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Abstract
Additive manufacturing offers flexibility in designing, customizing, minimization of 
waste, manufacturing complex profiles and faster prototyping. Among these, polyjet 
and fused deposition modelling (FDM) process are widely employed to manufacture 
the parts for different applications. Hence, a comprehensive review on the mechani-
cal properties of polyjet printed and FDM printed parts has been carried out in this 
paper. Under polyjet printing, influence of process parameters such as built orien-
tation, built mode, finish type, part spacing and layer thickness on the mechanical 
properties has been discussed. Under FDM process, mechanical properties of impor-
tant and potential polymeric materials such as acrylonitrile butadiene styrene, pol-
ylactic acid, polyether-ether-ketone and polyetherimide have been reviewed. Alto-
gether, this paper gives an overview of mechanical properties of 3D printed parts, 
including a survey on selection of process parameters in polyjet process and materi-
als selection in FDM process.
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Introduction

AM attracts the interests of industry, research and academic sectors. Recently, 
cheaper and faster AM techniques that achieve great print quality have been 
created. In addition, polymer materials for 3D printing are now available with 
a broader range of qualities. These developments are constantly changing how 
items are created and made, as well as how people utilize them [1–4]. Because 3D 
printing considerably simplifies prototype creation, innovators and inventors may 
now easily build prototypes of their ideas. The design and manufacture processes 
have been simplified from weeks to a few hours [5]. AM has the potential to 
reduce manufacturing costs while also increasing overall efficiency. AM method 
is used to fabricate wide range of shapes and complex geometries from the three 
dimensional model data with short lead time [6]. The process involves printing 
layer by layer of materials to form a part [7]. Stereolithography (SLA) is the first 
and foremost method that was developed and subsequently other methods such as 
powder bed fusion (PBF), FDM [8], inkjet printing and contour crafting evolved 
[9]. Construction, fashion [10, 11], dentistry, medical [12–19], electronics [20], 
automotive [21], robotics, military, oceanography [22] and aerospace [23] are the 
applications for which AM is being actively investigated. Recent developments in 
3D printing made its extension of applications such as in schools, homes, librar-
ies and laboratories.

3D printing offers several advantages over the traditional techniques such as 
high precision, material saving, design flexibility and customization. A wide 
range of polymer processing 3D printing methods are existing; however, pol-
yjet printing and FDM are being extensively employed in different applications. 
Large range of materials are being processed through the aforesaid 3D printing 
processes. Even then, the inferior mechanical properties of 3D printed parts still 
lower the potential of large-scale printing due to its anisotropic behaviour. 3D 
printed parts produced through these methods should be able to withstand a vari-
ety of mechanical and environmental pressures during their use in actual applica-
tions. It is crucial to understand the requisite strengths for each application under 
various loading circumstances, and 3D printed parts should, at the very least, have 
physical qualities similar to those produced by traditional processes [24–26]. This 
review paper focuses solely on mechanical characterization of polymer materials 
produced under polyjet and FDM in order to keep the scope as narrow as pos-
sible. Polymers are weaker than metals in general, but they have a lower density 
and larger strains at failure. Plastics have stronger strength per unit weight than 
metals in some circumstances. As a result of their reduced cost and flexibility to 
manufacture complicated designs, plastics may have greater advantages.

This review will compile the methodology followed for various types of 
mechanical testing and summarizes a vast amount of documented mechanical 
properties of 3D printed polymeric materials produced by polyjet and FDM tech-
niques. Thereafter, focussed discussion will be provided on sample preparation 
(printing technique), polymeric materials with/without reinforcements, individ-
ual effect and combined of printing parameters, printers utilized, post-treatment, 
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testing machines, testing parameters, structure-property-parametric correlation, 
accuracy and cost aspect. Mechanical properties of polyjet and FDM printed pol-
ymers assessed in different conditions: tension, compression, bending, hardness, 
flexural, fatigue loading and impact loading will be discussed. The paper will be 
concluded with the key research results found from this extensive review which 
can serve as basis for future perspectives in enhancing the mechanical properties 
of the polyjet and FDM printed parts.

Mechanical properties of polyjet printed parts

Mechanical properties of the polyjet printed parts are greatly influenced by the 
parameters involved during built process as well as post-built. During processing, 
built orientation, built mode, finish type, part spacing and layer thickness are found 
to affect the properties of the parts. The effect of individual parameter as well as 
combined effect of different parameters on the properties of the polyjet printed parts 
is discussed in detail in the following sections.

Effect of print orientation on the mechanical properties of polyjet printed parts

Comparatively, a small number of engineering devices and structure are monolithic. 
Different combinations of materials are frequently required to meet the essential 
functionality and performance. Advancement in AM now allows multiple materi-
als to be produced in a single manufacturing process, paving way for attainment 
of functional and performance targets. Interactions at the interfaces have been an 
interest in the area of adhesive bonding; similar issue requires to be addressed for 
printed composite materials including how print orientation and orientation of rein-
forcement may influence the properties or failure of the printed part [27]. Depend-
ing on the AM technology used, print orientation can have a substantial impact on 
the mechanical integrity of the finished product. Print orientation effects on modu-
lus, strength and fatigue resistance have been proven in previous research [28–32], 
including for parts printed with various polymers [33, 34]. There are numerous stud-
ies that characterize the impact of print orientation on mechanical performance of 
the polyjet printed parts [35–38].

Table  1 summarizes the materials and their improved properties under the 
influence of print orientation. Ivan et al. [39] studied the influence of print orien-
tation on interface integrity of photopolymers produced through polyjet printing 
(multi-material jetting) process. Acrylic-based two photopolymers such as Tan-
goBlackPlus (TB) and VW Plus (VW) were printed using the Stratasys Objet350 
Connex machine. Fracture resistance of the specimens consisting of layers of TB 
sandwiched between VW layers was tested using 5800R Instron (Canton, MA) at 
a cross head displacement rate of 1 mm/min. It was observed that fracture fail-
ure occurred at the material interface due to polymer fibrillation caused by sur-
face imperfection or voids at the interface layer. It is concluded that the interface 
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integrity is found uniform with all the built orientation; hence, it is suggested for 
further deep understanding of deposition, consolidation and curing process.

Similar study has been carried out by Thomas Lumpe et  al. [40] on investi-
gating the tensile strength of multi-material interfaces fabricated through mate-
rial jetting process using Stratasys Connex3 Objet500 3D printer. Tensile test 
specimens comprising two materials such as VW Plus and RGD6 were printed in 
matte finish option. Tensile tests were conducted according to the ASTM D638-
14 standard using the Instron ElectroPuls E3000 testing machine containing 
Dynacell load cell of 5kN capacity and the obtained stress–strain curve is shown 
in Fig. 1.

Built specimen in X direction is found stronger than the Y direction built spec-
imen which is attributed to the interfacial strength in multi-material specimens. 
In case of specimen built in X direction, the orientation of the inclusion increases 
the surface area of the interface, thus resulting in larger strength. In case of speci-
men built in Y direction, the inclusion was found larger compared to specimen 
built in X direction that makes the specimen weaker and induces failure at lower 
tensile load.

In addition to interface integrity, influence of the printing orientation on the 
mechanical properties has been studied. Rangarajan et al. [41] investigated the 
mechanical properties of objet high-temperature material (RGD525) manu-
factured through polyjet 3D printing under two different printing orientations 
(horizontal and vertical). Tensile specimens were printed according to the 
ASTM standard D638-10 and the tensile tests were carried out. Specimen built 
in horizontal direction exhibited tensile strength of 32.38  MPa and compres-
sion strength of 9.72 MPa. On the other hand, tensile specimens built in verti-
cal direction possessed tensile strength of 27.52 MPa and compression strength 

Fig. 1  Stress–strain curves of VW and RGD6 tensile test specimens (with kind permission from Elsevier 
publisher, [40])
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of 8.88  MPa. It is concluded that horizontal built specimens exhibited greater 
strength in tension as well as in compression compared to vertical built speci-
mens. It is understood that flat direction built parts have better quality than the 
vertical direction built parts.

Sai Charan Das et al. [42] investigated the effect of build orientation on ten-
sile properties of polyjet 3D printed parts. Parts were printed using VW Plus 
RGD835 material and Full Cure 705 as the support material in six different 
built orientations using Objet260 Connex 3D printer. Parts were printed using 
the high speed mode and matte finish options. From the results, it is observed 
that Flat-X, Flat-45° and Vert-45° positions have better tensile strengths. Among 
all the specimens, Flat-X built has the highest UTS (58.57  MPa) with 8.19% 
increase compared to other specimens. This is attributed to the presence of 
cracks/voids in parallel to the direction of application of force in Flat-X built 
specimen. Thus, it will neutralize the effect of cracks, resulting in the high 
strength of the specimen. On the other hand, in vertical Y orientation, the cracks 
and voids are perpendicular to the direction of application of force which tends 
to magnify the effect of cracks resulting in lowest strength.

In addition to tensile strength properties, parts built in flat direction (X) even 
outperformed in bending and hardness properties. Peter Maroti et  al. [43] pro-
duced Objet™Vero Grey™ and Digital ABS using the Objet350Connex3™ 
printer. Layer thickness maintained for ABS was 0.03  mm and for Vero Grey 
was 0.016 mm. Three-point bending test and shore D hardness tests were per-
formed on the printed parts to assess its mechanical performance for implemen-
tation in prosthetic applications. Maximum bending stress of 62 MPa is resulted 
in ABS built in X direction, whereas bending stress of 60 MPa is attained in the 
Vero Grey built in X direction. It is concluded that building of prosthetics in 
X direction using these materials would benefit the special mechanical require-
ments. In case of shore hardness, Digital ABS built in X direction outperformed 
with the largest value of 76.6 ± 0.4. This is attributed to the continuous solid 
surface produced in ABS compared to that of the Vero Grey parts.

It is understood that special care should be taken in design as well printing 
processes, since properties of the printed parts are significantly influenced by 
the actual orientation of the printing. Hence, it is essential to consider all the 
orientation such as X, Y and Z orientation to study its influence on the proper-
ties. Therefore, Paul O Neill et al. [44] manufactured the parts via Polyjet ink-
jetting 3D printing technique using the Connex 260 from Stratasys. Parts were 
printed in three different direction (X, Y and Z) using three different polymer 
materials such as VW RGD83, High Temp RGD 525 and Clear Bio-compati-
ble MED610. Compression tests were carried in the samples as per the ASTM 
D695 standard in Zwick/Roell Z050 UTM. Load cell of 50 kN is employed for 
performing the test at the cross head speed of 1.3  mm/min. Max compressive 
strength is resulted in MED610 part (95 MPa) and VW RGD83 (85 MPa) built 
in Z direction, whereas in High Temp RGD 525, maximum compressive strength 
of 50 (MPa) is attained in X direction built part. It is concluded from the study 
that MED610 part and VW RGD83 can be employed for making of embossing 
tools.
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Combined effect of different parameters on the mechanical properties of polyjet 
printed parts

In AM process, build orientation has greater significance over the mechanical prop-
erties of the parts. Deliberation of all possible built orientations during printing pro-
cess is highly essential. In addition, combined effect of build orientation, layer thick-
ness, type of material, surface finish and post-processing plays significant role in 
mechanical properties of polyjet printed parts [45].

Table 2 summarizes the materials and their improved properties under the com-
bined influence of different parameters. Aitor Cazon et  al. [46] investigated the 
effect of printing orientation and post-treatment on the mechanical and surface prop-
erties of the Full cure 720 part produced through polyjet process. Eighteen different 
samples were produced under different printing orientation (xy, xz, yz, yz, zx and 
zy) using Objet Eden 330 printer. Parts were printed in three different finish such 
as glossy, matte (support material removed with water pressure) and matte (support 
material removed with water pressure + caustic soda). Tensile tests were performed 
on the specimens using Instron model 4467 machine under the head speed of 1 mm/
min. Roughness tests were performed on the specimens using Mitutoyo SJ 301 port-
able roughness machine under the contact force of 0.75 N. Results reveal that speci-
mens printed in X direction as major axis and glossy finish have greater resistance 
towards deformation with the ultimate tensile strength (UTS) of 42.20 MPa than the 
specimens printed in y or z direction. This is attributed to the action of load in lon-
gitudinal direction of the layers in parts build in X direction; hence, these parts tend 
to offer greater resistance to tensile load than Y and Z direction built samples. It is 
concluded that built orientation and finish process has greater significance over the 
final properties of the printed part.

In addition to build orientation, built mode also has significant influence with 
respect to surface finish type on the mechanical properties of the polyjet produced 
parts. Hence, Arivazhagan Pugalendhi et al. [47] investigated on the effect of pro-
cess parameters such as built mode and surface finish type on the mechanical prop-
erties of VeroBlue made part produced under polyjet process. Specimens were 
produced using the Objet260 Connex printer in two different modes such as high 
quality (HQ) and high speed (HS) mode. Printed parts in two different modes (HQ 
and HS) were finished with matte and glossy types and classified as HQ-M, HS-M, 
HQ-G and HS-G. Tensile tests (ASTM D638) and flexural tests (ASTM D790) 
were performed on the specimen using Zwick Universal Testing Machine (UTM) 
for the speed of 50 mm/min. Shore hardness of the specimens was measured as per 
ASTM D2250 using shore D durometer at the temperature range of 68–70 °F. Ten-
sile strength was found higher in HS-G specimen (49.47 MPa), whereas it was lower 
in case of HQ-M (47.4 MPa). HS-G specimen possesses the higher elongation of 
34.33%, whereas the HQ-M yielded the lowest elongation of 26.66%. In case of flex-
ural strength and shore hardness, HS-G specimen has performed better (25.83 MPa 
and 80.16 D) than all other combinations. It is concluded that part produced under 
HS-G mode has greater properties due to occurrence of perfect binding compared to 
HQ-mode. Therefore, this research work identifies that HS-G as a suitable combina-
tion for VeroBlue in polyjet process.
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The same research group studied the influence of process parameters such as built 
mode and surface finish on the mechanical properties of different materials such as 
VC and VW plus materials printed through polyjet process. Specimens were pro-
duced in Objet260 Connex printer in three different modes such as HQ, HS and Dig-
ital material (DM) mode. Parts under these modes were printed in matte as well as 
glossy finish and termed as matte finished VC specimens (VC-M), glossy finished 
VC specimens (VC-G), matte finished VW Plus specimens (VW-M) and glossy fin-
ished VW Plus specimens (VW-G). Tensile tests, flexural test and shore hardness 
tests were performed like in the previous study. The tensile strength and elongation 
obtained for the parts printed under different mode and finish are shown in Fig. 2. 
Tensile strength of the VC-G was found to be highest (53.6 MPa) and it is found 
lowest in VW-M (43.15 MPa); it was found to be the lowest. Average elongation 
of the VW-M is found higher (28.75%) followed by VC-G (24.5%), VW-G (23.5%) 
and VC-M (21.5%). Also, VC-G specimen has outperformed in flexural strength 
(49.1 MPa) as well as in hardness (81.37D). It is stated that VC-G specimens pos-
sessed superior mechanical properties than all other combinations. This is due to the 
minimal consumption of support material, faster printing time and glossy finishing. 
VC performed better than VW plus specimens due to its lesser printing time and 
material consumption [48].

In addition to the investigation on the tensile, flexural and shore hardness proper-
ties of the parts built under different mode and surface finish, fatigue properties of 
the parts also have to be investigated to fill a gap in the research. Traditional elasto-
mers have the ability to experience large recurring strains without permanent defor-
mation. Fatigue failure in the traditional elastomers occurs as the results of propaga-
tion of small tears present in the specimen owing to manufacturing. Voids and flaws 
generally caused by the layer-by-layer fabrication process may appreciably decrease 
the fatigue life of printed elastomers. Fatigue performance of the elastomeric-like 
materials was neither given by the manufacturer nor the research community. There 
is presently relatively little literature on the fatigue behaviour of additively manufac-
tured polyjet parts, and further research is needed if these parts are to be employed 
in actual production [49]. Hence, Jacob et  al. [50] investigated on the fatigue 

Fig. 2  Tensile strength and elongation of parts printed under different mode and finish (with kind per-
mission from Elsevier publisher, [48])
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performance of the TangoBlackPlus material printed through Connex 350 in “Digi-
tal Material” mode (i.e. 30 μm layer thickness) under two different finish (glossy and 
matte). Parts were printed with VW Plus (stiff) sections for the end and necks in the 
specimen, while the centre consisted of the TangoBlackPlus material. Fatigue tests 
were performed on the printed specimens in MTS Tytron250 Microforce Testing 
System with a 250 N load cell as per the ASTM D4482-11. Glossy specimen’s pos-
sessed 37% increase in fatigue life compared to that of matte finished parts as this 
due to the glossy finished parts has approximately 20% lower surface roughness than 
the matte finished surface. Overall, it is concluded to avoid the part design that acts 
as local stress concentrators which have the tendency to shorten the fatigue life of 
the part.

As numerous parameters are involved in polyjet process, researches were focussed 
in studying the influence of combined effect on different parameters. This type of 
study brings out the optimal way of printing parts and attainment of exceptionally 
better mechanical properties through polyjet technologies. In such scenario, it is 
found that major factors that tend to affect the surface finish of the polyjet printed 
parts are layer thickness, local surface orientation and finish type. Surface finish of 
the polyjet parts has greater influence on extending its applications in several sec-
tors. In addition, very few research works were oriented towards surface roughness 
investigation in polyjet parts. Hence, Krishnan Kumar and Gurunathan Saravana 
Kumar [51] investigated on the surface roughness of the photopolymer VC Fullcure 
720 model material produced through polyjet process. Parts were printed in Strata-
sys EDEN 350 V machine with Fullcure 705 support material under the influence 
of process parameters such as local surface orientation (0, 30, 60 and 90°), layer 
thickness (16 μm and 30 μm) and finish type (glossy and matte). Printed samples 
were tested using the Mahr surf XR20 contact surface profilometer. It is observed 
that type of finish and local surface orientation has greater influence over the surface 
finish rather than the layer thickness. Increase in layer thickness increased the sur-
face roughness marginally which is attributed to the staircase effect and this effect 
is very small for the range of layer thickness considered in process. Surface rough-
ness found to increase as the local surface orientation increased from 0º to 90º due 
to the left over burrs on the surface by the support structures. It is concluded that 
model has been developed which enables the user to investigate the part build orien-
tation and prefer the optimal orientation for attaining better surface finish in a pol-
yjet printed part.

Similar kind of study was carried out by Gay et al. [52] on investigating the com-
bined effect of different process parameters such as part spacing, orientation and sur-
face finish on the mechanical properties of the polyjet printed RGD240 acrylic pho-
topolymer parts. Parts were printed using the Stratasys Objet 30 machine with the 
gel-like photopolymer Fullcure 705 as the supporting material. Parts were printed 
with layer thickness of 28 μm and with common resolution of 42 μm (600 dpi). Four 
different parameters such as part spacing along X axis (5 to 60 mm), part spacing 
along Y axis (5 to 60 mm), orientation of part (0°, 15°, 30°, 45°, 60°, 75° and 90°) 
and surface finish (glossy and matte) are observed. RSA3 dynamic mechanical ana-
lyser (TA instruments) was used to evaluate the relaxation modulus E(t) by utilizing 
the three-point bending tool. It is concluded that part spacing in X axis and surface 



7075

1 3

Polymer Bulletin (2022) 79:7065–7116 

finish do not have significant influence over the E(t). It is suggested to print parts in 
Y direction as closer as possible to have higher E (t). Regarding orientation, printing 
of part other than 45° direction has increased the properties of the material. There-
fore, it is understood that fewer parametric condition has lesser/no significance over 
the properties, whereas fewer parametric condition has greater significance on the 
properties of the part.

Effect of post‑treatment on the mechanical properties of polyjet printed parts

Mechanical properties of the polyjet printed parts are greatly dependant on the post-
treatment processes such as heat treatment and high intensity ultraviolet (UV) cur-
ing. However, over-ageing upon heat treating of polyjet printed parts will tend to 
degrade the stiffness, ultimate tensile strength, strain at yield point and deformation 
[53]. Among these post-treatment process, high intensity UV radiation curing has 
high desirable capability to instantaneously harden the sprayed polymer. This curing 
tends to modify the physical and chemical properties of a material and specifically, 
for hardening or softening of a material. The length of UV exposure has a consider-
able impact on the mechanical characteristics [54].

Table 3 summarizes the materials and their improved properties under the influ-
ence of post-treatment.

Li Wang et al. [55] fabricated VC-RGD 810 parts through polyjet process using 
Objet Connex 3D printer. Specimens were printed upon different build-up orienta-
tion (S-X, S-Y and S-Z) and exposed to UV for curing. The SEM image of the UV-
cured VC part is shown in Fig. 3.

Ultimate compressive strength of the parts was assessed using Digital servo-con-
trol UTM at the rate of 2 mm/min until failure. It is stated that part printed under 
all orientation behaved in a ductile manner. Average UCS of the S-Z is 3.7% higher 
than that of S-X and 4.4% higher than that of S-Y. The compressive strain–strain 
behaviour of the S-X, S-Y and S-Z samples is shown in Fig. 4.

Young’s moduli (E) of the parts S-X, S-Y and S-Z are 2.21, 2.20 and 2.29 GPa, 
respectively. The higher mechanical performance of the S-Z samples is attributed to 
its construction height. Construction height of S-Z samples is found to be 10 mm, 
whereas the S-X and S-Y samples have the height of 5 mm. Construction height of 
the samples was found proportional to the UV exposure time. Higher exposure of 
UV in S-Z build samples has produced greater hardening effect which eventually 
improves the mechanical performance. It is concluded that post-treatment process 
can be carried out for significant enhancement of the mechanical properties.

Similar study on UV curing of materials was done by Sung Yong Hong et  al. 
[56] on studying the mechanical properties and anisotropic behaviour of UV-curable 
3D printed photopolymeric materials. Tensile specimens of five different thickness 
0.5, 0.8, 1.0, 3.0 and 5.0 mm were printed using Objet350 Connex polyjet type 3D 
printer according to the standard ASTM D638. Uniaxial tensile tests were carried 
out using the Instron ElectroPuls E3000 (Instron Ltd, High Wycombe, UK) at the 
rate of 1 mm/min with 3kN load cell. It is observed that specimens with 5 mm thick-
ness exhibited greater tensile strength of 32 MPa among all the specimens which 
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is evident that the tensile strength gets increased with increase in thickness of the 
specimen, as shown in Fig. 5.

This is due to the nature of the polyjet printing technique which builds in a layer-
by-layer stacking process. For thicker specimens on printing subsequent layers, extra 
UV-light exposure to the previously printed layers has promoted further polymeriza-
tion of residual unreacted monomers and eventually improves the mechanical prop-
erties. It is concluded that such UV-light exposure tends to enhance the properties 
as closer to the epoxy polymers commonly used and enhances its usage in a wide 
variety of engineering applications.

On the other hand, AM thermoplastics are so far not often considered for cryo-
genic applications but are potential alternative for complex cryogenic parts and 
constructions. Rare data on properties of the AM parts on this low temperature 
regime were available. Therefore, Weiss et al. [57] have investigated on the mechan-
ical strength of VW Fullcure 830 to evaluate their application in the cryogenic 

Fig. 3  SEM image of UV-cured VC (With kind permission from Nature publisher [55])

Fig. 4  Stress–strain curves 
of 3D printed S-X, S-Y and 
S-Z samples under uniaxial 
compressive conditions (with 
kind permission from Nature 
publisher [55])
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temperature environment. Specimens were printed using polyjet modelling in Strata-
sys EDEN 260  V device with sheet thickness of ~ 17  μm. The temperature of the 
system was maintained ~ 50–60 °C, and the curing was done by UV radiation. Ten-
sile test specimens were printed according to the DIN EN ISO 527–2. Tests were 
performed at room temperature of about 293 K (RT), liquid nitrogen temperature 
(77 K) and immersed in liquid helium (4.2 K) and UTS of 36, 46 and 32 MPa was 
resulted, respectively, as observed in Fig.  6. It is suggested that developed speci-
men having better strength would be a better alternative for using in liquid nitrogen 
exposed conditions.

Apart from normal temperature and cryogenic applications, medical industry was 
found to have more usage of the polyjet printed parts in the recent days [58, 59]. In 
specific, dental aligners were providing a long-term treatment process for aligning 
misaligned teeth of patients for their perfect aesthetic smile, since 75% of the adult 

Fig. 5  Size-dependent tensile properties of UV-curable 3D printed photopolymeric material (with kind 
permission from Elsevier publisher [56])

Fig. 6  Stress–strain curve of 
VW Fullcure 830 with different 
temperatures such as 293 K 
(RT), liquid nitrogen (77 K) and 
liquid helium (4.2 K) (with kind 
permission from IOP Publisher 
[57])
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patients are found unsatisfied with their dental appearance [60]. Hazeveld et al. [61] 
introduce the AM technique as the method for fabrication of dental plaster mod-
els and stated that AM manufactured plaster models can be suitable alternative for 
the conventional plaster models. El Katatny et al. [62] attempted fabricating of den-
tal plaster models for different humans sizes and gender. Geometric accuracies are 
found higher with AM manufactured dental plaster models [63]. It is reported by 
several researchers that AM-made dental aligners are found mechanically strong and 
bio-compatible [64–68]. Therefore, Prashant Jindal et al. [69] studied the compres-
sive mechanical properties of polyjet printed dental long-term (LT) resin-based clear 
aligners. Aligners were designed and printed to 0.75 mm thickness using Dental LT 
resin as shown in Fig. 7.

Curing process was carried out at 80 ºC for different time of 15 and 20 min, and 
its performance was compared with the uncured specimens. Compression testing on 
the aligners was conducted through the Instron 3367 UTM under the load of 1000 N 
at the rate of 50 N/min. Uncured aligners withstand a lower load of 380 N due to 
severe plastic flow and higher deformation. On the other hand, aligners cured at 80 
ºC for 20 min withstand maximum compressive load of 662 N compared to the sam-
ple cured for 15 min (531 N). The load–displacement curve for the different samples 
is shown in Fig. 8.

This is attributed to the brittle transformation of the material upon curing which 
tends to resist the compressive deformation. It is concluded that these experimental 
investigation provided a clear insight towards designing and printing of dental align-
ers with adequate mechanical strength.

Elastic modulus of the polyjet printed parts

In the field of tissue engineering, the ability to produce sophisticated porous struc-
tures at a fraction of the expense of traditional manufacturing methods has made 

Fig. 7  Polyjet printed dental long-term (LT) resin-based clear aligners (with kind permission from Else-
vier publisher [69])
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3DP the favoured alternative for scaffold fabrication [70]. In recent years, micro-
scale scaffolds for bone replacement and regeneration, in particular, are of tremen-
dous interest [71–74]. Bone scaffolds temporarily replace the defected or lost bone 
section until the regeneration process is taken place and new bone tissue is produced 
[75–78]. The mechanical properties of scaffolds used for bone regeneration play an 
important role in determining the possibility and quality of cell regrowth and prolif-
eration [79]. One of the important considerations during manufacturing of the scaf-
folds in terms of their mechanical properties is the elastic modulus specifically while 
development of the cancellous structure such as trabecular bone. Table 4 summa-
rizes the materials and the improved elastic modulus of polyjet printed parts.

Morteza Amini et al. [80] fabricated VW Plus part with water-soluble SUP707 
and normal SUP705 support materials using Stratasys Polyjet (OBJET EDEN 
260VS™) 3D printer. Parts were printed under two different resolutions (16 and 
32  μm). Tensile tests were performed on the printed part as per the ASTM 638 
standard. Higher resolution found to increase E modulus and strength by 23% and 
12% than that of the lower resolution printed parts.

Similarly, Paul Egan et al. [81] fabricated lattice samples in Stratasys Objet500 
Connex3 printer using MED610 bio-compatible polymer and SUP706 support mate-
rial. Polymer lattices were developed with 50% and 70% porosity with the beam 
diameters of 0.4–1.0  mm. Mechanical properties were assessed using quasi-static 
compression with an Instron E10000 ElectroPuls. Elastic moduli of the printed parts 
are ranging from 8 to 213 MPa, and it is found decreased with increase in the lat-
tice porosity and increased with larger beam diameters. Stiffness of the printed parts 
ranged between 4.1 kN/mm and 9.6 kN/mm capable of withstanding the load of 
1.65 kN. It is concluded that 50% porous lattice structure has the favourable stiffness 
of 8.4 kN/mm which makes it as potential for supporting bone fusion with favour-
able nutrient transport.

Nigel et al. [82] studied the dimensional accuracy and surface finish of three dif-
ferent parts printed using the VW RGD835, High Temp RGD 525 and Clear Bio-
compatible MED610 materials. Parts were printed with positive (+ 500  μm) and 

Fig. 8  Compression behaviour of the cured and uncured aligners (with kind permission from Elsevier 
publisher [69])
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negative features (-500 μm) in the direction of print head traverse direction and also 
normal to the traverse direction. Dimensional accuracy of the parts was assessed 
using a Keyence 3D Digital Microscope (VHX2000E). Roughness measurements 
were done through WYKO NT1100 white light interferometer from Vecco. Dimen-
sional measurements revealed that negative features are in agreement with the 
desired depth, whereas the positive features are resulted than the desired height of 
500 μm. The deviation in positive features lie around 3–7.5% for all the three printed 
materials. This is attributed to the viscous behaviour of the photopolymer which 
caused the partially cured polymer to flow across the surface of the part and con-
sequently resulted in reduction of desired height. Surface roughness of all the three 
materials was found in the range of approximately 0.2–0.45 μm. It is attributed to 
the nature of manufacturing process employed irrespective of the materials printed.

Comparison of properties of polyjet printed parts with diverse processed parts

As numerous AM technologies are currently in usage, the choice of the specific pro-
cess for the specific application is not yet explored in detail. Table 5 summarizes the 
materials and their improved properties of the polyjet printed parts compared with 
other additive technologies.

Asuncion Martinez-Garcia et al. [83] investigated the effect of different AM tech-
niques on the mechanical properties of polymer parts for the Safe customized toys. 
VeroPure, Fullcure and ABS-like materials were produced through polyjet process 
in Objet Polyjet Stratasys J750. Polyamide 12 material was printed through laser 
sintering process using Sinterstation 2500plus. PLA part was printed using FDM 
process in MakerBot FDM Replicator 5th generation. Tensile tests were performed 
using the UTM (Instron 6025) under the speed of 1 mm/min according to UNE EN 
ISO 527. Flexural properties of the samples were also measured using UTM with 
the cross head speed of 2  mm/min according to UNE EN ISO 178. Charpy tests 
were performed at the velocity of 3.8 m/s and swing angle of 160° using a 1 J ham-
mer. In case of polyjet printing, decreasing layer thickness tends to enhance the 
mechanical properties such as Young’s modulus, tensile strength, flexural strength 
and impact strength of the parts due to better consolidation, as shown in Fig. 9.

For laser sintered parts, compact structure parts possessed better mechanical 
properties than honeycomb fill structured. In FDM build parts, horizontal and verti-
cal built parts have better mechanical performance than parts built in 45° orienta-
tion. It is reported that laser sintering and FDM process built materials are resistant 
enough for manufacturing these specific toys, compared to the more fragile polyjet 
resins.

In addition to the investigation on mechanical properties of parts manufactured 
through diverse processes, researchers have also explored dimensional accuracy of 
the parts produced through different additive techniques.

Radomir Mendricky et al. [84] attempted on analysing the accuracy of different 
additive techniques by means of the selected 3D printers. Printers such as Strata-
sys Dimension SST 768 printer (FDM principle) and Objet Connex 500 (PolyJet 
Matrix) were used for the experimental purpose. In polyjet printing, VeroGray 
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RGD850 material was printed under layer thickness of 16 microns (HQ—High 
Quality) and 30 microns (HS—High Speed). In FDM process, ABS-P400 was con-
structed constantly for the layer thickness 250 microns under solid and sparse mode. 
Digitisation of the printed specimens was performed by GOM ATOS II 400 3D con-
tactless scanner equipped with an optic element. This analysis includes the measure-
ment of diameters, length or spacing. Inner and outer diameter measurements were 
performed and found that deviations of the elements produced through Stratasys 
Dimension SST 768 lie within the tolerances quoted by the printer manufacturer. 
However, the accuracy of 0.127 mm was exceeded in absolute nominal dimension 
of vertical Z axis due to the internal tension resulting from material cooling. On the 
other hand, Objet Connex 500 manufacturer provided the accuracy of the part rang-
ing from 0.02 to 0.085 mm. The value of 0.085 mm was exceeded while printing 
at high speed setting, i.e. for the layer thickness of 30 μm and this might be due to 
shrinkage of material.

Same research group [85] addressed the change of properties (dimensional and 
shape) with respect to time (0, 14 and 84 days) in the samples printed through differ-
ent techniques. VeroGray material was printed under matte and glossy mode through 
polyjet matrix process, setting the layer thickness as 16 microns (HQ—High Qual-
ity) and 30 microns (HS—High Speed). ABS-P400 material was printed in FDM 
technology using two different printers such as Dimension and Fortus, with constant 
layer thickness of 250 microns under sparse and solid mode. Under polyjet printing 
process, glossy mode gave better results than the matte mode printed parts. After 
14 days, polyjet glossy mode had change the dimensions very less (0.04 to 0.05 mm) 
compared to others. The same performance of polyjet glossy mode printed parts was 
retained during inspection even after 84 days. In case of FDM technology, dimen-
sional measurements results revealed that FDM Fortus gave better results than the 

Fig. 9  Variation of mechanical properties of the 3D printed polyjet samples with respect to different 
layer thickness (with kind permission from Elsevier publisher [83])
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models from FDM dimension. In dimension printer, printing accuracy of 0.127 mm 
has been exceeded in vertical Z axis in the range of -0.19 to + 0.16 mm caused by 
the internal tension resulting from the material cooling.

Similar kind of work [86] was focussed on comparative study of dimensional 
accuracy of an automotive part (connecting rod) produced through polyjet 3D print-
ing system (Objet 30) and FDM technology (Ultimaker-2, MakerBot Replector-2). 
In polyjet technology, RGD-840 was used as build material under the thickness of 
28  μm. In FDM technology, 0.1  mm thickness was maintained to print the PLA 
plastic material. Dimensional accuracy of the connecting rod printed through differ-
ent technology was measured. Results revealed that Objet 30 has minimum percent-
age error along XY plane (0.99%) than Ultimaker (1.69) and MakerBot (1.63%). In 
case of radial dimension, Objet 30 has the minimum error (0.53%) than Ultimaker 
(0.92%) and MakerBot (1.75%). Circular dimension measurement reveals that Objet 
made part has the least error of 0.74%. In addition, Objet made part has the min-
imum form error and surface roughness, which is evident that polyjet technology 
performed well than FDM technology. However, the cost analysis showed that total 
cost for making the prototype through Objet 30 printer (INR 22,048) was higher 
than Ultimaker (INR 980) and MakerBot (INR 2134). It is reported that cost aspects 
should also be considered during production of parts through additive technologies. 
On the contrary, dimensional accuracy was found as the significant factor rather than 
cost factor when manufacturing critical component. Hence, it is essential to know 
the limitations of the quality and accuracy provided by the additive technology.

Mechanical properties of FDM printed parts

In FDM process, mechanical properties of important and potential polymeric mate-
rials such as ABS, PLA, PEEK and PEI are studied. In addition, polymer-based 
composite developed through FDM process is reviewed in this section.

Influence of different parameters on the mechanical properties of the FDM 
printed parts.

FDM is one of the AM process in which layer-by-layer addition is performed to 
create complex parts without expensive tooling and material wastage [87]. FDM 
printed parts gain importance in several sectors such as aerospace and medical 
industry [88]. Numerous researchers have concentrated on developing high quality 
and better performance components [89, 90]. The mechanical properties and qual-
ity of FDM printed part rely upon various factors such as infill density, infill pat-
tern, layer thickness, print speed, raster angle, nozzle temperature, built direction 
and layer orientation [91, 92]. However, researches were focussed upon investigating 
various combinations of the foresaid parameter’s influence over the properties of the 
FDM printed part and such research outcomes are briefly presented in this section. 
Table  6 summarizes the materials and their improved properties of FDM printed 
parts under the influence of different parameters.
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Ramesh et al. [93] manufactured 3D Nylon parts using FDM technology using 
Taguchi L9 orthogonal array technique to study the properties such as UTS, impact 
strength, flexural strength and shore D hardness. Different levels of input parameters 
such as fill density (50, 75 and 100%), layer height (0.1, 0.2 and 0.3 mm) and print 
speed (60, 65 and 70 mm/sec) were employed. The change in UTS with respect to 
change in different levels of parameters is shown in Fig. 10.

A maximum tensile strength of 43.5 MPa and an impact strength of 1.746 J are 
accomplished at 0.1 mm layer height, 100% fill density and 70 mm/s print speed. 
Absence of pores or gaps between the layers and minimum layer height were identi-
fied for contributing higher tensile strength to the parts. The highest flexural strength 
of 24.02 MPa was achieved in 0.2 mm layer height, 100% fill density and 60 mm/s 
print speed. This is attributed to maximum fill density with minimum print speed 
that has deposited uniform layer of 0.1  mm layer height and 100% fill density 
yielded. The highest hardness of 68 was achieved in 0.3 mm layer height, 100% fill 
density and 70 mm print speed. The contribution of print speed was identified to be 
the lowest among all the parameters chosen. All the test results were within the pre-
dicted results attained through analysis of variance (ANOVA) at a confidence inter-
val of 95%. It is concluded that this research will provide insights on 3D printing of 
nylon filament in precision manufacturing industries.

With the advancement of FDM AM process for production of end user products, 
there is great requirement for newer high-performance materials capable of meeting 
the requirements of different engineering applications. The high-performance mate-
rials possess different mechanical, electrical and thermal properties, making them 
appropriate for a variety of applications [94]. Among those materials, ULTEM 9085 
is a thermoplastic material with superior performance that emerges in recent years. 
It is noted for its high strength and solvent resistance, making it appealing for appli-
cations in aerospace, military and automotive sectors [95, 96]. To employ this mate-
rial in various industries, it is essential to characterize its mechanical properties and 

Fig. 10  Main effect plots for UTS with respect change in layer height, fill density and print speed (with 
kind permission from Elsevier publisher [93])
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performance, Hence, Kate Iren Byberga et al. [97] studied the influence of two dif-
ferent process parameters such as layer orientation (0°, + 45°/- 45°and 90°) and build 
direction (flat, edge and upright) on the mechanical properties of ULTEM 9085 ther-
moplastic manufactured through FDM process. Layer thickness of 0.254  mm and 
nozzle diameter of 0.4064 mm were maintained during printing in Fortus 450 mc 
machine. Tensile specimens were printed according to the ISO standard 527:2012 
and the tests were conducted in INSTRON 5985, with a load cell of 250 KN at the 
speed of 1  mm/min. Average stress–strain curve of ULTEM 9085 thermoplastic 
material is shown in Fig. 11.

Results reveals that edge printing direction possessed greater strength at all three 
different layer orientations. Among these, parametric combination of 0° layer orien-
tation and edge build direction shows the highest average UTS of 89 MPa. This is 
attributed to longer sample width than its thickness in edge building which makes 
the sample very stronger compared to other building direction. Sample built with 
parameter combination of 90° layer orientation and edge build direction shows the 
lowest average tensile strength of 61 MPa due to raster deposition in perpendicular 
direction to tension load application. It is concluded from this study that mechanical 
properties of the AM parts are greatly influenced by the process parameters.

Effect of different parameters on the mechanical properties of ABS

ABS is the most widely used thermoplastic printable material for FDM process [98, 
99]. Promising properties of ABS such as higher temperature resistance, greater 
flexibility, better mechanical strength and good machinability all together make it 
as a good choice for various engineering applications. Hence, several researchers 
have focussed on studying the effect of process parameters on the properties of ABS 
printed parts, and the outcomes are briefly presented in this section. Table 7 sum-
marizes the improved properties of ABS under the influence of different parameters

Fig. 11  Average stress–strain curve of ULTEM 9085 thermoplastic material (with kind permission from 
Elsevier publisher [97])
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Srinivasan et  al. [100] produced ABS parts using FDM technology under the 
parameters such as infill density (60, 70 and 80%), infill pattern (triangle, grid and 
cubic) and layer thickness (0.1, 0.15 and 0.2 mm). Design of experiments was car-
ried out using RSM that was analysed using Design Expert Software. Tensile 
strength was found to be maximum with triangular infill pattern than the grid and 
cubic pattern. This is due to higher infill density and reduced layer thickness, which 
is also shown through the surface plot between infill density and layer thickness 
(Fig. 12).

Desirability-based response optimization techniques were used to optimize the 
parameters and the desirability result obtained was 0.956. Infill density and layer 
thickness were identified to be the most significant factor in improving the tensile 
strength.

The same research group has printed polyethylene terephthalate glycol (PETG) 
parts using FDM technology [101]. PETG has properties like high strength, low 
shrinkage and good chemical resistance. Infill density was varied between 20 and 
100% with grid type infill pattern, 0.1  mm layer thickness and 45°raster angle in 
the process. It is reported that tensile strength increases linearly with infill density 
and 100% infill density yields the highest tensile strength of 32.12 MPa as shown in 
Fig. 13.

This is due to the existence of air gap between each bead. Surface roughness 
decrease with increase in infill density and it reveals a minimum value of 2.87 mm 
for 0.1 mm layer thickness, 100% infill density and grid infill pattern. It is therefore 
suggested to produce a part with greater infill density where the surface roughness is 
highly essential.

Sana Abid et  al. [102] investigated on the effect of printing parameters on the 
tensile properties of ABS printed through FDM. Manufacturing direction (X, Y or 
Z) and the deposition angle (0°, 30° or 45°) were varied using the response surface 
methodology, and the parts were printed using uPrint SE Plus machine. Diameter 

Fig. 12  Surface plot of tensile strength for interaction between infill density and layer thickness (with 
kind permission from Elsevier publisher [100])
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of the filament was maintained at 1.75 mm; nozzle diameter was set at 254 μm for 
all the experiments. Tensile tests were performed on the specimen using the UTM 
(model 8501, Instron, USA) at cross head speeds of 5 mm/s. It is reported that print-
ing orientation has greater significance over the tensile strength compared to that 
of the deposition angle. It is observed that tensile strength greatly depends on the 
manufacturing direction (A) and deposition angle (B). Higher tensile strength of 
28 MPa resulted for sample built in X direction and low deposition angle of 0° This 
is attributed to the weakness of filament distortion at low deposition angle and more 
influence of filament distortion on increasing the deposition angle.

Ashu Garg et al. [103] studied the effect of part building orientation (along the 
X, Y and Z axis) and raster angle (0°, 30°, 60° and 90°) on the tensile strength of 
the ABS specimens produced through FDM process. ABS P430 model material was 
built with the support material according to ASTM D638 standard for tensile testing 
with the constant thickness of 0.178 mm. Tensile tests were carried out on treated 
and untreated specimens using Zwick/Roell Z010 UTM equipped with 10 kN load 
cell and tests were carried at the speed of 5 mm/min. Results reveal that maximum 
strength is attained in the parts build with X and Y orientation compared to Z ori-
entation. The maximum tensile strength (34.5 MPa) was achieved for a part orienta-
tion along the X axis and 60° raster angle (X60), while minimum tensile strength 
(14.8 MPa) was obtained for a part orientation along the Z axis and 90° raster angle 
(Z90). This is because the specimens build with a 90° raster angle possess layers 
aligned in a perpendicular direction to the applied load. This situation tends to cause 
interlayer cracking, delamination and separation of adjacent layers. On the contrary, 

Fig. 13  Plot of tensile strength vs infill density (with kind permission from Elsevier publisher [101])
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for parts build with a raster angle other than 90°, the layers are aligned in such a 
manner that offers higher resistance to tensile failure.

Samykano et al. [104] investigated the influence of three process parameters such 
layer height (0.35 mm, 0.4 mm and 0.5 mm), raster angle (45°, 55° and 65°) and 
infill density (40%, 60% and 80%) on the mechanical properties of ABS material 
produced through FDM technology. Specimens were printed using the Rainstorm 
Desktop 2D Multicolor Printing i3 for carrying out the tensile test according to 
ASTM D638. Specimen printed with 0.5 mm layer height, 65° raster angle and 80% 
infill percentage exhibits highest UTS of 32.649 MPa. It is observed that higher infill 
percentage and 65° raster angle are found to possess greater resistance towards the 
tensile load. Higher the thickness of the specimen, lower the distortion effect which 
eventually results in greater strength.

Kyle Raney et  al. [105] studied the effect of specimen mesostructure on the 
monotonic tensile behaviour of ABS parts manufactured by FDM. Parts were fab-
ricated using uPrint SE Plus printer with nozzle diameter of 0.25 microns. Speci-
mens were printed according to the ASTMD638-02a standard with different infill 
setting and different build orientation such as flat, horizontal and vertical. Testing 
was performed using Instron testing machine having capacity of 50 tons at the speed 
of 5 mm/min. Specimens built in X direction exhibit better strength (3313 psi) than 
the specimen built in Z direction (2533 psi). It is concluded that built orientation has 
greater effect on strength and relative position of layers with respect to the applied 
axial load during tensile testing causes the material to respond differently with dif-
ferent build orientation.

Effect of different parameters on the mechanical properties of PLA based printed 
parts

Shuheng Wang et al. [106] printed PLA materials using FDM technology. The effect 
of printing angle (0–100°), layer thickness (0.5, 0.15 and 0.2 mm), fill rate (20, 40 
and 100%) and nozzle temperature (195–230 °C) on tensile properties and dynamic 
mechanical properties of FDM printed materials were investigated. The change in 
tensile strength with respect to change in level of different parameters is shown in 
Fig. 14.

It is reported that the printing angle less than 45° leads to interlayer tensile frac-
ture and more than 45° leads to intralayer tensile fracture. Deposition of different 
layer thickness (0.1 mm and 0.2 mm) at a printing angle of 45°conveyed that inter-
layer failure occurs under tensile load with an increase in the layer thickness. The 
failed specimens printed with 0.1 mm and 0.2 mm layer thickness were shown in 
Fig. 15. Increase in fill rate increases the tensile strength, elastic modulus, elonga-
tion and dynamic mechanical properties. This is attributed to the decrease in air 
gap of the material which tightens the bond between the material layers and the 
filaments, thereby increasing the PLA molecular segment movement resistance. A 
nozzle temperature setting of 210 °C–215°C is recommended for better static and 
dynamic mechanical properties. In case of dynamic loading, PLA materials with 
a printing angle of 90° have more store load potential and the one with 45° have 
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more potential to dissipate energy rather than storing it. Lesser layer thickness offers 
greater constraint on the movement of adjacent polymer chains in PLA, leading to a 
larger loss modulus and loss factor.

Similarly, Qamar Tanveer et al. [107] studied the effect of variable infill density 
(A = 100%, B = 75%, C = 50%) on the tensile strength of PLA specimens printed by 
an open-source 3D printer. Specimens were printed with three layers composed of 
single infill density (AAA, BBB and CCC) and combinations of varying infill den-
sity (ABA, BAB, ACA, CAC, BCB, CBC). Tensile specimens were printed accord-
ing to DIN EN ISO 527–2 and the test is conducted using computerized tensom-
eter KIPLPC 2000 9. It is observed that ABA specimen exhibited the maximum 
tensile strength of (46.3 N/mm2), which is slightly higher than specimen A, which 
is found to be 45.1 N/mm2. Dense structure was found to give better resistance to 

Fig. 14  Variation in tensile strength of PLA with respect to change in printing angle, layer thickness, fill 
rate and nozzle temperature (with kind permission from Elsevier publisher [106])

Fig. 15  Fracture characteristics of the specimens a) 0.1 mm and b) 0.2 mm (with kind permission from 
Elsevier publisher [106])
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deformation; however, it failed at relatively lower load due to limited flexibility by 
compact arrangement. The higher tensile strength in ABA specimen is due to vary-
ing infill density, i.e. higher density at the outer layers offers resistance towards the 
crack propagation and inner layers offers greater flexibility before failure.

Faujiya Afrose et  al. [108] studied the tensile properties of the PLA processed 
through FDM process. Parts were printed through Cube-2 3D printer in three dif-
ferent build orientations (X, Y and 45°). Dog-bone-shaped tensile specimens were 
tested according to ASTM D638 at a strain rate of 50 mm/min using Zwick Z010 
testing machine. The specimen build in X, Y and 45° direction possesses the UTS of 
38.7 MPa, 31.1 MPa and 33.6 MPa. Highest tensile strength resulted in sample built 
in X direction and it is attributed to the alignment and bonding parallel to the longer 
dimension of the specimen. This type of arrangement of layers exhibited maximum 
resistance towards the deformation in tension than the layers printed in Y and 45° 
direction. It is concluded that PLA parts produced using smaller FDM machines can 
also have better mechanical properties and this research provides insights for proper 
applications of PLA parts using low-cost 3D printers.

Samuel Attoye et  al. [109] investigated on the influence of different process 
parameters such as nozzle temperature (200, 215 and 220 °C), printing speed (20, 40 
and 60 mm/s), and print orientation (X, Y and Z) on tensile properties of the PLA 
and ABS build through FDM process. Tensile properties of the specimens were 
tested according to the standard ASTM D638 using Q-test machine, Matt Struve 
Demo MTS Extensometer. It is observed that specimen built in Y orientation exhib-
ited greater mechanical strength (9 ksi) than that of the specimens built over X, Z 
axis and 45-degree orientation. Higher values of strength are obtained for specimen 
built at low temperature of 200 °C and highest printing speed of 60 mm/s. It is stated 
that increasing the built temperature weakens the mechanical properties of the parts.

Uzair Khaleeq uz Zaman et al. [110] studied the impact of FDM process param-
eters such as layer thickness (0.2 and 0.3 mm), shells (2 and 4), infill pattern (linear 
and diagonal) and infill percentage (30 and 70%) on the compressive strength of the 
PLA material. Printing of the samples was done at the speed of 90 mm/s, extruder 
temperature of 210 °C and heated build surface of 25 °C. Compression tests were 
conducted for the displacement of 3 mm with the speed of 1 mm/min. It is observed 
that compression force is influenced by the infill percentage followed by the number 
of shells, layer thickness and infill pattern. It is concluded that layer thickness of 
0.2 mm, number of shells as 4, infill pattern of diagonal and infill percentage (D) of 
70%, is observed as the optimum parametric condition to attain optimal compres-
sion strength. It is observed that as the shells and infill percentage increases, the 
compressive strength gets increased due to its lower warping. Diagonal infill pattern 
performed better than linear pattern as it allows the stresses in the crossed layer to 
be in indirect tension and shear in a balanced way between the layers thereby with-
standing more compressive load.

Jose Camargo et al. [111] studied the effects of layer thickness (0.10 to 0.27 mm) 
and infill percentage (22 to 89%) on mechanical properties (tensile) in parts man-
ufactured using FDM with PLA graphene. Samples were manufactured using the 
Delta 3D printer according to ASTM D638-14 standard for tensile testing. Tests 
were performed using the WDT-20KN with an extensometer at the temperature of 
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23 ℃ and speed of 5 mm/min. Statistical models were developed to obtain the rela-
tionship between the mechanical properties as the function of infill percentage and 
layer thickness. Tensile strength is significantly influenced by infill percentage and 
layer thickness according to the model used for analysis. Highest tensile strength 
of 33.7  MPa was attained for the layer thickness of 0.27  mm and infill of 78%. 
The maximum value using the model equation was 37.9 MPa with the parameters 
layer thickness of 0.30 mm and infill of 85%. It is concluded that tensile strength 
increases with increase in layer thickness and infill percentage. Table 8 summarizes 
the improved properties of PLA under the influence of different parameters.

Effect of process parameters on the mechanical properties of PEEK and PEI

PEEK and PEI fall under the category of special engineering plastics that possess 
greater heat resistance and good mechanical properties such as impact and fatigue 
resistance. The former is a semi-crystalline thermoplastic polymer that has been 
widely utilized in aerospace, electronics and medicine [112], while the latter is an 
amorphous thermoplastic polymer that has mostly been used to make high-perfor-
mance electronic parts and has also served as a biomaterial [113, 114]. Both of them 
outperform ABS and PLA in terms of heat resistance and mechanical characteristics 
[115].

Table 9 summarizes the improved properties of PEEK and PEI under the influ-
ence of process parameters.

Shouling Ding et al. [116] printed PEEK and PEI parts and studied its mechani-
cal properties under the influence of nozzle temperature and built orientation. The 
variation in tensile strength of PEEK and PEI parts with increase in nozzle tempera-
ture is shown in Fig. 16.

Crystallinity of printed PEEK material offered plasticity and non-crystallinity in 
printed PEI parts made it brittle. An increase in nozzle temperature from 360 to 420 
°C discharges the air pores, thereby improving the density of PEEK and PEI parts. 
In PEEK samples, printing in horizontal orientation is reported to be stronger than 
the one printed in vertical orientation. This is due to the superposition direction of 
the printing layer parallel to the loading direction that absorbs more load. Neverthe-
less, in case of PEI, the impact strength is low in horizontal orientation which is due 
to brittle nature. Similarly, Peng Wang et al. [117] evaluated the melting behaviour 
and fluidity of PEEK in FDM technology using FEA under the influence of differ-
ent printing parameters. Simulation results recommended an elevated printing head 
temperature of 380 °C to 440 °C, 4 mm/s wire feeding speed, less than 40 mm/s 
printing speed and 15  mm length of heating element. Based on the simulated 
parameters, actual parts were printed using FDM technology. Experimental results 
concluded that the optimal parameters for printing PEEK are Ø0.4  mm diameter 
printing head nozzle with a temperature of 440 °C, printing speed of 20 mm/s and 
printing layer thickness of 0.1 mm. A comparative study was carried out between 
3D printed PEEK and injection-moulded PEEK. It is reported that the highest ten-
sile strength of 3D printed PEEK is approximately 80% of the tensile strength of 
injection-moulded PEEK. This is attributed to higher external pressure of injection 
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moulding that progresses the density of parts and reduces internal defects. Injection-
moulded PEEK yields good fracture toughness compared to the 3D printed PEEK. 
This is due to the long molecular chains and consequential strong binding forces in 
injection-moulded PEEK parts. In FDM printed PEEK parts, the polymer chains are 
rearranged and shortened due to reheating and melting, resulting in inferior frac-
ture toughness. It is concluded that FDM printed PEEK parts can be utilized for the 
applications wherever better mechanical properties and surface quality are required.

Effect of reinforcement on the mechanical properties of FDM printed composite 
parts

AM industry is focussed on producing complex geometries with greater flexibility 
and significant reduction of manufacturing time. In order to improve the perfor-
mance of monolithic parts, composites are being developed with different reinforce-
ment through FDM process [118, 119]. Table 10 summarizes the materials and rein-
forcement used for manufacturing of composites and their improved properties.

Elena Verdejo de Toro et  al. [120] printed carbon fibre reinforced polyamide 
parts. The effect on printing parameters like layer height, printing pattern, infill 
density, nozzle temperature, build plate temperature and printing speed on its 
mechanical properties was studied. It is reported that the environmental tempera-
ture influences the thermal properties of the samples and the degree of crystallinity 
of materials influences its mechanical properties. Compared to all other parameters, 
infill density influences more on tensile strength (70–90%) and Young’s Modulus 
(50–60%). 0.8 mm nozzle, 0.2 mm layer height, 100% infill and concentric pattern 
are reported to be the best combination of parameters to achieve maximum tensile 
strength, which is also observed through Fig. 17.

In bending test, 100% infill density and 0.2  mm layer height improved the 
flexural strength to 80–85% and flexural modulus to 55–65%. Likewise, the pat-
tern, the concentric pattern yielded 6–11% higher flexural strength and 22–44% 
higher flexural modulus than the ± 45 linear pattern. Nozzle diameter offers 

Fig. 16  Variation in tensile strength and elongation of PEEK and PEI parts with respect to change in 
nozzle temperature (with kind permission from Elsevier publisher [116])
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the lowest increase in 5% in flexural strength (5%) and 10% in flexural modu-
lus (10%). The best combination for achieving better results in bending test is 
0.25 mm nozzle, 0.1 mm layer height, concentric pattern and an infill density of 
100%. Altogether, the best results in mechanical properties are achieved in the 
combination of 0.8 mm nozzle diameter, 0.2 mm layer height, concentric pattern 
and 100% infill density.

Other than carbon fibre, especially addition of the carbon nanotubes (CNTs) 
fillers can potentially improve properties such as electrical/heat conduction, 
mechanical strength, modulus of elasticity, toughness and durability of 3D 
printed nano-composites for many potential applications [121–125]. Therefore, 
Kursad Sezer et  al. [126] printed multi-wall CNT (MWCNT) reinforced ABS 
matrix composite parts using FDM technology with twin-screw micro-com-
pounding extruder and backflow channel facility. Seven wt % MWCNT ABS 
ratio yielded a maximum tensile strength of 58 MPa (Fig. 18), which can be also 
seen through the stress–strain diagram (Fig. 19). An overall increase in UTS of 
288% was attained when compared to blank ABS. Raster pattern with linear lay-
ering [0, 90] resulted in higher UTS than the crossed [–45, 45] layering. This is 
due to the uniaxial loading along the CNTs in linear layering during the tensile 
test. In 10 wt% MWCNTs, the electrical conductivity value achieved is high-
est (232  e−2 S/cm), whereas the Melt Flow Index (MFI) value reduces to 0.03 g 
/10 mm. The variation of electrical conductivity with the MFI value of 10 wt % 
MWCNT is 164 times less than pure ABS. Decrease in MFI value is due to clog-
ging of nozzle during 3D printing process using filaments with higher MWCNT 
filler rates. It is concluded that reinforcing carbon/carbon nano-tubes enhances 
not only the mechanical properties but also the electrical properties of the FDM 
parts.

Fig. 17  Variation in tensile strength with respect to nozzle diameter, layer height, infill density and print-
ing pattern (with kind permission from Elsevier publisher [120])
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Effect of post‑heat treatment on the mechanical properties of FDM printed parts

AM through FDM technique enhances the flexibility and rapidity in production of 
high strength but lightweight polymeric parts. These polymeric parts have been 
extensively used in aerospace development and human implants. Among these, 
PEEK has attractive mechanical properties and environmental resistance over 
extended temperatures [127–139]. Table  11 summarizes the materials and their 
improved properties under the influence of heat treatment.

Hence, Yachen Zhao et  al. [140] fabricated PEEK structures using FDM tech-
nique and studied the effect of raster angle, nozzle temperature and ambient temper-
ature on its mechanical properties. Raster angle of 0°(95, 108 MPa) revealed supe-
rior tensile properties when compared to 45° (90, 104 MPa) and 90° (82, 98 MPa) in 
FDM and extrusion processes, respectively. This is attributed to different degree of 
interfacial adhesion strengths and fragile connection between filaments as the raster 
angle gets increases.

It can be observed from Fig. 20 that the nozzle temperature of 400 °C, the ambient 
temperature of 80 °C and post-heat treatment temperature of 250 °C were identified 
as optimum parameters to achieve maximum tensile strength of 103 MPa. A phys-
ical-based model of cranial implant was fabricated using various nozzle tempera-
tures (380,400,420 °C) parameters without post-treatment/with post-heat treatments 
(175,200 °C) and subjected to mechanical loading tests. Heat treatment increases the 
mechanical performance of cranial implant up to a load-bearing capacity of 7000 N. 

Fig. 18  Variation of tensile strength in 3D printed MWCNTs/ABS composite test specimens with respect 
to weight % of CNTs (with kind permission from Elsevier publisher [126])
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It is observed that heat-treated cranial implant has broken into fragments before 
attaining the maximum load for smaller displacement indicating brittle failure. It is 
concluded that findings of this research work provide guidelines for FDM of PEEK 
to the clinical implementation and application of cranial implants.

In addition to PEEK, PLA is being extensively manufactured through the FDM 
technology and exploring about the heat treatment of such parts is highly essential. 
Setting of heat treatment conditions with respect to several factors is a bigger chal-
lenge for the 3D processed parts. An attempt was done to assess the homogeneous 
heating condition of FDM printed parts for improving the mechanical properties. 
The heating effect on the parts was studied with respect to layer thickness to estab-
lish its influence on the performance of the FDM processed parts. PLA specimens 
were printed using the 3DISON Plus printer for the layer thickness of 0.1 to 0.3 mm. 
Tensile strength of the specimen with respect to increase in thickness (0.1, 0.2 and 
0.3 mm) was 59.9, 44.0 and 23.5, respectively. Samples built under the higher layer 
thickness (0.3  mm) were observed with voids, weak adhesion and higher surface 
roughness, whereas the low layer thickness built samples was not observed with det-
rimental effects and higher density was observed. This is due to the tight stacking of 
the rasters in case of lower thickness than the higher layer thickness [141].

In addition to monolithic PLA manufacturing through additive technology, PLA-
based composites were also manufactured and subjected to further heat treatment 
for better mechanical performance. Carbon reinforced PLA was fabricated through 
FDM technology and the influence of post-processing parameters in its mechani-
cal properties was investigated. PLA was reinforced with 15% of carbon short fibre 

Fig. 19  Stress–strain diagram of MWCNT/ABS and blank ABS tensile test specimen (with kind permis-
sion from Elsevier publisher [126])
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(size of 200 μm and 10 μm diameter) and printed with the layer thickness of 0.2 mm 
and 90° orientation. Two different post-treatments were applied such as chemical 
treatment and heat treatment. In case of chemical treatment, samples were soaked in 

Fig. 20  Stress strain and tensile behaviour of samples under different post-treatment temperatures with 
the raster angle of 0°, nozzle temperature of 400 °C and ambient temperature of 80 °C (with kind per-
mission from Elsevier publisher [140])

Fig. 21  a Tensile strength with respect to temperature with heat treatment process; b tensile strength 
with respect to time in chemical treatment; c stress–strain curve of chemical treatment; d stress–strain 
curve of heat treatment (with kind permission from Elsevier publisher [142])
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the acetone solution for different time period ranging from 60 to 220 s. Under heat 
treatment, samples are heat treated from the temperature range of 80 to 160 °C for 
time period of 60 to 180 s. Overall, the chemical-treated samples performed better 
compared to the heat treatment method, which can be inferred from Fig. 21.

Tensile strength of the samples was increased around 12% through the chemical 
treatment process, whereas only 6% enhancement resulted with the heat treatment 
process. This is due to the more rearrangement of matrix and fibre in chemical-
treated samples than heat-treated samples. Therefore, it is inferred that heat treat-
ment process is lesser effective. Hence, it is suggested to optimize the processing 
conditions in order to attain the desired mechanical properties through any post-
treatment [142]

Effect of different FDM printers on the mechanical properties of FDM printed 
parts

Cost of the components made from ABS filament material on FDM printer relies on 
three different parameters such as FDM printer used for printing, brand of filament/
support material consumed and time taken for printing the part. One of the promi-
nent methods to reduce the cost is to use low-cost ABS materials and low-cost FDM 
printer [143]. However, its effect on the mechanical properties has to be analysed. 
Table 12 summarizes the materials and their improved properties under the influ-
ence of different FDM printers.

A comparative study on mechanical properties of components printed using low-, 
medium- and high-cost FDM printers with different ABS filament material com-
binations was made by Sunil Khabia et  al. [144]. The common parameters main-
tained in all the combinations were 0.4 mm nozzle diameter, 0.2 mm layer thickness, 
100% infill and printing orientation on edge. The maximum tensile strength value 
(35.7 MPa) was achieved with a combination of Arya UNO + printer, low-cost ABS 
filament material and concentric infill pattern in Ultimaker Curav3.6 slicing soft-
ware. The load elongation curve for test specimen printed on Arya UNO + with low-
cost ABS filament material is shown in Fig. 22.

It is concluded that selection of the option concentric infill pattern in infill set-
ting of the software enhances the tensile strength of the part. It is understood that 
knowledgeable operators can make use of the controls available for production of 
quality and high strength components even from the low-cost FDM printer and ABS 
material.

Same research group [145] investigated the effect of layer thickness on mechani-
cal properties of FDM printed components in two different FDM printers. It is well 
known that layer thickness has greater significance on the cost. As the layer thick-
ness was doubled, printing time was reduced to half approximately and in turn the 
cost as well. Z-ABS part was manufactured in Zortrax M200 LPD printer and low-
cost ABS part was produced using Accucraft i250 + FDM printer for different layer 
thickness ranging from 0.09 to 0.29 mm. No significant variation in tensile strength 
with respect to layer thickness was observed for the specimens printed with Accu-
craft i250 + printer using low-cost ABS filament. This might be due to the weaker 
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bonding of the layers even for the infill density of 100%. Specimens printed with 
the Zortrax M200 LPD printer using Z-ABS filament were observed with greater 
variation in the tensile strength with respect to change in the thickness. There is an 
improvement of 20.03% tensile strength from the mean value when the layer thick-
ness is kept low (0.09 mm). The key reason for these phenomena is due to enough 
strong road to road bonding in infill of a layer. It is concluded that tensile strength 
of the parts will be higher when the layer thickness is kept low irrespective of the 
printer and the material but with a variation level in tensile strength.

Along with commercial printers, lot of open-source 3D printers are available 
under the FDM technology and choice of the printer for the application remains dif-
ficult to decide. While OS models have limitations in comparison with industrial 
methods [146, 147], they are capable of producing very precise components with 
0.1  mm positional precision. Moreover, there are open-source 3D printers from 
RepRap which are available readily to the public at low cost for less than $500 [148]. 
In such printers, ABS and PLA were primarily manufactured due to its low melting 
temperatures. Art, toys, tools, home goods and high-value scientific instruments are 
all made with these machines [149]. Furthermore, RepRaps have been advocated as 
a tool for small-scale production or as a tool for sustainable development [150].

A study [151] was carried out to quantify the properties of the ABS and PLA 
made components which enables the users to prefer the 3D printers for manufac-
turing. Four different printers from RepRap such as MOST, Lulzbot Prusa Mendel, 
Prusa Mendel and Original Mendel were used for printing the parts. The average 
tensile strength attained in ABS and PLA was 28.5 MPa and 56.6 MPa, respectively. 
From these results, it is inferred that 3D printed components from RepRaps print-
ers are found comparable in tensile strength to the parts printed using commercial 
3D printing systems. However, importance should be given for the settings, tuning 
and operation of each individual printer including the type and quality of polymer 

Fig. 22  Load-elongation curve for low-cost ABS filament materials printed on Arya UNO + with kind 
permission from Elsevier publisher [144]
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filament used. Following these protocols tends to produce stronger parts even with 
the usage of open-source 3D printers. Therefore, it is concluded that selection of 
printer for AM should be done in view of balancing the quality, accuracy, properties 
and cost of manufacturing the parts.

Conclusion

A comprehensive review of mechanical properties of polyjet and FDM printed parts 
has been carried out. The following conclusions are derived out of the extensive 
study:

In case of polyjet printing, parts built in X direction are found with superior 
mechanical properties such as higher tensile strength, bending, compression and 
hardness than parts printed in Y or Z direction due to higher interfacial strength 
and presence of cracks/voids in parallel to the direction of application of force. In 
combined parametric effect, parts built in X direction with glossy finish and with 
minimal time have greater tensile, flexural, hardness and fatigue properties. Surface 
finish improvement through glossy finish of the parts improved the fatigue life of 
the parts. Post-treatment of polyjet parts through UV for more time improved the 
hardening of the samples and enhances its usage for various applications such as 
cryogenic conditions, and dental aligners due to its adequate mechanical strength. In 
overall, mechanical properties of the polyjet printed parts are greatly influenced by 
the build direction, type of finish and post-processing.

In case of FDM printing, process parameters such as infill density and raster 
angle have greater significance in controlling the mechanical properties of the parts. 
Parts with increased infill density (100%) show greater bonding between layers and 
offer greater resistance to deformation due to decreased air gap between layers. Parts 
built with raster angle other than 90° offer higher resistance to tensile failure due to 
absence of filament distortion. Heat treatment increases the load-bearing capacity of 
samples, especially chemical treatment due to the more rearrangement of matrix and 
fibre. Overall, infill density and raster angle have to be optimized for attaining better 
properties in FDM printed parts.
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