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Abstract
This study provides theoretical insights into the potential use of cellulose deriva-
tives, such as methylcellulose (ME) and cellulose xanthate (CX), to remove glypho-
sate (GLY) contaminants via adsorption. The mechanism of adsorption in ME and 
CX is compared with that of activated carbon. To this end, theoretical calcula-
tions based on density functional theory (DFT) were used to determine the frontier 
molecular orbitals (FMOs); molecular electrostatic potential (MEP); and energetic, 
structural, and topological parameters. The analyses of FMOs and MEP indicated 
two possible interaction sites. The structural parameters showed that the herbicide 
interacts with the ME and CX matrices, and the bond lengths of the interaction 
ranging from 1.58 to 3.09 Å, depending on the nature of the interaction. The vibra-
tional frequencies of the bonds involved in the interaction changed after adsorp-
tion, thus confirming the existence of the interaction. The analysis of the quantum 
theory of atoms in molecules (QTAIM) allowed the characterization of interactions 
through topological parameters and showed that the most effective interactions pre-
sented a higher number of electrostatic interactions. The determined energies of the 
electronic interaction and the enthalpy were negative, indicating that the interaction 
occurred. Finally, the calculations for the glyphosate adsorption process on activated 
carbon (AC) showed that the terminal group –COOH presented the best energy val-
ues for interaction with GLY, followed by activated carbon with the group –OH, 
and finally, the activated carbon containing only aromatic rings. The results showed 
that the derivatives of cellulose CX and ME are promising alternatives to remove 
glyphosate contaminants from water.
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Introduction

Glyphosate, or N-(phosphonomethyl) glycine, is an organophosphate herbicide 
introduced to the market in 1974 under the formulation of glyphosate with adju-
vant agents and other reagents of chemical composition with unpublished con-
centrations [1–4]. Glyphosate, both in pure and acid forms, is a white, odorless 
crystal [5].

The use of the glyphosate herbicide extends to more than 130 countries, with an 
estimated annual usage of 600 kilotonnes [6]. The extent of its use is justified by 
its wide spectrum of applications, which makes glyphosate effective in combating 
several weeds [6]. The use of genetically modified crops is another factor stimu-
lating the use of herbicides as it may be required before and during the growth of 
the crops, and during the harvest [4]. Owing to the widespread and large-scale use 
of the herbicide glyphosate, concerns regarding environmental safety are rapidly 
increasing as glyphosate is a risk to ecosystem biodiversity and human health [4].

Glyphosate can have negative impacts on aquatic organisms at different trophic 
levels, such as protozoa, algae, plankton, mussels, crustaceans, frogs, and fish 
[7, 8], thereby changing the ecological balance. In terrestrial living beings, these 
impacts relate to population losses of various species of birds, mammals, and 
beneficial insects through habitat and/or supply destruction [7,  8]. Concerning 
humans, the International Agency for Research on Cancer (IARC) and a series of 
studies in the literature have related glyphosate to some form of cancer, attribut-
ing genotoxicity and mutagenicity to it [9–13].

In view of this growing problem, studies on methods to remove this herbicide 
from the environment have become increasingly crucial. These studies propose 
technologies for wastewater treatment by efficient and economically viable meth-
ods, such as adsorption [14–17].

Activated carbon is among the most widespread adsorbents; however, there is 
an ongoing search for more economical alternative materials [18, 19]. Some ade-
quate candidates found in the literature are the following: zeolites and clays [20, 
21], solid agricultural waste [22, 23], and industrial by-products [24].

One way to facilitate the search is to use theoretical calculations as a tool for 
selecting materials with significant adsorptive potential, which can either be used 
in conjunction with experimental results [20] or evaluated in advance to predict 
or simulate the possible adsorption mechanisms [25–28]. In this context, theoreti-
cal calculations are employed to analyze the adsorption process in molecular or 
electronic terms, evaluate the best adsorbent for a given adsorbate, and reduce the 
experimental costs and time [25, 28].

In this study, theoretical calculations were used to predict the adsorption poten-
tial of methylcellulose (ME) and cellulose xanthate (CX) derivatives with respect 
to glyphosate adsorbate. Additional simulations using the activated carbon adsor-
bent allowed a more pragmatic overview of the results because it compared a 
recently studied biomass with a consolidated adsorbent. In addition, the study 
describes information on these matrices at a molecular level, thus contributing to 
the understanding of the relevant chemical characteristics of these biopolymers.
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Computational methods

Methylcellulose (ME), cellulose xanthate (CX), activated carbon, and glyphosate 
molecules were optimized to the minimum energy using density functional theory 
(DFT) [29–32] at the wB97XD/6–31 + G(d,p) [33–36] level. The continuous solvent 
model SMD [37] was used to simulate the effects of water as a solvent.

The frontier molecular orbitals HOMO and LUMO and the molecular electro-
static potential (MEP) were generated with 0.02 isovalue and density 0.001 µa, 
respectively.

The interactions between adsorbents and adsorbates were calculated at the same 
level of theory. The energy parameters, electronic interaction energy, Gibbs energy 
(ΔG), and enthalpy (ΔH), were determined using Eq. (1).

where X is the sum of the electronic energies with the zero-point energy (E + ZPE) 
or Gibbs energy or enthalpy.

No imaginary frequency was found in the adsorption processes or for individual 
species, confirming their minimum energy. Some structures were designed using the 
GaussView program [38], and all calculations were performed using the Gaussian09 
program [39].

Topological analyses were performed using the quantum theory of atoms in mol-
ecules (QTAIM) [40, 41–43] with the aid of the AIMALL package [44].

Results and discussion

The ME and CX matrices were studied using three monomeric units. Hydrogen 
atoms were added to the ends of the cut. This methodology was previously employed 
by other authors [25, 26] to obtain a lower computational cost and reduce the loss 
of the original properties of ME and CX as much as possible. The contra-ion  (Na+) 
was not considered for the CX matrix, simulating the experimental conditions.

Figure 1 shows the structural representations of the ME, CX biopolymers, and 
glyphosate (GLY).

Analysis of possible interaction sites

MEP and frontier molecular orbital (FMO) analyses were performed for ME and CX 
matrices to determine the possible complexation sites.

Figure 2 shows the MEPs of ME (Fig. 3a) and CX (Fig. 3b). The description of 
MEP is made from the present staining, in which blue regions represent electron-
deficient sites with a density of positive charges and electrophilic activity. In con-
trast, the molecular regions with reddish/orange coloration are electron-rich regions 
with negative charge density and nucleophilic activity.

From the results, it can be inferred that the ME matrix contains regions 
with significant electronic density located in the hydroxyl (–OH) groups of the 

(1)ΔX = Xcomplex −
[

Xadsorbent + Xadsorbate

]
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Fig. 1  Structural representation: a methylcellulose, b cellulose xanthate and c glyphosate

Fig. 2  Molecular electrostatic potential of methylcellulose (a) and cellulose xanthate (b)
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extremities. The methyl groups (–CH3) were green and partially positive. Fig-
ure  2a represents the possible interaction sites, where sites “a” and “b” corre-
spond to the –OH and –CH3 groups, respectively.

The MEP for the CX shows that the whole structure consists of negative 
charge, originating from the –CS2

− groups. As indicated in Fig. 2b, two possible 
regions may interact with positive charges of other molecules as represented by 
the “a” and “c” sites of groups –OH and –CS2

−, respectively.
In the literature, theoretical studies show that the glyphosate molecules and 

derivatives have negative charges concentrated around oxygen, positive charges 
in hydrogens, and the most stable conformation corresponds to the  gg− arrange-
ment [45, 46–48]. The results for GLY corroborate those presented in the litera-
ture [47] and were not reported in this work.

In addition to the MEPs, the analysis of FMO was used, both of which provide 
evidence of the probable interaction sites from the HOMO and LUMO.

Figure 3 shows the HOMO and LUMO of the ME and CX matrices, where ME 
presents a LUMO that extends along with two of its rings, while the HOMO has 
well-defined π orbitals in the central ring and ring on the right. The CX showed 
orbital π LUMO and π HOMO in the  CS2

−. This indicates that the main site of 
interaction in the CX matrix is in the  CS2

− group.
It is important to highlight that the adsorbate in the adsorption process is ini-

tially in a liquid medium with a high degree of freedom and may interact with the 
frontier orbitals. In this context, two complexation hypotheses were evaluated for 

Fig. 3  Representation of HOMO and LUMO of ME and CX matrices
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each biopolymer, considering the FMOs and MEPs ((ME-GLY1 and ME-GLY2) 
and (CX-GLY1 and CX-GLY2)).

Analysis of structural, energetic, and topological parameters post‑complexation

Post-complexation studies: structural, energetic, and topological parameters were 
obtained from studies of possible sites in pre-complexation.

Structural parameters

Figure 4 shows the complexes formed after complexation, the values of the inter-
action distances between ME and GLY (ME-GLY1 and ME-GLY2; Fig. 4a and b, 
respectively), and the complexes formed between CX and GLY (CX-GLY1 and 
CX-GLY2; Fig. 4c and d, respectively).

The values of the bond lengths for the interactions are shown in Fig. 4, where 
“a,” “b,” and “c” represent the sites of interaction with the hydroxyls, methyl 
group,  CS2

− groups, respectively; “x” represents the interaction of GLY hydro-
gens with the oxygen of the ring. The ME-GLY1 complex presented three inter-
actions between hydrogen and –OH (a1–a3) group: two with the ring (x1,x2), and 
one with the group –CH3 (b1); whereas, the ME-GLY2 complex presented only 
three interactions, two with –OH (a4, a5) and one with –CH3 (b2). The values of 
the interaction distances in “a” are less than the distances in “b”.

The CX-GLY1 complex has three interactions, two with –OH (a6, a7) and one 
with the sulfur and hydrogen atoms (c1). The XC-GLI2 complex has four interac-
tions, two between hydrogen atoms and –OH (a8 and a9), and two between the 
sulfur atom and the hydrogen atom of GLY (c2 and c3). The values of the interac-
tion bond lengths were lower for the CX-GLY2 complex.

It is important to emphasize that the vibrational frequencies of the bonds of the 
functional groups that interact during the adsorption process changed after com-
plexation, confirming that the interaction has occurred.

QTAIM analysis

The QTAIM analysis was used to determine the topological parameters: elec-
tronic density (ρ(r)), Laplacian of electronic density (∇2ρ(r)), density of kinetic 
energy (G(r)), density of potential energy (V(r)), and density of potential energy 
in BCP (H(r) = G(r) + V(r)). The results of these interactions are presented in 
Table 1.

The electronic density values show that the most effective interactions 
(> 20 kcal  mol−1) are a1, x1, and x2 for ME-GLY1, a4 and a5 for ME-GLY2, a7 and c1 
for CX-GLY1, and  a8 and  c2 for CX-GLY2 (Table 1). The values of the Laplacian of 
the electronic density for the interactions are all higher than zero (∇2ρ(r) > 0), indi-
cating non-covalent interactions.
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One way to classify the interactions is through the parameters ∇2ρ(r) and H(r), 
in which partially covalent interactions are characterized by ∇2ρ(r) > 0 and H(r) < 0; 
and ∇2ρ(r) > 0 and H(r) > 0 are electrostatic. The results show that the interactions 
a1, a2, a4, a6, c1, and c2 are partially covalent, while the others correspond to electro-
static interactions.

From analyzing each complex separately, it can be observed that for ME-GLY1, 
ME-GLY2, and CX-GLY2, there are more electrostatic interactions than partially 
covalent interactions. In contrast, the CX-GLY1 complex showed two interactions, 
partially covalent and one electrostatic. Thus, electrostatic interactions are the inter-
actions responsible for the adsorption process in almost all the evaluated sites.

Fig. 4  Representation of complexes formed between ME and CX matrices with GLY and their respective 
interaction distances in a ME-GLY1, b ME-GLY2, c CX-GLY1, and d CX-GLY2
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Energy parameters

The energy of electronic interaction (ΔEint), enthalpy (ΔH), Gibbs energy (ΔG), and 
variation of the energy gap (ΔGap) involved in the interactions between the adsor-
bent and adsorbate were obtained (Table 2). The obtained energy values were used 
to analyze the magnitude of the interactions, heat released or absorbed, spontaneity, 
and its effects on the frontier orbitals after the interactions.

Table  2 shows that the interaction of ME-GLY1 and CX-GLY2 were 
the most significant interactions with interaction energy values of − 22.79 
and − 19.45 kcal  mol−1, respectively, both having ΔG < 0. All ΔH values are nega-
tive, showing that the process releases energy. ΔGap values demonstrate that the 
matrices most affected by adsorption were the CX matrices with a change in the 
ΔGap higher than 22%.

Table 1  Topological parameters calculated in the BCPs of the interactions

Complex Interaction (BCP) ρ(r) ∇2ρ(r) V(r) G(r) H(r) Type of interaction
kcal  mol−1

ME-GLY1 a1  (O57–H92) 38.19 98.89 −33.19 28.96 −4.24 Partially covalent
a2  (O91–H47) 17.00 50.15 −12.86 12.70 −0.16 Partially covalent
a3  (O48–H87) 5.49 18.24 −3.73 4.15 0.41 Electrostatic
b1  (O93–H72) 3.59 12.68 −2.06 2.61 0.56 Electrostatic
x1  (O93–H72) 20.74 65.25 −15.13 15.72 0.59 Electrostatic
x2  (O93–H72) 21.69 68.42 −16.05 16.58 0.53 Electrostatic

ME-GLY2 a4  (O48–H82) 34.00 96.19 −27.87 25.96 −1.91 Partially covalent
a5  (O80–H47) 22.50 73.10 −17.08 17.68 0.60 Electrostatic
b2  (O81–H64) 4.05 15.28 −2.61 3.21 0.61 Electrostatic

CX-GLY1 a6  (O53–H81) 13.12 39.28 −10.45 10.14 −0.32 Partially covalent
a7  (O90–H52) 25.46 79.99 −19.64 19.82 0.18 Electrostatic
c1  (S70–H89) 26.22 32.34 −16.35 12.22 −4.13 Partially covalent

CX-GLY2 a8  (O53–H89) 27.88 86.79 −21.43 21.56 0.13 Electrostatic
a9  (O53–H83) 6.28 21.18 −4.45 4.88 0.42 Electrostatic
c2  (S70–H87) 20.45 31.46 −12.37 10.12 −2.25 Partially covalent
c3  (S24–H76) 2.93 9.68 −1.23 1.82 0.59 Electrostatic

Table 2  Electronic interaction 
energy (ΔEint) at 0 K, enthalpy 
(ΔH), Gibbs energy (ΔG) at 
298 K, and variation of energy 
GAP (ΔGap) for the interaction 
of GLY with the ME and CX 
matrices

Complex ΔEint ΔH ΔG ΔGap (%)
kcal  mol−1

ME-GLY1 −22.79 −24.16 −3.56 4.06
ME-GLY2 −12.68 −14.26 6.25 0.16
CX-GLY1 −16.72 −17.84 0.41 22.64
CX-GLY2 −19.45 −20.74 −0.73 22.93
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As evidenced by Costa et al. 2021 [49], in the study of the interaction of metal 
ions  Hg2+ and  Pb2+ on carboxymethyl diethylaminoethyl cellulose and cellulose 
nitrate matrices, the solvent effect significantly decreases the value of the interaction 
energy. In this context, only the implicit solvent effect was used in this work.

It is important to highlight that glyphosate speciation in water is relevant for the 
interaction process. The  pKa values for GLY are pKa1 = 2.0, pKa2 = 2.6, pKa3 = 5.6, 
and pKa4 = 10.6; therefore, there is a pH range between 2 and 11 according to the 
pKa of the groups present in the molecule [50]. For this study, a pH of 7 was studied 
(neutral molecule). For the ME matrix, the neutral molecule was also considered, 
and for the CX matrix, the anionic molecule was used because the sodium atom 
(Na) in water is transferred to the medium [51, 52].

Comparing the interaction energy values (Table 2) with the values found for the 
types of interactions (Table 1), it can be inferred that the ME-GLY2 and CX-GLY1 
interactions are less favored because they have fewer electrostatic interactions.

Activated carbon and GLY

The ME and CX matrices are excellent alternatives for use in adsorptive processes 
to remove GLY contaminants. In this context, calculations of the adsorption poten-
tial of GLY with activated carbon were also performed.

For activated carbon, three types of adsorbents were evaluated: adsorbent 
composed of (i) only aromatic rings, (ii) aromatic rings with carboxylic groups 
(–COOH), and iii) aromatic rings with a hydroxyl group (–OH). The adsorbents and 
adsorption sites were built based on the work of Melchor-Rodríguez et  al. (2020) 
[53]. Many functional groups can be found in activated carbon, and their structures 
change with changing pH. For this study, only carboxylic and hydroxyl groups were 
evaluated, and neutral molecules were considered (pH = 7). The results of AC-GLY 
optimized complexes (activated carbon-glyphosate) are shown in Fig. 5, with their 
respective bond lengths for the interactions.

The values of the interaction bond lengths range from 1.74 to 2.96 Å, depending 
on the interaction. The activated carbon with the –COOH group showed the shortest 
bond length (1.74 Å).

The energy of the electronic interaction and the thermodynamic properties of 
these interactions were also evaluated for activated carbon, and the results are pre-
sented in Table 3. From the results, it can be observed that the AC with the termi-
nal group –COOH presented the best energy values for interaction with GLY, fol-
lowed by AC with the group –OH, and finally the AC containing only the aromatic 
rings. For interactions with AC, it is necessary to emphasize that many factors can 
influence the adsorptive process, such as surface area, porosity, pH, and functional 
groups.

Another point to be highlighted is that studies in the literature suggest the use 
of biopolymers such as chitosan, chitin, and chitosan combined with alginate for 
glyphosate removal [54–58], and thus, theoretical studies provide insights for exper-
imental verification.
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Conclusion

Herein, the MEP and FMOs were analyzed to identify the possible interaction 
sites between ME and CX with glyphosate.

The obtained parameters of the interaction distance and vibrational frequencies 
provided evidence on the number of interactions that occurred during the for-
mation of complexes, bond lengths, and that the interaction occurs. The QTAIM 
analysis corroborated the results of the energy parameters, showing that ME and 
CX derivatives are excellent matrices for the adsorption process.

Fig. 5  Representation of the complexes formed between the matrices of activated carbon with GLY and 
their respective interaction distances

Table 3  Electronic interaction 
energy (ΔEint) at 0 K, enthalpy 
(ΔH) and Gibbs energy (ΔG) at 
298 K for adsorption processes 
between GLY and activated 
carbon

“a”, “b” and “c” interactions of Fig. 5

Complex ΔEint ΔH ΔG
kcal  mol−1

(a) AC-GLYa −11.92 −11.52 1.70
(b) AC-GLYb −14.39 −14.39 0.36
(c) AC-GLYc −11.63 −11.67 3.58
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The results show that activated carbon interacts better with the terminal group 
–COOH. Thus, the theoretical studies demonstrated that the biopolymers ME and 
CX present favorable structural, energetic, and topological aspects for glyphosate 
adsorption.
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