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Abstract
This work makes an investigation of Polyvinyl Alcohol (PVA)/Polyvinyl Pyrrolidone 
(PVP) composite scattered by copper oxide nanoparticles. Spectroscopic techniques have 
been utilized for studying the mechanism of the reaction between PVA/PVP and CuO 
NPs. Cell viability and antibacterial assessment are used for investigating the antibacterial 
activity of nanocomposite systems. XRD and FTIR-ATR approved the complexation and 
miscibility between PVA, PVP, and CuO NPs UV–Vis spectra approved the embedding 
of CuO NPs into PVA/PVP by the appearance of an additional peak at 336 nm. Optical 
parameters and bandgap calculation indicate that CuO NPs decrease the crystallinity of 
the nanocomposite system. DSC measurements were also studied to reveal the thermal 
stability of the prepared sample. The inhibition zone values of E. coli and S. aureus micro-
organisms increased by increasing the CuO NPs ratio in PVA/PVP to 18.5 ± 0.5 and 
20.4 ± 6.0. The responses of the fibroblast cell line to the synthesized nanocomposites 
showed the capacity of PVA/PVP/CuO NPs nanocomposite to be recommended for bio-
medical applications.

Keywords PVA/PVP · CuO NPs · Laser ablation · Antibacterial activity · 
Biomedical applications

Introduction

Polymer blending is considered the most interesting method employed in broad 
usages, such as; energy storage systems, fuel cells, and humidity sensors [1–3]. Due 
to its unique and sought-after properties, research on polymer blending has brought a 
significant shift in industrial practice and pharmaceuticals in recent years [4–6]. The 
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presence of polymer in the form of films offers an opportunity to produce another 
variant of polymer with good mechanical, thermal, and inhibitory properties [7].

The importance of polyvinyl alcohol (PVA) as a polymer is highly rated 
because of its chemical and physical properties [8] over the years; research inter-
est in this field has increased. PVA is semi-crystalline nature used widely in medi-
cal devices, because it possesses (among other things) adsorption, biocompatibil-
ity, and high solubility of water characteristics [9–11]. In addition, it is a nontoxic 
and low-cost polymer used in wound dressing, tissue engineering scaffolding, and 
as part of controlled drug delivery systems [12–14]. Polyvinyl Pyrrolidone (PVP) 
has a high polar group, low toxicity, biodegradable and amorphous nature with 
good film properties. It has two interactive sites N atom and C=O group. It acts 
as a protecting agent with other surfaces of inorganic compounds [15].

Over the past decade, metal nanoparticles were extensively studied because 
of their use in different usages [16–22]. Metal nanoparticles have a very impor-
tant role in applied science and technology [23–30]. Numerous methods are used 
to prepare metal nanoparticles [31], such as laser ablation technique, method of 
chemical reduction, method of microorganism arc-discharge, photo-reduction, 
and bio-surfactant technique [32]. The attractive and innovative technique of 
laser ablation is currently and extensively employed to synthesize nanomaterials, 
which provide a clean, facile, and cost-effective method for preparation [33–36]. 
When an intense beam of laser hits the surface of the solid target, the nanoparti-
cles are produced. It is a simple and non-contaminated technique [37].

Ionic metal oxides nanoparticles (NPs) such as CuO NPs are very interesting 
antimicrobial agents, because they have a high number of corners and edges, high 
surface areas, and many reactive sites [38]. It shows a variety of possible physi-
cal properties, and it can be easily combined with polymers to provide special 
physico-chemical properties to the composites. These nanoparticles, which have 
high surface areas and crystalline structures, can be used with a certain dose to 
have antimicrobial effects [39].

In this study, the structural, optical, and morphological characterization of 
PVA/PVP blend embedded by various ratios of CuO NPs by changing laser abla-
tion time (3, 5, 10, and 15 min) were studied. The cell viability behavior and the 
antibacterial activity were performed for the prepared samples. This process pro-
vides an easy and low-cost method for preparing nanocomposite and uses it for 
biomedical application such as wound healing application.

Materials and method

Materials

PVA (M.W. ≈ 130 K) and PVP (M.W. ≈ 72 K) polymers brought from ACROS. 
Deionized water was used in the preparation of both PVA and PVP. The high pure 
copper plate was performed from Sigma-Aldrich.
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Synthesis of PVA/PVP composite

0.7 gm of PVP and 0.7 gm of PVA have been dissolved in 70 ml of deionized water 
for 5 h at 50 °C to get a homogenous PVA/PVP composite.

Doping PVA/PVP with CuO NPs by laser ablation

CuONPs have been dispersed in PVA/PVP matrix by laser ablation. A pure cop-
per plate with suitable dimensions has been placed in a beaker containing 10 ml of 
the produced PVA/PVP blend. Fundamental Nd:YAG laser beam having1064 nm 
wavelength, 10 Hz repetition rate, and 3.6 W power was streamlined and focused 
on a copperplate via the convex lens to be on its surface to support the ablation and 
formation of CuO NPs in the PVA/PVP matrix. This detailed experiment called the 
one-potential laser ablation process was obtained and employed [40]. Copper oxide 
nanoparticles have been doped with PVA/PVP blend with various ratios by chang-
ing the ablation times (0, 3, 5, 10, and 15 min) as obtained in Table 1. The nanocom-
posite blends are stirred well and sonicated using dip sonicator Hielscher Up 100 H 
to affirm the good dispersion of CuO NPs into blend solution. The resulting PVA/
PVP blends have been casted in plastic Petri dishes then dried in an oven at 40 °C 
for 36 Hours. The thickness of the nanocomposites was found to be about 0.22 mm.

Characterization techniques

XRD patterns of PVA/PVP composites embedded by different ratios of CuO NPs 
have been investigated by PANalytical X-Pert PRO by Cu target with  Kα radiation of 
wavelength (λ = 1.540 Å)in Bragg angle (2θ) = (5–80°). FT-IR spectral data showed 
within the range 4000–400   cm−1 via Jasco spectrometer, 6100, Japan. UV–visible 
spectral data collected in the range of 180 to 1000 nm by a double beam spectropho-
tometer JASCO Corporation, V-570. Morphological features of films were obtained 
by FESEM type (Quanta FEG 250, USA). Differential scanning calorimetry (DSC-
50, Shimadzu, Japan) has been used to conduct thermal analysis of the synthesized 
films, with a temperature range of ambient temperature to 375 °C with a heating rate 
of 10 °C/min.

Table 1  Contents of copper 
oxide nanoparticles embedded 
in PVA/PVP blend by laser 
ablation

Laser Ablation Time (min) Content
(g/L)

Zero Zero
3 0.043
5 0.079
10 0.142
15 0.217
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The human osteoblast cell line HFB4 has been grown in Dulbecco’s modified 
Eagle medium (DMEM, Gibpco) at 35 °C to evaluate the cell viability of PVA/PVP/
CuONPs nanocomposites. Cells seeded at a density of 5 ×  103 cells/cm2 have been 
grown on PVA/PVP/CuONPs nanocomposite in 12-well plates. The medium has 
been isolated after three days of incubation and MTT has been dispersed into each 
well, then the cell viability has been obtained using an optical analyzer as obtained 
in the following formula [41]:

The antimicrobial behavior of PVA/PVP blend embedded by various ratios of 
CuO NPs was performed against Gram-negative bacteria; E. coli and Gram-positive 
bacteria; S. aureus. PVA/PVP/CuO NPs were poured into Petri dishes containing 
Mueller-Hinton agar media and incubated at 38°Cfor 36 h. The antibacterial activ-
ity was calculated by measuring the diameter of the inhibition zone after incubation 
[42].

Results and discussion

X‑ray Diffraction Analysis (XRD)

XRD scans offered a lot of valuable information about the compounds’ scale, orien-
tation, and crystal structure. XRD scans of PVA/PVP composite embedded by CuO 
NPs at various laser ablation times (0, 3, 5, 10, 15 min) at room temperature are 
presented in Fig.  1. Owing to the semi-crystalline structure of PVA supported by 
the hydrogen bonds, PVA has diffraction patterns at 2θ = 19.6° and 40.5°. There is 

Fig. 1  XRD patterns of a PVA, b PVA/PVP, and PVA/PVP/CuO NPs at different laser ablation time c 
3 min, d 5 min, e 10 min, f 15 min and g PVP
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another diffraction pattern at 2θ = 22.7° with low intensity [43–45]. Hence, PVP has 
two semicrystalline patterns at 2θ = 10.3° and 21.4° [46, 47].

The PVA/PVP blend film at laser ablation time (0 min) has two diffraction pat-
terns at 2θ = 10.4° and 19.6°; this affirmed the interaction and miscibility between 
PVA and PVP because of the existence of O–H group in PVA and C=O group in 
PVP and the strong interaction between them [48].

For PVA/PVP blend films embedded by CuO NPs at various laser ablation times 
(3, 5, 10, 15 min), there is an additional diffraction peak at 2θ = 38.1º that is paral-
leled with CuO NPs [49]. There is a shift in the diffraction peak at 2θ = 10.4º towards 
a lower diffraction angle. As seen in Fig. 1 c-f, the intensity of peak at 2θ = 38.1º 
lowered with raising the time of ablation. This means that as more bonds were bro-
ken, new bonds were built in the polymer matrix between the blend groups and CuO 
NPs. Also, the peak broadening increases by raising the time of laser ablation, and 
this established the interaction between PVA/PVP polymer blend and CuO NPs.

The average crystal size (D) of CuO NPs is measured from XRD using Scherrer’s 
equation;

The crystal size of CuO NPs was 32 nm.

Fourier transform infrared (FTIR)

Figure 2 illustrates FT-IR spectra of PVA, PVP, and PVA/PVP blend films embed-
ded by CuO NPs at various times of laser ablation (0, 3, 5, 10, 15 min). For PVA, 
the O–H stretching vibration has been cleared at 3305  cm−1. The symmetric stretch-
ing vibrations of C-H group have been seen at 2923  cm−1. The asymmetric stretch-
ing vibrations of C–H group were seen at 2852   cm−1. The vibrational band at 
1725   cm−1was attributed to C=C stretching vibration, while O–H bending vibra-
tion was cleared at 1651   cm−1. The bending vibration of C-H group was seen at 
1431   cm−1. The wagging vibration of C-H group was seen at 1375   cm−1, respec-
tively. At 1242   cm−1, the C-H wagging of acetate residue was obtained and C-O 
stretching vibrations were located at 1087   cm−1 and 1023   cm−1. At 845   cm−1, 
the rocking vibration of  CH2 was seen [50–52]. For PVP, the stretching vibration 
of O–H group was obtained at 3405   cm−1. The C-H bending vibrations have two 
bands at 1427   cm−1 and 1373   cm−1. The C-N bending vibration was observed at 
1278   cm−1.  CH2 twisting and rocking vibrational bands were seen at 1220   cm−1 
and 1012   cm−1. The band at 564   cm−1 is assigned to N–C=O bending vibrations 
[53–56].

For PVA/PVP blend film at laser ablation time (0 min), there was a shift in O–H 
stretching vibration, in addition to the appearance of new bands at 1740   cm−1, 
1490   cm−1, and 1250   cm−1 that corresponded to C=O stretching vibration, C-H 
bending vibration and C–O–C stretching. There was also a shift in the bands at 
1644  cm−1 with a decrease in intensity of all bands. These results agreed with XRD 
analysis and confirmed the complexation between PVA and PVP [57].

(1)D = 0.915�∕F cos �
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For PVA/PVP blend films embedded by CuO NPs at various times of laser abla-
tion (3, 5, 10, 15  min), there was a slight shift in O–H stretching vibration that 
became broader compared to PVA/PVP polymer blend film at laser ablation time 
(0 min). In addition, the intensities of all bands changed irregularly with the addition 
of CuO NPs and ablation time. This indicates that there was an interaction between 
PVA/PVP and CuO NPs.

Optical properties

Figure 3 obtains UV–Vis spectra of PVA/PVP composite embedded by CuO NPs at 
several times of laser ablation (0, 3, 5, 10, 15 min). There was a maximum absorp-
tion peak at 225 nm in PVA/PVP composite film at laser ablation time (0 min) spec-
trum that corresponded to π-π* transition of unsaturated bonds in polymer blend 
[58].

For PVA/PVP blend films embedded by CuO NPs at various times of laser abla-
tion (3, 5, 10, 15 min), there was a small shift toward high wavelength. This shift 
correlated with the intermolecular bonding of hydrogen between the adjacent hydro-
gen groups in the chain of polymer and Cu ions or due to the bonding of hydrogen 
between C=O of PVP and Cu ions [49]. In addition, there was an additional peak 
at 336 nm and their intensity was raised by raising the time of laser ablation that 
approved the complexation between PVA/PVP and CuO NPs polymer.

It is known that Beer–Lambert law demonstrates the transfer of light through the 
materials according to that relation [59].

Fig. 2  FTIR-ATR of a PVA, b PVP, c PVA/PVP, and PVA/PVP/CuO NPs at different laser ablation time 
d 3 min, e 5 min, f 10 min and g 15 min
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where I  is the intensity of the transmitted light and  I0is the intensity of the incident 
light, d is the thickness of the film and α is the absorption coefficient that must be 
analyzed in order to examine the existence of any changes in the band structure. The 
above relation can be written as following [60]:

where A is the absorbance.
Figure 4 obtains the relation between α and photon energy (hʋ). It is shown that 

the value of absorption edge of PVA/PVP blend was decreased irregularly by the 
addition of CuO NPs at various times of laser ablation (see Table 2). The shift to 
lower photon energy means that the bandgap lowered.

In amorphous and disordered materials, the Urbach tail has been observed and is 
one of the tools that is used for describing the characteristics of the electronic transi-
tion of these materials. Urbach tail width is a measure of the defect levels between 
the conduction and valence bands in the forbidden bandgap. Previous research 
showed that the absorption coefficient was represented by the Urbach relationship in 
the exponential-edge region [61, 62].

(2)I = I0e
−αd

(3)α ∗ d = ln
I0

I
= ln10 ∗ log

I0

I
= 2.303 ∗ A → α =

2.303

d
A

(4)� = �0 exp

(

h�

Eur

)

Fig. 3  UV–Vis of a PVA/PVP and PVA/PVP/CuO NPs at different laser ablation time b 3 min, c 5 min, 
d 10 min and e 15 min
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where  α0  is a constant and  Eur is the width of the band tails. The relationship 
between lnα and hʋ in Fig. 5 was depicted by a straight line. Values of Eur are listed 
in Table 2, as seen with the addition of CuO NPs and increasing the times of abla-
tion, Eur increased. The raising in Eur indicates a raise in the amorphous regions in 
the materials. There are no sharp cutoffs for both conduction and valence bands, in 
amorphous materials, but in the lower energy region, they have tails of localized 
states.

The increase in tail width could be due to the fact that raising the CuO NPs con-
tent and ablation time in the PVA/PVP blend can contribute to the production of 
ionic complexes, disorders, and imperfections. This leads to a rise in localized states 
within the forbidden bandgap of energy [63].

Davis and Shalliday obtained the indirect and direct transitions that could be 
occurred near the edge of the basic band, and via plotting (αhʋ)1/2 versus hʋ used to 
perform the optical bandgap by using this relation [64, 65].

Fig. 4  Relation between α and hʋ for PVA/PVP and PVA/PVP/CuO NPs at different laser ablation time 
(3, 5, 10 and 15 min)

Table 2  Optical parameters values of PVA/PVP blend embedded by various ratios of CuO NPs at vari-
ous laser ablation time

Sample Laser ablation 
time (min)

Absorption 
edge (eV)

Band Tail  Eur 
(eV)

Energy Gap (eV)

PVA/PVP (0 min) 0 4.74 0.17 4.40
PVA/PVP/CuO NPs (3 min) 3 4.30 0.21 3.64
PVA/PVP/CuO NPs (5 min) 5 4.49 0.24 3.36
PVA/PVP/CuO NPs (10 min) 10 4.49 0.28 2.99
PVA/PVP/CuO NPs (15 min) 15 4.55 0.36 4.29
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The plot of (αhʋ)1/2 versus hʋ is obtained in Fig. 6. As seen in Table 2 the val-
ues of indirect bandgap energy decreased compared to PVA/PVP polymer blend 

(5)(�h�)1∕2 = B (h� − Eg)

Fig. 5  Relation between ln α and hʋ for PVA/PVP and PVA/PVP/CuO NPs at different laser ablation 
time (3, 5, 10 and 15 min)

Fig. 6  Relation between (αhʋ)0.5 and hʋ for PVA/PVP and PVA/PVP/CuO NPs at different laser ablation 
time (3, 5, 10 and 15 min)
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at laser ablation time (0 min). This means that as the amorphous region in PVA/
PVP blend increases, by addition of CuO NPs, the disordering increases.

Scanning Electron Microscopy (SEM)

SEM images of PVA/PVP embedded by CuO NPs are obtained in Fig.  7. SEM 
micrographs show the homogenous nature of pure PVA/PVP blend in Fig. 7a. Fig-
ure 7b obtains SEM photographs that show a homogenous distribution of CuO NPs 
through the prepared blend on its surface. CuO NPs appear on the surface as spheri-
cal white points. These white points in the high laser ablation time (15 min) were 
observed as big points because of the aggregations of copper oxide nanoparticles. In 
other words, the white points are raising as the ratio of CuO NPs raised in the PVA/
PVP composite when the laser ablation time is raised. These photographs approved 
the distribution of CuO NPs on the surface of the PVA/PVP blend sample in semi-
uniform manner.

Fig. 7  FESEM photographs for PVA/PVP and PVA/PVP/CuO NPs at laser ablation time (15. min)
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Differential scanning calorimetry (DSC)

Figure 8 represents the DSC thermogram of PVA, PVP, PVA/PVP and PVA/PVP 
incorporated with CuO NPs at various laser ablation time. As seen PVA has melting 
temperature at 191 °C and decomposition temperature at 316 °C [66], while PVP 
has melting temperature at 98 °C [67]. For PVA/PVP and PVA/PVP/CuO NPs, there 
is a noticeable shift to higher temperature either with blending or by additive of 
nano-fillers. These affirm the thermal stability of polymer nanocomposite increases 
with addition of CuO NPs and confirmed the intermolecular interaction between 
PVA/PVP polymer chains and nano-filler.

Cell viability

The responses of the cell line of fibroblasts toward PVA/PVP/CuO NPs nanocom-
posite predict the propensity of these films to be recommended for wound healing 
usages applications. The cell viability of these nanocomposites has been investigated 
as obtained in Fig.  9. It is evident that the cell viability of PVA/PVP matrix was 
78.1 ± 3.4% and has been increased to 81.2 ± 4.2% after PVA/PVP matrix is embed-
ded by CuO NPs via laser ablation time (3 min). The values of cell viability were 
increased by raising the ratios of CuO NPs inside PVA/PVP blend to 96.7 ± 3.5% for 
PVA/PVP blend film at laser ablation time (15 min). This is a strong indication that 
there is a presence of high biocompatibility of copper oxide in the PVA/PVP com-
posite. The low ratios of CuO NPs inside PVA/PVP blend potentiate its degradation 
without causing fatal adverse effects. This behavior of cell viability could affect the 
antibacterial activity that could decrease the possible invasion and enable the devel-
opment and distribution of normal cells instead of death.

Fig. 8  DSC curves for PVA, PVP, PVA/PVP, and PVA/PVP/CuO NPs at different laser ablation time (3, 
5, 10 and 15 min)
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Antibacterial assessment

The potential to facilitate wound healing and other biomedical applications relies 
heavily on bacterial invasion inhibition, as the latter can deteriorate the cohesion of 
the wound. The antibacterial activity of PVA/PVP blend doped with various ratios 
of CuO NPs by laser ablation has been investigated against E. coli and S. aureus. As 
shown in Fig. 10 and Table 3, pure PVA/PVP blend (at laser time ablation (0 min)) 
obtain the low inhibition zone; 8.2 ± 0.5 and 9.5 ± 0.4 against E. coli and S. aureus, 
respectively. Moreover, the inhibition zone of PVA/PVP blend embedded in CuO 
NPs via laser ablation time (3  min) was 13.2 ± 0.4 and 15.4 ± 0.6 against E. coli 
and S. aureus, respectively. The values of inhibition zones were raised by increas-
ing the ratios of CuO NPs inside PVA/PVP composite to 18.5 ± 0.5 and 20.4 ± 6.0 
against E. coli and S. aureus, respectively, for PVA/PVP blend at laser ablation time 
(15 min). The antibacterial activity has been attributed to an increase in the copper 
oxide nanoparticles inside PVA/PVP blend and it depends on the capability of the 
released ionic CuO to degenerate bacterial cells [68]. The high antibacterial activity 
of the polymeric nanocomposite requires further investigation before it can be used 
in clinical applications.

Conclusion

PVA/PVP doped with different ratios of CuO NPs prepared via laser abla-
tion (0, 3, 5, 10, 15 min) using casting technique method is characterized using 
XRD, FTIR-ATR, and UV–Vis techniques. Confirmation of the interaction and 

Fig. 9  Cell viability for PVA/PVP and PVA/PVP/CuO NPs at different laser ablation time (3, 5, 10 and 
15 min) through HFB4 cell line in vitro
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compatibility between PVA, PVP, and CuO NPs are affirmed by XRD and FTIR-
ATR. UV–Vis and optical parameters showed that embedding by CuO NPs into 
PVA/PVP composite decreased the crystallinity of the nanocomposite system. It 
seems from DSC analysis that thermal stability increased by increasing CuO NPs. 
Antibacterial activity and cell viability have been increased with increasing CuO 
NPs at laser ablation time 15 min. These results could lead to the suggestion of 
PVA/PVP/CuO NPs for wound healing utilization.
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Fig. 10  Antibacterial behavior for PVA/PVP and PVA/PVP/CuO NPs at different laser ablation time (3, 
5, 10 and 15 min) against E. coli and S. aureus 

Table 3  Antibacterial activity 
of PVA/PVP blend embedded 
by various ratios of CuO NPs 
against E. coli and S. aureus

Sample code Inhibition zone diameter
(mm)

E. coli S. aureus

PVA/PVP (0 min) 8.2 ± 0.5 9.5 ± 0.4
PVA/PVP/CuO NPs (3 min) 13.2 ± 0.4 15.4 ± 0.6
PVA/PVP/CuO NPs (5 min) 15.1 ± 0.6 17.3 ± 0.4
PVA/PVP/CuO NPs (10 min) 16.6 ± 0.6 18.0 ± 0.5
PVA/PVP/CuO NPs (15 min) 18.5 ± 0.5 20.4 ± 6.0
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