment friendliness of polymers emphasize their uses in the recent microelectronic 
and semiconducting devices. Recently, polymer based materials have come forward 
owing to their commercial and industrial applications as their properties may be 
dramatically improved by varying the concentrations or by adding other materials 
into the host polymer matrix. In order to modulate the properties of polymers as 
required for the desired performance in various fields, the polymers are mixed with 
other materials to form the composites. Hence, polymer matrix based composites 
has been an efficient and influential method for tuning the properties of polymers [6, 
7]. In current era, the modern technology based on the electronic devices requires 
the investigation of materials with high dielectric constant having low dielectric loss 
and have enhanced dielectric strength [8, 9].

Polymers have been used as a matrix with the nanoparticle fillers in order to pre-
pare composite materials which possess exceptional optical, electronic, dielectric 
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and mechanical properties [10–12]. Due to the outstanding properties of polymer 
composite materials, they have wide applications in the field of biomedical sens-
ing [13], solar cells [14], electrochemical actuators [15], artificial muscles [16], and 
next generation of capacitors for energy storage applications [17]. These polymer 
composite materials fulfill the needs of the industry due to their improved mechani-
cal strength, suitable dielectric properties, easy fabrication, exciton binding energy, 
noble power conversion efficiency with higher rate of charge recombination, and 
low cost economy.

Polyvinylidene difluoride (PVDF) is synthetic polymer which is water solu-
ble and is used as host material for different nanoparticles. It has biocompatibility, 
good mechanical properties, chemical stability, and optical clarity [18]. It is studied 
considerably and preferred in research due to high abrasion, tensile strength, good 
charge storage capacity, elongation, easy processability, low manufacturing cost 
along with the thermal and chemical stability [19–21]. The PVDF is tailored by 
incorporating some filler onto its matrix in order to channelize toward specific appli-
cations. So, a wide scope always exists in exploring the properties of polymer nano 
composite while using PVDF as host polymer matrix. Researchers have demon-
strated that the nanoparticles of metal oxide in the polymer matrix have surprisingly 
enhanced the negative charge carriers and shows robust interactions with the posi-
tive charge carriers of the polymer surface [22–29]. Hence, transition metal oxides 
are taken as outstanding candidate for the energy storage capacity due to good dis-
pensability in the polymer matrix [30, 31]. Cadmium oxide (CdO) is a known semi-
conducting material whose band gap ranges from 2.15 to 2.70 eV [32]. It exhibit 
stunning optical, electronic, and magnetic properties [33] which leads toward con-
sideration of this material for immersion into the PVDF. The CdO nanofillers have 
been embedded into the polymers to prepare the PVA nano composite and it has 
shown huge surprising applications. Rashmi et al. [34] have conducted experimen-
tal research on investing the mechanical and electrical properties evaluation of nano 
cadmium oxide polyvinyl alcohol composites. They found use of this material for 
microwave applications. Selvi et  al. [35] have enumerated structural, optical, and 
thermal studies of PVA/CdO nano composite films and found use of this material 
for supercapacitors, gas sensors, electrochromic devices, and EMI shielding. Prabu 
et al. [36] have prepared and characterized CdO/PVA nanoparticles by precipitation 
method and their study revealed application of CdO/PVA material for paint pig-
ments and cadmium coated bath. Chaitra Srikanth et al. [37] have published their 
findings relating to the effect of CdO–ZnO nanoparticles on the structural, electri-
cal, and mechanical properties of PVA films. They found that CdO–ZnO desirably 
reinforce the material for nano composites. Hassan Karami et  al. [38] have eluci-
dated their PVA-based sol–gel synthesis and characterization of CdO–ZnO nano-
composites. They reported that PVA-based sol–gel pyrolysis method can be useful 
to synthesize the CdO–ZnO nano composites. Hence, through literature survey, we 
find a least contribution of scientific research work in the area of PVDF/CdO and yet 
more is to be investigated on this material in order to find its novel potential appli-
cations. Moreover, it is revealed that a combination of the CdO and transition met-
als is expected to introduce new dimensions to the CdO/PVDF nano composites. In 
current research work, study of CdO-PVDF matrix containing the transition metal 
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Zn nano-fillers has presented. The structural, electronic, and optical properties were 
explored. Many interesting results have been explored in this study which proposes 
the use of Zn:CdO-PVDF material as an excellent candidate for flexible mediums 
due to outstanding electronic and optical properties.

Computational and experimental method

Computational method

The density functional theory (DFT) [39] were employed to investigate the elec-
tronic and optical properties of the Zn-doped CdO. The full potential linearized 
augmented plane wave (FP-LAPW) is implemented in the Wien2k code [40]. For 
approximating the exchange–correlation, the Perdew-Burke-Erzernhof (PBE) gen-
eralized gradient approximation (GGA) in the Wien2k code [41]. A 2 × 2 × 2 super-
cell configuration is constructed and Cd atoms are substituted with the Zn atoms 
and the impurity concentrations 12.5%, 25% and 50% are adjusted. The supercell 
is generated using the lattice constants a = b = c = 4.738 Å with the space group of 
Fm-3 m. The states (4d10 4p6 5s2), (2s2 2p4), (3p6 3d10 4s2) were considered as core 
states corresponding to the Cd, O and Zn atoms, respectively, whereas the remaining 
states are supposed frozen. The expansion value of angular momentum wave func-
tion is l = 10 while the spherically symmetric constant potential is assumed inside 
the muffin-tin sphere. For the atomic relaxations, the self-consistency criterion 
involving the minimum of energy and charge density convergence values of 10–4 eV 
and 10–2 C was used. The 400  k-points sampling using the Monkhorst–pack was 
used and ignored the relativistic effects in our computational study.

Experimental method

The beads of polyvinylidene difluoride (PVDF), zinc nitrate hexahydrate 
[Zn(NO3)2·6H2O], Cd(CH3COO)2.2H2O and ammonia solution were used for prepa-
ration of nanorods and polymer composite thin films. All the chemicals used have 
minimum 99.95% purity and were supplied by the Sigma-Aldrich, USA. All the pre-
cursors were of the analytical grade and were used without any purification.

Synthesis of the CdO and Zn:CdO nanorods

Zn substituted CdO nanorods having an average diameter of 50  nm to 100  nm 
were prepared through well-known co-precipitation methods. The required calcu-
lated weight percent amounts of starting precursors for CdO and Zn:CdO (12.5%, 
25%, and 50% Zn) compositions were added in distilled water for 0.5 M solution 
each time for all compositions. The solutions were constantly stirred for mixing and 
heated at 50 °C on hot plate for 1 h. The ammonia solution was added drop wise 
until the pH was set to 9. The precipitates of white color substances were formed for 
each composition and wait to settle down for 2 h. These precipitates were washed 
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and filtered 5 times for removal of undissolved and excess reactants. The resultant 
precipitates were dried and calcined at 100 °C in an oven for 4 h in order to get the 
desired fine phase pure powders of metal oxides.

Synthesis of polymer composite thin films

The required amount of PVDF beads (1 wt%) was dissolved in distilled water along 
with un-doped and Zn-doped CdO nanorods (0.1 wt% to PVDF for each composi-
tion). These solutions were continuously stirred and heated at 40  °C until a thick 
gel of solutions were obtained. These resultant gels were spread on ultrasonically 
cleaned silicon (Si-100) substrates and spin coated at 500 and 4000 rpm for 10 and 
30 s, respectively. These prepared thin films were dried by keeping in oven at 40 °C 
for 8 h. The thickness of each thin film was recorded approximately in the range of 
300 ± 10 nm.

Characterizations

Morphology of nanorods and polymer composite thin films were observed using 
FEI Nova Nano-SEM 450 field emission scanning electron microscopy (FESEM). 
Elemental analysis was performed with Oxford X’Act energy-dispersive X-ray spec-
trometer (EDX). Optical response of polymer composite thin films were acquired 
using alpha-SE spectroscopic ellipsometry.

Results and discussions

Electronic properties and band structure

The occupancy of electrons over a specific energy range is understood as the density of 
states (DOS). The partial density of states (PDOS) and total density of states (TDOS) 
has been shown in Fig. 1 and have been plotted in energy range − 5 to 5 eV. For the 
pure CdO, in the valence band the major contribution of Cd d-states and O p-states 
is seen at the Fermi level with least contribution of Cd s-states and O s-states [42, 
43]. These contributions are observed in the energy range − 3.7 to 0 eV in the valence 
band. But the TDOS plot of pure CdO contains prominent role of the O atoms in the 
valence band. However, in the conduction band, the role of Cd s-states and O p-states 
is clearly remarked at the higher energies. On the other hand, the effect of Zn doping 
causes appreciable changes in the CdO and the density of states of the Zn-doped CdO 
have been expressed in Fig. 1b–d. The contributions of the (s, p, d) states is found in 
the energy range − 3.8 to − 0.01 eV in the valence band. The dominance of the Cd 
d-states, O p-states and Zn d-states may be easily observed in the valence band along 
with minimum participation of the Cd s-states, O s-states, and Zn s-states. The signifi-
cant improvement in role of dopant (Zn) d-states along with increasing its concentra-
tions in the host CdO may be noted at the maxima of the valence band. Localization 
of the Zn 3d states electrons at the Fermi level, enables the chances of conductivity 
enhancement in the Zn:CdO material. It is pertinent to mention here that increasing the 
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Zn concentrations, activates the involvement and participation of the increased atomic 
interactions and likewise, it activates the maximum contribution of the impurity 3d 
electrons in the vicinity of the Fermi level. In addition to the PDOS behavior, the total 
density of states of the Zn-doped CdO reflects the leading role of the oxygen atoms. 
Moreover, p-d hybridization due to active involvement of the Zn d-states and O p-states 
is observed which significantly improves the electronic properties of CdO after dopant 
addition.

Optical properties of Zn:CdO material

The transition of electrons and recombination rate affects the optical properties of 
materials. The study of the optical properties illustrate potential uses of the materi-
als in various technological fields. Optical properties are characterize in terms of 
the optical constants which are calculated via dielectric function �(�) . Absorption 
coefficient may be calculated from the real ( �r(�)) and imaginary part ( �i(�)) of the 
dielectric constant [44],

�(�) =
√
2

��
�2
r
(�) + �2

i
(�) − �r(�)

�1∕2

Fig. 1   TDOS and PDOS of pure and Zn substituted CdO a Pure CdO, b 12.5% Zn in CdO, c 25% Zn in 
CdO, and (d) 50% Zn in CdO



9981

1 3

Polymer Bulletin (2022) 79:9975–9993	

The absorption coefficient of pure CdO and Zn-doped CdO has been shown in 
Fig. 2a. The optical absorption has been studied in the energy range 0–7 eV. The 
absorption of the pure CdO gradually increases and obtains maximum absorption at 
6.5 eV ( ∼ 190 nm). However, an extended absorption hump is noticed at 4.94 eV ( ∼ 
250 nm) but beyond 6.5 eV, the absorption of pure CdO becomes constant for higher 
energy values. This broad absorption edge may correspond to the feature of the CdO 
nanoparticles as reported in [45]. The impurity addition into the CdO in a specific 
proportion (12.5%, 25%, 50%) clearly changes the absorption spectrum but shows 
similar trends (increasing and decreasing) as of pure CdO. The absorption maxima 
corresponding to the various Zn concentrations exist at energies: 12.5% ∼ 6.43 eV, 
25% ∼ 6.44 eV and 50% ∼ 6.94 eV. The blue shift is observed upon increasing the 
Zn contents and is attributed to the optical band gap value [46]. This blue shift may 
be connected to the size quantization which occurs owing to electron localization 
(as observed in DOS plots in (Fig. 1) in the material volume. Moreover, blue shift 
in absorption spectra may be related to the morphology of the Zn:CdO as confirmed 
in experimental study [47]. The emergence of blue shift in the absorption spectrum 
resembles with the works reported by Kumar et al. [46] and Kavakebi et al. [48]. 
Shifting of the absorption onsets with addition of various Zn concentrations may be 
referred to the quantum confinement effects and it causes presence of free states in 
the conduction band. However, broadening of the absorption peaks is due to impu-
rity concentrations and is the result of the impurity interband transitions [44]. We 
observed zero absorption for the pure CdO and Zn-doped CdO in the low energy 
range 0–0.92 eV which indicates that no energy is absorbed at this frequency range. 
Absorption maxima are observed in the UV range which decreases in the near IR 
region. The oscillatory trends are more evident for the highest Zn concentrations 
(50%) and are related to absorption of light at different frequencies due to upgraded 
surface morphologies. Furthermore, the scope of this material may be extended by 

Fig. 2   Trend of a Absorption coefficient, b Real epsilon, c Optical conductivity, (d) extinction, (e) 
Refractive index, and (f) Reflectivity with energy for un-doped and Zn-doped CdO
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adjusting the impurity concentrations for the purpose of using them in the PVDF 
host matrix.

The dielectric constant ( �(�)) of the materials is an important optical constant 
because it helps in permitting the electromagnetic field through the material. The 
dielectric constant ( �(�) = �r(�) + i�i(�) .) is composed of real ( �r(�)) and imagi-
nary parts ( �i(�)) . The real part is calculated through the imaginary part via the 
Krammers–Kroning transformation while the imaginary part is achieved by the 
direct solution of the many body electron wave function [44],

The real part of the dielectric constant of pure and Zn-doped CdO has been cal-
culated in energy range 0–7 eV and is shown in Fig. 2b. The �r(�) for the impurity 
doped and undoped CdO have almost similar trends (increasing and decreasing) but 
the dielectric maxima occurs at different frequency (energy) for each case. For the 
pure CdO, the maximum value of �r(�) found at 1.13 eV and for higher energy val-
ues, it becomes almost constant. Impurity addition increases the dielectric constant 
values and dielectric maxima corresponding the 12.5%, 25%, and 50% Zn concen-
trations are 7.6 ( ∼ 1.1 eV), 7.66 ( ∼ 1.0 eV), and 8.0 ( ∼ 1.14 eV), respectively. A 
notable difference in the dielectric response of higher Zn concentration is observed 
that in the 1.14–5.82 eV energy range, the �r(�)50% shows a steady decrease with 
some oscillations but the �r(�) for the rest of the cases decreases of 1.0–6.63 eV. 
However, the values of the static dielectric constant ( �r(0) ) are: 5.94 ∼ pure CdO 
[49], 6.46 ∼ 12.5%, 6.62 ∼ 25%, and 6.45 ∼ 50%. An increase in dielectric constant 
is with effect of impurity and it is due to increase in loss factor which increase with 
increase in frequency (energy) [44]. Moreover, the dielectric response for the three 
Zn concentrations is same in the low energy range 0–1 eV and exhibit higher �r(�) 
values than pure CdO which are due to the presence of all type of polarizations. 
These polarizations may disappear for the higher energy values. The polarizations 
which cannot catch up with variations in the electromagnetic field results a decrease 
in the �r(�) along with increase in frequency [50].

Optical conductivity (�(�)) of the materials is the redistribution of charges upon 
interaction of the material with the electromagnetic radiations. The conductivity is 
calculated in terms of the dielectric constant using the formula [44],

The conductivity of pure and Zn-doped CdO has been shown in Fig. 2c where the 
conductivity variations are recorded in 0–7 eV energy range. The conductivity rises 
for the pure CdO and Zn:CdO materials beyond 0.92 eV. It signifies that pure and 
Zn-doped CdO does not yield any response to electromagnetic field in the energy 
range 0–0.92 eV as obvious in absorption plots (Fig. 2a). The maximum conduc-
tivity of pure CdO has been observed at 5.95 eV and becomes constant for higher 
energy values. Conductivity traits for the Zn:CdO material shows distinct variations 

�r(�) = 1 +
2

�
�
0

∞

∫
0

�∕�i(�)

�∕2 − �2
d�

�(�) = −i
�

4�
|�(�) − 1|.
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in the 4.2–6.7 eV. However, the conductivity maxima corresponding to various Zn 
concentrations are obtained at energies; 6.02 ∼ . 12.5%, 6.01 ∼ 25%, and 5.02 50%. 
The conductivity peaks represent the deep penetrations of electromagnetic waves 
inside the material and likewise, depicts the higher optical conductivity. Conductiv-
ity peaks appears due to the impurity inter-band transitions. The conductivity peaks 
are shifted due to p-d hybridization as observed in the DOS plots (Fig. 1). So, the 
localization of states are responsible for the conductivity behavior of the Zn:CdO 
material. Hence, it is worth to mention here that conductivity well-defined peaks 
are observed in the UV region which enable uses of Zn:CdO for UV optoelectronics 
[51].

In optics, the extinction coefficient (k) of the materials as it helps us to physically 
describe the absorption of radiations for a particu ∼ lar frequency (energy). It is cal-
culated using the formula [44],

k =
��

4�
.

The extinction coefficient has been recorded in the energy range 0–7 eV and a 
clear resemblance may be observed between the plots 2(a) and 2(d). The constant 
rise and fall in the extinction trends for the pure and Zn-doped CdO is noted and it 
may be due to the light absorption at the grain boundaries. The increase in k values 
along with increase in corresponding energy values is the result of quantum confine-
ment effects. The maximum extinction for the pure CdO is obtained at 6.3 eV which 
decreases beyond 6.3 eV and becomes constant for higher energy values [52]. Dop-
ing causes emergence of k peaks in the low energy region 0–0.34 eV and it may be 
due to quantum confinement effects which are more pronounced upon increasing 
number of atoms in the Zn:CdO material at various Zn concentrations. However, 
extinction maxima for various Zn concentrations are obtained at energies; 6.07 s ∼ 
12.5%, 6.06 ∼ 25%, and 5.08 ∼ 50%. The extinction edges indicate the good absorp-
tion and represent deep penetration of electromagnetic waves inside the material. 
Moreover, the density of states of electrons available around the Fermi level is the 
reason for the extinction peaks composition and such states are the result of impurity 
addition. The larger values of k represent the absorption at defect sides which causes 
maximum attenuation [44]. Our DFT calculated k values (0–0.03) are lower than the 
extinction values for pure CdO as reported in [53, 54] and the difference in extinc-
tion values are due to assumptions of theory and experiment.

The behavior of light can be understood by studying the refractive index (n) 
which is of course an important factor in optical communication and optoelectronic 
devices. Figure 2e is a representation of the refractive indices of the pure CdO and 
Zn:CdO material. Refractive indices variations have been studied in the energy 
range 0–7 eV and in general, an increasing and decreasing trend of refractive indices 
has been noticed. For the pure CdO, the maximum value (2.67) of refractive index is 
obtained at 1.16 eV and for the higher energy values, the n becomes constant. Upon 
adding the Zn impurity, the refractive index is found to be increased. The maximum 
values of the refractive indices for various Zn concentrations are; 2.7 ∼ 12.5%, 2.76 
∼ 25%, and 2.85 ∼ 50%. The variations in n are associated with the dispersion of 
light as it deeply permeates inside the material. Interaction of various atoms inside 
the materials along with dopant different concentrations results change in the refrac-
tive index of the selected materials. The static values of the refractive indices for 
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our selected materials are; 2.44 ∼ pure CdO, 2.52 ∼ 12.5%, 2.57 ∼ 25%, and 2.52 ∼ 
50%. The refractive index first increases and then decreases as Zn concentrations are 
further increases. It may be due to change in morphology and stoichiometry [55]. 
Our DFT calculated values of refractive indices matches with the reported works 
[52, 56] but differ from the works [49, 57]. The prominent changes in n are observed 
in the UV region and for higher energies; it becomes constant for all the materials. 
The n values decreased in denser mediums and reason for lowering of n values may 
be associated with the DOS plots (Fig. 1) because of localization of impurity states 
at the Fermi level.

The reflectivity (R(�)) of pure and Zn-doped CdO has been shown in Fig. 2f and 
is calculated using the formula [44],

The reflectivity of pure CdO increases with increase in energy (eV) and have 
maximum reflectivity at 6.47 eV. It means that at this energy, there is zero absorp-
tion of the electromagnetic radiations inside the material [58]. However, reflectiv-
ity maxima for the various concentrations of dopant (Zn) are obtained at energies; 
6.07 eV ∼ 12.5%, 6.07 ∼ 25%, and 5.0 eV ∼ 50% [49]. The reflectivity humps are 
observed in the UV region and for the highest Zn concentration, reflectivity is max-
imum. Reflectivity peaks emerged because of impurity interband transitions from 
valence to conduction band. In comparison with pure CdO, the impurity added CdO 
shows reflectivity peaks in the low energy region 0–2  eV and they appear due to 
multiple reflections inside the materials.

Morphology and elemental composition of Zn:CdO‑PVDF

The morphology of the polymer composites and synthesized nanoparticles was 
examined by the FEI Nano-SEM 450 field emission scanning electron microscopy 
(FESEM) using the built in scanning transmission electron microscope (STEM) 
and high resolution through lens (TLD) detector. Figure  3 presents the FESEM 
micrographs of synthesized un-doped and Zn-doped CdO nano-rods. CdO nano-
rods (Fig. 3a) contain the approximate average width size of less than 100 nm with 
uniform sizes of length and shape. The size of nano-rods for Zn substituted CdO 
(Fig.  3b–d) decreased in length with slight variation in shape. The cubic shaped 
morphology of rods seems increasing in the higher contents of Zn in CdO. EDX 
spectra (Fig. 4) confirm the phase purity and presence of expected elemental con-
tents (Cd, O, and Zn) in relevant compositions.

Figure  5 contains the FESEM micrographs of Zn:CdO nanorods containing 
PVDF polymer composite thin films along with their EDX spectra. Fiber like 
composite morphology is observed for the PVDF which somehow seems dis-
turbed by the addition of CdO, where rod-like or acicular morphology is wit-
nessed. This rod-like distribution is not uniform over the surface and changed 

R(�) =

�√
�
1(�) + i�
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after adding Zn contents. The addition of Zn contents into the CdO-PVDF matrix 
changes the dense rod-like morphology to uniform for higher Zn concentrations 
(Fig. 5). Micrographs of all compositions depict the uniform distribution of nano-
rods in PVDF matrix. The sharp carbon and fluorine contents in EDX spectra are 
associated with the PVDF polymer matrix and elemental contents of Cd, O and 
Zn associated with the nano-rod compositions.

Fig. 3   FESEM micrographs of prepared a Pure CdO, b 12.5% Zn in CdO, c 25% Zn in CdO, and d 50% 
Zn in CdO nanorods

Fig. 4   EDX spectra of prepared 
a Pure CdO, b 12.5% Zn in 
CdO, c 25% Zn in CdO, and d 
50% Zn in CdO nanorods
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Optical properties of Zn:CdO‑PVDF composites

The spectroscopic Ellipsometry were employed to evaluate the optical properties of the 
synthesized polymer nano-composites. A UV–Viz spectrophotometer has been used to 
estimate the experimental values of the optical constants of the Zn:CdO-PVDF com-
posites. The absorption spectra along with the estimation of the band gap were found 
using the Tauc plot for the pure and transition metal oxide nanoparticles PVDF-CdO 
and are expressed in Fig. 6a. It is interesting to note that these composites show distinct 
absorption edges in the visible region. Absorption spectrum of the pure PVDF shows a 

Fig. 5   FESEM micrographs of a PVDF, b CdO-PVDF, c 12.5%Zn:CdO-PVDF, d 25%Zn:CdO-PVDF, e 
50%Zn:CdO-PVDF, and f EDX spectra of thin films

Fig. 6   Trend of a Absorption coefficient, b Real epsilon, c Optical conductivity, dextinction, e Refractive 
index, and f Reflectivity with energy for PVDF and Zn:CdO nanorods containing PVDF thin films
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flat absorption characteristic which however, rises beyond 2.89 eV because of spectral 
features [59]. The extended absorption shoulder indicates different scattering mecha-
nisms due to fiber like morphology and may further be destined to strong convolution 
effects [60]. The pure PVDF has lower absorption coefficient but increases significantly 
due to addition of Zn:CdO. The PVDF absorption spectrum becomes rich with addi-
tion of the CdO and Zn:CdO. It indicates that it is sensitive to morphological changes 
(Fig.  5) in the host PVDF matrix. Because of the increasing acicular morphology 
along with smaller diameters, the absorption spectrum shows improvements in the vis-
ible region [61]. The CdO-PVDF matrix without and with selected Zn concentrations 
(12.5%, 25%, and 50%), shows absorption maxima at energies 1.72 eV ( ∼ 720 nm), 
1.95 eV ( ∼ 635 nm), 1.87 eV ( ∼ 663 nm) and 2.35 eV ( ∼ 527 nm), respectively. The 
linearity in the absorption spectrum of CdO-PVDF and with Zn concentrations may 
emerge due to the fact that for higher energies, the behavior of polymer is like insulator 
for the CdO [59]. The absorption peaks in the CdO plus Zn added PVDF indicate the 
aggregation of the CdO nanoparticles and is the effect of adding various Zn concentra-
tions to the host matrix. It is interesting fact to mention that no absorption in the CdO-
PVDF with and without Zn concentrations was found in the absorption spectra at the 
high energies which enable these selected materials to be potentially used in the visible 
range devices. However, the non-uniform distribution of the absorption spectrum of all 
the materials appears due to presence of two phases (CdO and Zn concentrations) in 
the host PVDF matrix. The optical band gap analysis is very important to present and 
hence optical band gap discussion were extracted of the synthesized polymer compos-
ites as calculated using the Tauc plots [62],

where the parameters � , B, h� , and Eg are called the absorption coefficient, interband 
transition probability parameter, photon energy, and optical band gap, respectively. 
The optical band gaps corresponding to the polymer composites were extracted by 
extra plotting the tangent on the X-axis and have been shown in Fig. 7. The optical 
band gap of the PVDF is calculated to be 2.9 eV [63, 64] while the optical band gap 
after adding nano fillers to PVDF are; 1.22 eV ∼ CdO-PVDF, 1.14 eV ∼ 12.5%Zn, 
1.41  eV ∼ 25%Zn, and 1.66  eV ∼ 50%Zn. The lower value of the optical band 
gap for the 12.5% appears due to local cross linking between the interpenetrating 

(�h�)n = B
(
h� − Eg

)
.

Fig. 7   Tauc plot for estima-
tion of band gap of a PVDF, 
b CdO-PVDF, c 12.5% Zn 
in CdO-PVDF, d 25% Zn in 
CdO-PVDF, and e 50% Zn in 
CdO-PVDF thin films
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Zn:CdO-PVDF nanocomposites. The nanoparticles of the Zn:CdO coagulated with 
the interpenetrating PVDF and causes decrease in the molecular mobility. It conse-
quently decreases the optical band gap [63, 65].

The refractive index (n) of the PVDF and polymer composite has been shown 
in Fig.  6b. The refractive indices spectra have been studied in the energy range 
1.3–3.3  eV and it is clear that the addition of the Zn:CdO contents in the PVDF 
matrix makes the refractive indices higher. The variations in the refractive indices 
are very clear at the higher wavelength (low frequency) but diminish for the lower 
wavelength as may be seen by the constant trend in the n plots. The refractive index 
of the PVDF matrix as obtained through our experimental study is 1.5 and it resem-
ble with the work reported in [66–68]. However, the maximum values of the refrac-
tive indices for the PVDF composites are; 2.4 ∼  CdO-PVDF, 2.37 ∼ 12.5%Zn, 2.67 
∼ 25%Zn, and 2.14 ∼ 50%Zn. The refractive index has a great dependence on the 
nature of the surface of material (smooth or rough) [69]. The surface as observed 
through FESM images shows a kind of rough morphology for the CdO-PVDF 
without and with 12.5% and 25% Zn concentrations (Fig. 5b–d). Therefore, exhibit 
higher n values in comparison with pure PVDF (Fig. 5a) and CdO-PVDF with 50% 
Zn concentration (Fig. 5e) where surfaces show smaller roughness. Hence, smaller 
roughness of the surfaces enables the better optical coupling between the interact-
ing light and sample. The improvement in the refractive index is dependent on the 
transition metal oxides and likewise, the optical properties of the Zn:CdO-PVDF 
polymer composite may be extended to optoelectronic and optical devices.

The variations in the extinction coefficient (k) of the Zn:CdO-PVDF has been 
recorded in energy range 1.3–3.3 eV and are demonstrated in Fig. 6c. A constant 
extinction trend is observed for the PVDF which shows exponential rise at 2.86 eV 
[70]. However, extinction maxima for our selected materials are obtained at ener-
gies; 1.6 eV ∼ CdO-PVDF, 1.83 eV ∼ . 12.5%Zn, 1.82 eV ∼ 25%Zn, and 1.37 eV ∼ . 
50%Zn. The variations in the k trends for selected materials have dependence on the 
surface morphology. The variations in the surface morphologies of materials have 
been discussed in Sect. 3.3. In general, the non-uniformity of the materials surfaces 
greatly enhances the extinction coefficient and in current study, the higher k values 
are noticed for the CdO-PVDF at 25% Zn concentration (Fig. 5d), confirming the 
better performance of nano-rods or acicular morphology with interaction of light 
[71]. It is obvious that extinction coefficient increases with increase in energy and 
the higher extinction values are noted in the visible region. The higher extinction 
values indicate the higher absorption at that energy value.

The optical conductivity of the Zn:CdO-PVDF materials has been shown in Fig. 6d. 
The optical conductivity of the materials shows appreciable improvement with the 
varying Zn concentrations. The conductivity of the materials strongly depends on 
the surface morphology as the quality of the surface helps in absorbing the light per-
fectly. The fiber like morphology causes light scattering and hence lower absorption 
is observed for PVDF. But the acicular or rod-like morphology helps in improving 
absorption for the CdO-PVDF and Zn:CdO-PVDF. However, an appreciable enhance-
ment in optical conductivity is noted for Zn:CdO-PVDF at 25% Zn concentration. The 
conductivity of the PVDF is almost constant for the low energy values but rises sharply 
after 2.82 eV. But the maximum conductivity of the materials is obtained at energies; 
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1.71 eV ∼ CdO-PVDF, 1.94 ∼ 12.5%, 1.81 eV ∼ 25%, and 2.38 eV ∼ 50%. The con-
ductivity maxima are observed in the visible region but decrease in the IR and vanish 
in the UV region. The increasing Zn concentrations lead to enhancement of the optical 
conductivity. The increase in the charge transfer excitations inside the materials leads to 
the substantial increase in conductivity and it signifies the use of this material for the 
optoelectronic devices operating in the visible region.

The reflectivity of the Zn:CdO-PVDF materials has been shown in Fig. 6e where 
the reflectivity variations are observed in the 1.3–3.3  eV. The reflectivity of the 
PVDF shows constant rise and fall with increase in energy and maximum reflectiv-
ity is obtained at 1.63 eV. However, reflectivity trends are significantly changed with 
various Zn concentrations. The reflectivity maxima for our selected PVDF materi-
als are obtained at energies; 2.45  eV ∼ CdO-PVDF, 2.45  eV ∼ 12.5%Zn, 2.44 ∼ 
25%Zn, and 2.44 eV ∼ 50%Zn. These reflectivity changes may further be connected 
to the surface morphology and in current study, evident changes in reflectivity have 
been observed. The dense rod-like morphology appearing in the CdO-PVDF causes 
maximum reflections (lower absorption) with least scattering. But the morphologi-
cal variations help in switching the reflectivity behavior of selected materials and 
because of the non-uniform rod-like morphology in the Zn:CdO-PVDF at 25% Zn, 
lower reflectivity is observed. Moreover, the notable reflectivity peaks are observed 
in the visible region and the high reflectivity of the PVDF composites extend the 
scope of these composite for the field of solar photovoltaic back panel applications.

The real part of the dielectric constant of Zn:CdO-PVDF composites has been 
shown in Fig. 6(f) and its variations are recorded in the 1.3–3.3 eV. The dielectric 
trend for the PVDF material is almost constant and its maximum value (2.25) is 
obtained at an energy of 1.38  eV [59]. However, the �r maximum values for the 
CdO-PVDF, 12.5%, 25%, and 50% Zn are; 5.1 1.47 eV, 3.6 ∼ 1.39 eV, 5.4 ∼ 1.43 
∼ eV, and 3.7 ∼ 1.39 eV, respectively. The lower dielectric constant is observed for 
PVDF and exhibit maximum value for 25% (Zn:CdO-PVDF material). The high die-
lectric values observed at low frequency is due to the interfacial phenomenon occur-
ring in the sample [37] and decreases with increase in frequency of the applied field. 
At the high frequencies, the polymer nanocomposites behave like a semiconductor 
[72]. The morphological variations in the selected materials may be responsible for 
the improvement in dielectric properties and dispersion. A particular dielectric trend 
is observed corresponding to each morphology (Fig. 5). The presence of the rod-like 
morphology induces the dipole polarization and enhancement of trapped charge car-
riers. These polarization effects are highly observed in the Zn:CdO-PVDF with 25% 
Zn concentration where higher dielectric constant is noted. The high dielectric con-
stant of the PVDF composites enables the use of these composites in the dielectric 
spectroscopy, photo displays, spintronics, and optoelectronics.

Conclusion

In the current study, the electronic and optical properties of the Zn:CdO-PVDF poly-
mer composite thin films were investigated. At the initial stage, the optical response 
of the Zn substituted CdO were calculated using the Wien2k code. Then pure and 
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Zn-doped CdO nanorods were prepared through the co-precipitation method. Then, 
uniform thin films of Zn:CdO-PVDF were deposited and performed its characteriza-
tion. The fiber like morphology of the pure PVDF is noticed while the rod-like mor-
phology is observed for the Zn:CdO-PVDF nanocomposites. Elemental composition 
analysis confirmed the presence of expected elements in dissolved amounts in each 
composition. Optical response of polymer composite thin films depicts the interest-
ing distinct absorption edge in visible region. The band gap presents a significant 
variation for un-doped and Zn-doped CdO nano-rods containing PVDF thin films.
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