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Abstract
Polymeric nanofibers have gained a great deal of attention in recent years. This 
study aims to produce and evaluate a methylcellulose (MC) and polyvinyl alcohol 
(PVA) based nanofibers mat using the electrospinning process. 25–2 fractional facto-
rial screening design has been used to study the effect of critical formulation and 
process parameters, such as concentration of MC (%), the concentration of PVA (%), 
applied Voltage (kV), distance (cm), flow rate (ml/hr) on the critical quality attrib-
utes like fiber diameter, tensile strength, and morphology. The fiber morphology 
and fiber diameter of nanofibers were investigated by scanning electron microscopy 
(SEM).s The optimized nanofibers mat was further characterized by Fourier trans-
form infrared (FTIR) spectroscopy, Differential scanning electrons (DSC), Thermal 
gravimetric analysis (TGA), X-ray diffraction (XRD), Atomic force microscopy 
(AFM). Parameters such as contact angle and rate of biodegradation were studied 
for an optimized batch. The SEM results showed the uniform morphology of opti-
mized nanofibers without beads with fiber diameter in the range of 100–200  nm. 
FTIR analysis demonstrated good intermolecular interactions between the molecules 
of MC with PVA. DSC-TGA study showed good thermal properties of nanofibers. 
XRD study showed the crystalline nature of nanofibers. Maximum tensile strength 
up to 2.74 Mpa was obtained which is desired for drug delivery application. The 
exaggeration of the fiber diameter was measured by AFM and found good surface 
morphology. Furthermore, results of contact angle and biodegradation rate proved 
that prepared nanofibers would be considered as a suitable carrier for controlled 
drug delivery applications like wound healing.
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Abbreviations
MC	� Methyl cellulose
PVA	� Poly vinyl Alcohol
PCL	� Polycaprolactone
PVP	� Polyvinylpyrrolidone
NFs	� Nanofiber
KBr	� Potassium Bromide
Wt	� Weight
µg	� Micro gram
Mg	� Milligram
G	� Gram
mL	� Milliliter
Mm	� Millimeter
Cm	� Centimeter
sec.	� Second
min.	� Minute
hr.	� Hours
°C	� Degree centigrade
%	� Percentage
 ± 	� Plus or Minus
e.g.	� For example
Sr. No.	� Serial number
DSC	� Differential scanning calorimetry
TGA​	� Thermogravimetry analysis
Nm	� Nanometer



4071

1 3

Polymer Bulletin (2022) 79:4069–4097	

RH	� Relative Humidity
SEM	� Scanning Electron Microscope
FTIR	� Fourier Transmittance Infrared
AFM	� Atomic force microscopy

Introduction

Research on therapeutic nanocarriers has received a lot of popularity over the last 
decade due to support from researchers working in government and private organi-
zations. Amongst all nanocarriers studied, polymeric nanofibers (NFs) have gained a 
lot of interest in drug delivery applications such as tumor targeting, wound dressing, 
biomedical and tissue engineering applications due to their ease of fabrication, vari-
ety of biopolymer availability, and high drug loading capacity [1, 2]. NFs is an ideal 
drug delivery system for various pharmaceutical applications as it possesses specific 
properties such as high surface area, porosity and fiber diameter, and controlled drug 
delivery [3, 4]. NFs loaded with drugs reduce the dose as compared to conventional 
formulations used topically for the treatment of disease [5].

Various methods are reported for the fabrication of NFs such as electrospinning 
process, template synthesis, phase separation, self-assembly [6].The electrospinning 
method is widely used in the fabrication of NFs in drug delivery due to its ease 
of processing and cost-effectiveness across all the methods. The electrospinning 
method works on the principle of the Taylor cone effect which produces electrostatic 
forces resulting in the formation of fine filaments from a polymer solution [7, 8]. 
Numerous research demonstrated NFs approach for cell attachment and prolifera-
tion, due to its dimensions similar to a native extra cellular matrix (ECM) and mimic 
its fibrillary structure, which provides significant care for cellular organization and 
survival functions [9, 10].

In this study, an attempt has been made to develop a NFs mat using biocom-
patible and biodegradable polymer such as methyl cellulose (MC) and polyvinyl 
alcohol (PVA)which is recommended by FDA for their use in various pharmaceu-
tical applications [11].MC is a non-ionic polymer with a glucosidic relationship 
of β (1–4), established together with H-bonds. It is biocompatible, cost-effective, 
and widely used in pharmaceutical and wound healing applications [12]. MC has 
been combined with the water-soluble PVA to improve mechanical strength. PVA is 
biodegradable, biocompatible and widely used synthetic polymer for various drug 
delivery applications. Several studies have been reported based on the PVA NFs mat 
using the electrospinning process. PVA improves cellulose polymer spin capacity 
and also improves the mechanical strength of plain cellulose NFs [13, 14]. Elec-
trospinning method was employed to fabricate MC co-blended with PVA NFs mat. 
Optimization of NFs mat was performed using the experimental design. Selection 
of solvent (water: IPA) and its proportion for the fabrication of NFs in order to get 
tailored mechanical properties has considered as the novelty of present work. Patient 
acceptability, ease of application, quality parameter such as morphology, fiber diam-
eter, tensile strength and thickness were taken into consideration for the target prod-
uct profile. Quality elements were characterized and controlled as critical quality 
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attributes. Optimized NFs were evaluated for mechanical properties, contact angle 
and rate of biodegradation studies. It was also characterized by scanning electron 
microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), differential 
calorimetry scanning (DSC), thermal gravimetric analysis (TGA), tensile strength 
analyzer, atomic force microscopy (AFM), contact angle and rate of biodegradation.

Materials and methodology

Materials

METHOCEL™A4M methyl cellulose (viscosity of 2% solution at 20  °C, 
4000  mPa.s, degree of polymerization 1400, and  Mw = 270,000  kDa) was pro-
cured from Dow chemical Pvt Ltd, the Netherland, Poly (vinyl alcohol) (viscos-
ity of 4% solution at 20  °C, 4.8—5.8  mPa.s and Mw = 1,80,000  kDa) was pro-
cured from Loba Chemie Pvt. Ltd Mumbai, Chitosan grade S (deacetylation value 
80–90%, Mw = 170  kDa) was procured from Chitinor AS Norway, USA. Poly 
(vinyl) pyrrolidone (PVP K30) (viscosity of 5% solution at 25 °C, 2.3—2.4 mPa.s, 
Mw = 40,000 kDa), was procured from Loba Chemie Pvt. Ltd Mumbai, Polycaprol-
actone (PCL) (viscosity of 1.5% solution at 25 °C, 1.5 dL/g and Mw = 80,000 kDa) 
was procured from Sigma-Aldrich chemicals company, USA. E- Spin Electrospin-
ning (E-Spin Nanotech Super ES-2, Schimadzu, Japan) was used to fabricate NFs. 
All other chemicals and solvents were obtained in a pure form.

Method

Preliminary trials on polymers and solvents

From the literature review and prior experience natural polymers such as MC, Chi-
tosan and synthetic polymers such as PVA, PCL, and Poly (vinyl pyrrolidone) (PVP) 
were studied for the fabrication of NFs [15, 16]. For the selection of solvent, prop-
erties such as conductivity, surface tension, boiling point, dielectric constant, and 
viscosity were considered  (Fig. 1).

Preparation of polymeric solutions for electrospinning process

The polymeric solution was prepared with continuous stirring for 2  h and kept 
overnight at room temperature until a clear solution was obtained. Electrospinning 
machine (E-Spin Nanotech SuperES-2, Schimadzu, Japan) was used to fabricate the 
NFs. The solution was filled into a glass syringe of size 10  ml with the flat end 
metal needle (18 gauge), and voltage was applied. The stationary collector with 
the aluminum foil enfolded was positioned at the distance from the needle tip. The 
electrospun NFs was removed carefully and stored till further analysis [17, 18]. The 
ambient temperature for the electrospinning process was 32 °C. The ambient tem-
perature and humidity influence the viscosity of the solution and the rate of solvent 
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evaporation for solution electrospinning, thereby influencing the diameter of the 
fiber.

Experimental design

From preliminary trials, a range of critical material attribute (CMAs) and critical 
process parameters (CMAs) were derived and studied using 25−2fractional factorial 
design to check their effect on derived critical quality attributes. All independent 
variables were chosen at their two levels, (− low level) and (+ , high level)  [20], 
respectively. Table (1) shows the design variables specification.

Evaluation of design batches

Morphological structure of NFs  SEM (JSM 6010 LA, JEOL, USA) technique was 
utilized to check the morphology and to measure fiber diameter of prepared NFs. The 
NFs were gathered and mounted on a twofold sided stick tape over aluminum stubs 
to get a uniform NFs sheet. NFs sample was platinum covered for 20 s. The conduc-
tive metal coating in the sample avoids heating, decreases thermal disruption and 
increases topographic interpretation of the SEM’s secondary electron signal. Sam-
ples were observed, respectively, at 5 kV, 10 kV, 20 kV and images recorded [17, 18].

Tensile strength  Mechanical properties of prepared NFs were characterized using the 
Instron-3365 (Instron Corporation, Norwood, MA, USA) universal testing method. 
The NFs were cut to (5 cm × 5 cm) in this test. Until breakage, the sample was placed 

Fig. 1   Schematic of electrospinning setup [19]
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in the grips and stretched with a strain rate of 10  mm/min. Averages of Young’s 
elasticity module (E), ultimate tensile strength (UTS) and break elongation (πb) were 
determined from stress–strain curves [23, 24].

Statistical analysis of design batches

Design Expert ® 9.0.6 Software was used for data optimization [25].

Model (polynomial equation) and significance

The Model additionally helps with segregating among significant and non-signifi-
cant factors. The polynomial equations can be utilized to reach determinations rely-
ing upon the size of the co-sign and the experimental (positive or negative) image 
that it bears. In present analysis, linear polynomial equation was used to derive the 
effect of significant factors on response measured. When constructing a model using 
Experiment Model, the value p is always implied. p < 0.05 (at a 5% confidence inter-
val) is deemed statistically important for a different model term [26].

ANOVA and response surface plot

One-way variance analysis (ANOVA) can be used to check the significance of the 
terms in the model. Model values F and values p were used to derive the outcome. 
The surface methodology was used to explain the relationship of three variables for 
surface plots in 2D and 3D model architecture. The  x-and  y-scales show independ-
ent variables and a smooth surface determined response (z) [27, 28].

Table 1   The design variables 
specification

Independent variables Levels (actual value)
Low (−) High ( +)

Concentration of MC (%) (X1) 1 1.5
Concentration of PVA (%) (X2) 8 10
Applied Voltage (kv) (X3) 20 25
Distance (cm) (X4) 10 15
Flow rate (ml/hr) (X5) 0.5 1
Dependent variables Target Value
Fiber diameter (Y1) 100–200 nm
Tensile strength (Y2) 1–3 Mpa
Controlled variables
Syringe diameter 17 mm
Syringe needle 18 gauge
Solvent ratio 75:25 (Water: IPA)
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Pareto chart

Pareto diagram is a graphical tool that represents the most significant variables. It 
is a vertically structured presentation wherein the bar-formed qualities ‘t’ is plotted 
in diminishing requests of relative recurrence from left to right. The tallness of each 
bar shows the estimation of the property. The outline shows the level shaft for the 
various factors [29].

Selection of formulation with desirability function

Implementing the desirability function integrates all the solutions into one equation 
and offers the potential for independent variables to approximate optimum values. 
Measuring each desired functions involves combining the responses into one desir-
able function [24].

Characterization of NFs

FT‑IR spectroscopy of NFs

FTIR analysis was carried out to validate the cross-linking between MC and PVA. 
For this study, (KBr) pellets were prepared using the homogeneously dried formula-
tion and packed under vacuum utilizing round level face punch to make minimal pel-
lets. The FT-IR NFs spectra were acquired utilizing FTIR (NICOLET-6700, Thermo 
Science, US) with an assimilation range of 4000–400 cm−1 [30].

Thermal method of analysis

The thermal method of analysis was employed to assess NFs thermal decomposition. 
Thermogravimetric analysis (TGA) and differential calorimetric scanning (DSC) 
(Mettler Toledo, Schimadzu, Japan) analysis were carried out at a temperature range 
of 30–500 °C at a heating rate of 10 °C min−1 in the nitrogen atmosphere [31].

X‑ray powder diffraction (XRD)

The pattern of NFs X-ray diffraction ( (Bruker, D2 Phase) was performed and com-
pared with reference spectra of X-ray diffraction scans which carried out from 10° to 
30° (2θ) at a scan rate of 2°/min using Ni-filtered Cu radiation. The diffraction pat-
tern was used to measure the crystalline phases and their structural properties [32].

Atomic force microscopy (AFM)

The surface morphology of the NFs was described by a multimode IIIa AFM 
(Digital Instruments) and a dimension 3100 AFM (VEECO). For atomic force 
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microscopy (AFM) imaging, a touch mode was used. Using the integrated optical 
microscope, the cantilever was placed atop the NFs within micrometer precision. 
The data were obtained by mapping the 20 μm2 grid size of the NFs. The cantilever 
tip deflection was used as a feedback signal to maintain a steady force over the area 
being tested. In touch force calibration mode, AFM force-versus-distance curves 
check the mechanical properties of the NFs [33].

Contact angle study

A measuring tool (GBX DIGIDROP) was used to determine the hydrophilic/hydro-
phobic character of the NFs. Using a syringe, a drop of water (1 μL) was collected 
on the surface of NFs. As droplets are produced on the water, a video camera used to 
take an image of the falls. The touch angle for each sample was determined to miti-
gate experimental error at three different sites, and then the average was recorded 
[34].

Rate of biodegradation

The integrity of NFs under environmental elements during production, storage, 
transportation, and usage is an important factor for the application. To investigate 
this rate of biodegradation study was performed. At an average weight of 3 mg, the 
NFs were cut in (2 cm ×  2 cm) and soaked at 37 °C with 10 mL PBS. The residual 
sample was carefully drained from the well at a set time intervals (1, 3, 5, 7 days), 
rinsed with deionized water, dried at 60  °C until the weight remained unchanged 
and then measured. The percent mass loss was plotted vs. time to get the NFs degra-
dation profile [35, 36].

The mass loss percentage has been calculated using the following equation:

where  WL is the sample mass loss percentage, and  wi is the dry sample initial 
weight,  wt is the dry sample weight at any given time (1, 3, 5, 7 days).

Evaluation of antimicrobial property

A NFs mat demonstrated an antimicrobial property for topical applications to 
eliminate direct infections. Henceforth, to check the antibacterial activity of NFs, 
the growth inhibition of E. coli was observed. Briefly, 200  μl of Fluid Thiogly-
colate medium pH 7.1 and Soybean Casein Digest Medium, pH 7.3 was added to 
(0.5 × 0.5) cm2 of each scaffold in a 96 well tissue culture plate with 1 × 107 CFU/ml 
bacterial inoculum and incubated for 24 h at 37 °C. After removing planktonic cells 
from the wells each of the NFs was washed with PBS solution (pH 7.4). 0.1% of 
crystal violet solution was then added into the wells (100 μl per wells) and incubated 

WL =
wi − wt

wi
× 100
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for 20 min at room temperature. After removal of crystal violet solution, samples 
were again washed thrice with PBS solutions and destained with absolute ethanol. 
The bacterial growth inhibition was monitored through spectrophotometer measure-
ments at 570 nm [37, 38].

Results and discussion

Fabrication of NFs

Screening of solvent

Preliminary trials were carried out using plain MC. Varied concentration of MC 
(%w/v) solution was prepared for observation of NFs morphology in solvent blend 
ratios. Preliminary results of the batches are shown in Table 2.

From the preliminary trials, uniform and stable fibers were observed in water-to-
IPA (75:25) solvent ratio. NFs was observed in water-to-IPA ratio due to solubil-
ity of polymers in preferred solvents for electrospinning processes and its moder-
ate boiling point. Generally, volatile solvents are selected because their high rate of 
evaporation facilitates the easy evaporation of the solvent from the NFs during their 
flight from the tip of the needle to collector. However, extremely soluble solvents are 
often avoided because their low boiling points and high rate of evaporation allow the 
jet to settle at the tip of the nozzle. This drying would obstruct the tip of the needle 
and thereby hinder the cycle of electrospinning. Similarly, less volatile solvents are 
also avoided because of their high boiling points during NFs jet flight prevent their 
drying out [39]. Tensile strength of observed fibers was found to be 0.0820  Mpa 
which was considered very weak for the application of drug delivery. Further 
attempt was made to obtain desired mechanical properties combining appropriate 
polymer. Different experiments were performed using a specific polymer approved 
by the FDA, and results are shown in Table 3. Figure 2 displays SEM images of MC 
in the water to IPA solvent ratio of 75:25 at high and low magnifications (Fig. 3).

Screening of co‑blend polymer with MC

To obtain desired mechanical properties screening of polymer with MC concentra-
tion 1.5% in water to IPA ratio 75:25 was carried out. The results for the test batches 
are shown in Table 3.

The formation of uniform and stable fibers with PVA in a concentration range of 
8–10% w/v was observed with MC in concentration of 1.5% in water to IPA ratio 
75:25. Therefore, further study of NFs fabrication was carried out using MC and 
PVA blend in a concentration of 10% w/v and 1.5% w/v, respectively (Fig. 4).
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Identification of process and formulation parameters by screening design

The process and formulation parameters were defined and screened using 25–2 frac-
tional factorial design from the preliminary batch results and literature studies. A 
total of 11 experimental runs were performed in 25–2 fractional factorial architecture. 
Table 4 displays the structure of batches along with outcomes for dependent vari-
ables (Fig. 5).

Morphological structure of NFs

Figure 6 shows the morphology and fiber diameter of an optimized batch of nanofib-
ers. SEM evaluation revealed that the formation of uniform NFs with random orien-
tation.1.5% w/v concentration of MC NFs mat shows the uniform fiber with diam-
eter range 100–250 nm ± 2.1 nm. 10% w/v concentration of PVA NFs mat shows 
the uniform fiber with diameter range 100–250 nm ± 3.3 nm. The fiber of 1.5% w/v 
concentration of MC co-blended with 10% w/v concentration of PVA shows the uni-
form fiber with diameter 100–166.6 ± 1.1 nm size. It was observed that flow rate, 
applied voltage, distance and concentration of polymer had great effect on fiber 
diameter and morphology [40].

Fig. 2   SEM images of MC in 75:25 ratio of water to IPA solvent
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Tensile strength of NFs

Figure 4 displays the stress–strain curves of MC NFs, PVA NFs and MC with PVA 
NFs. Table 5 indicates the elongation values at the break and ultimate tensile power. 
MC NFs tensile strength was observed up to 0.082 Mpa, and PVA NFs were observed 
up to 2.09 Mpa and increased tensile strength was observed in MC mixture with PVA 
up to 2.74 Mpa suggesting desired mechanical strength for drug delivery application. 
As observed in figure loading PVA with MC resulted in a strong effect favored by 
increased interfacial area and more active surface compared to NFs from MCNFs. In 
comparison with MC NFs and PVA NFs, the elasticity modulus of MC with PVA NFs 

Fig. 3   SEM images of a 1.5% w/v MC NFs, b 10% w/v PVA NFs, c1.5% w/v MC co-blended with 10% 
w/v PVA NFs
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was increased. Improvement of MC NFs mechanical properties with PVA NFs resulted 
from strong matrix interface adhesion. The key explanation for improved adhesion 
between the phases is the hydrogen bonding between –OH group of MC fibers and a 
similar group of PVA fibers that resulted in improved mechanical properties [41, 42].

Analysis of design batches using software

Software

The effect of each variable on the designated response was analyzed by software 
Design Expert® 9.0.6.

Model (polynomial equation) and significance

The specification for the screening of MC, the concentration of PVA, applied 
voltage, distance and flow rate showed a significant effect on fiber diameter and 
tensile strength. Through the fractional factorial design of 2 5–2 these important 
factors were further optimized.

Table  6 displays the independent variables and the dependent variables (fiber 
diameter, tensile strength) for screening batches. Effect of independent variables such 
as concentration of MC (% w/v) (A), concentration of PVA (% w/v) (B), Applied 
voltage (kV)(C), Distance (cm) (D) and Flow rate ((ml/hr) (E) on dependent varia-
bles fiber diameter and tensile strength are shown in Figs. 5, 6 in form of plots of the 
response surface. Fiber diameter shows a range of 150 ± 1.1 nm to 350 ± 4.7 nm. The 

Fig. 4   Tensile strength of NFs Tensile strength of a MC NFs b PVANFs c MC + PVA NFs
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Tensile strength shows a range of 0.82 ± 0.01 Mpa to 2.74 ± 0.1 Mpa. This means 
independent variables such as A, B, C, D, E play an important role in altering fiber 
diameter and tensile strength. It was found from Table 6 polynomial equations that 
conc. of MC (w/v percentage) (A), conc. of PVA (percentage w/v) (B), applied volt-
age (kV)(C), distance (cm) (D) and flow rate (ml/hr) (E) less than (p > 0.05) show 
major effect on the fiber diameter and tensile strength.

ANOVA was applied to estimate the model’s value at a point of 5 percent. The 
results of which the variance analysis (ANOVA) was performed to check the sig-
nificance of the quadratic models and the lack of fit for the experimental data are 
summarized in Table 7.

Response surface plot

The fiber diameter and tensile strength response plot of MC with PVA NFs for 
experimental factors are shown in Figs. 5, 6. Figure shows the effect of MC, PVA, 
applied voltage, distance and flow rate on fiber diameter and tensile strength. It has 
been observed that fiber diameter and was improved with increases in the concen-
tration of MC and PVA. It has also been found that an increase in applied voltage 
increases the diameter of fibers. It has been observed that increases in the distance 
lead to the finest fiber diameters and also decreases the number of beads. From the 
graph, it was found that the fiber diameter often increases as the flow rate increases. 
Figure 6 demonstrates the effect on the tensile strength of the independent variables. 

Fig. 5   Response surface 3D plot for Fiber diameter [Y1]
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Table 5   Results of tensile 
strength of electrospun NFs

Sample Thickness
(mm)

Tensile strength
(Mpa)

Modulus of 
elasticity 
(Mpa)

MC NFs 0.49 0.082 6.59
PVA NFs 1.01 2.09 11.9
MC + PVA NFs 1.49 2.74 14.9

Fig. 6   Response surface 3D plot for Tensile strength [Y2]

An increased concentration of MC and PVA results in increased tensile strength 
was observed from the graph. It was also found that the applied voltage rise also 
increases the tensile power. It has been observed that a rise in distance and flow rate 
indicates an increase in tensile strength.

Pareto chart

The Pareto chart displays individual values of the significant factors represented 
by bars from left to right in descending order, and the cumulative sum shown by 
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the rows. The height of each bar determines the value of the variables as shown 
in Fig. 7. It was observed that conc. of PVA, conc. of MC applied voltage and dis-
tance has a major effect on fiber diameter based on greater t-value. From the Pareto 
chart it was found that conc. of PVA and conc. of MC has a major effect on tensile 
strength due to greater t-value.

Optimization of formulation with desirability function

For calculating desirability value, software was assigned command with respect to 
least fiber diameter and tensile strength. Software predicted optimized batch having 
desirability value of 0.979 was observed from the desirability graph (Fig. 8).

Table 6   Result of regression analysis with respect to fiber diameter and % EE (25–2 fractional factorial 
design)

Independent variables A B C D E

Regression analysis
Coefficients (p value) of fiber diameter −36.32 41.695 −20.08 −14.895 1.38

p (0.0027) p (0.0014) p (0.0282) p (0.0726) p (0.8412)
Coefficients (p value) of Tensile strength −0.0800 0.5050 −0.0500 0.0888 −0.0850

p (0.3884) p (0.0019) p (0.5807) p (0.5448) p (0.3618)
Polynomial equation

Fiber diameter = +201.07 − 36.32 ∗ A + 41.70 ∗ B − 20.08 ∗ C − 14.90 ∗ D + 1.38 ∗ E
(

R
2
= 0.9447

)

Tensile 
strength = +2.11 − 0.0800 ∗ A + 0.5050 ∗ B − 0.0500 ∗ C + 0.0500 ∗ D − 0.0850 ∗ E

(

R
2
= 0.9891

)

Table 7   ANOVA analysis for measured responses

Response Source Degree 
of free-
dom

Sum of 
square

Mean sum of 
square

F ratio P value Remarks

Fiber diam-
eter

[Y1]

Model 5 29,476.70 5895.34 17.08  < 0.0037 Significant
Residual 

(error)
5 1725.66 345.13 – – –

Total 10 31,202.36 – – – –
Tensile 

strength
[Y2]

Model 5 2.19 0.4387 7.64  < 0.0218 Significant
Residual 

(error)
5 0.2871 0.0574 – –

Total 10 2.48 – – – –
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Fig. 7   Pareto Chart of independent variables on a fiber diameter and b tensile strength

Fig. 8   Desirability plot of optimized batch
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Characterization and evaluation of NFs

FTIR spectroscopy of NFs

The wide peak at 3700–3584  cm–1shows O–H stretching intermolecular and intra-
molecular hydrogen bond in MC NFs, and C-H aliphatic stretching vibrations in 
MC NFs are linked to 3000–2840 cm–1. The peak at 892.19 cm−1 is a characteristic 
MC peak that demonstrates the linkage in MC structure that is held together with 
H-bonds. The basic composition of PVA is-(CH2 –CHOH)n and the structure of 
the monomer is (CH2 = CHOH). Figure 9 clearly shows the important PVA related 
peaks. The peak observed at approximately 1147.48 cm–1 is attributed to the pres-
ence of terminal PVA groups and 1466 cm–1 indicates the –C=O carbonyl stretch-
ing bond. It is observed that the band obtained at 2810–3000  cm–1 indicates C-H 
stretching bond and the peak at 3200–3870 cm–1 is hydrogen bonded –OH group.

From the spectra of MC with PVA broad peak at 3313.95 cm−1 of O–H stretching 
vibration from the intermolecular and intramolecular hydrogen bond in MC and PVA 
structures. The peak at 2927.57 cm−1is attributed to C-H aliphatic stretching vibration 
in MC and C-H from the alkyl group of PVA. At 1163 cm−1 the peak is attributed for 
the assessment tool of PVA structure because it is a semi-crystalline synthetic poly-
mer able to form some domains. The peak at 768.66 cm−1 is a characteristic peak of 
MC which shows the linkage held together with H-bonds in MC structure. The spec-
tra clearly indicate the stronger relationship between PVA and MC with small changes 
from the standard spectrum of PVA [43, 44].

Fig. 9   FTIR images of optimized batch on a PVA b MC and c MC with PVA NFs
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Thermal method of analysis

TGA is mainly used to investigate the thermal stability of polymers. Most polymers 
melt or degrade before 200 °C. However, there is a class of thermally stable polymers 
that are able to withstand temperatures of at least 300 °C in air and 500 °C in inert gases 
without structural changes or strength loss, which can be analyzed by TGA.DSC-TGA 
diagram of MC with PVA NFs has appeared in Fig. 10, the glass transition temperature 
(Tg) of MC with PVA NFs is lower compared with plain MC and PVA NFs, this might 
be because of the closeness of flexible side gatherings (alkyl) of MC which increment 
the separation between chains in the blend and lessening the interchain associations 
causing a diminishing in Tg esteem. Figure 10, it very well may be demonstrated that 
the endotherm of the water stream happens in the scope of 80 °C and 100 °C. This 
endotherm is available on the thermogram of cellulosic matter as indicated by the water 
association and the non-subbed hydroxyl gatherings of cellulose subordinates. The pure 
PVA fibers displayed a relatively wide and straight endothermic curve with a peak of 
196 °C. Nonetheless, the value for the cross-linked PVA NFs shifted toward the low 
temperature. The glass transition temperature (Tg) for MC is 60 °C with PVA, respec-
tively. Therefore it can be concluded that the thermal properties are ideal for drug deliv-
ery applications [45]. 

Fig. 10   DSC-TGA analysis graphs of a MC NFs b PVA NFs c MC with PVA NFs
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XRD graph of NFs

Figure 11 displays XRD spectra of MC NFs, PVA NFs and MC co-blended with 
PVA. XRD spectra of MC NFs display peak characteristics at 20.9θ and PVA NFs 
display peak characteristics at 32.8θ. XRD spectra of MC co-blended with PVA 
show characteristic peak at 14.9θ, it indicates the semi-crystalline nature of the for-
mulation due to the occurrence of heavy intermolecular and intramolecular hydro-
gen bonding [37, 40].

Atomic force microscopy of NFs

Figure 12 displays the AFM images of MC co-blended with PVA NFs, respectively. 
The findings show that due to the convolution of the tip outline with NFs geometry 
the diameter of the fibers obtained by AFM was extended form. The morphology 
of NFs prepared from MC concentration of 1.5% w/v co-blended with PVA con-
centration of 10% w/v reveals the thick matrix of standard fibers with significantly 
improved surface roughness. Both SEM & AFM findings will direct the identifica-
tion of optimal conditions for synthesizing NFs of this form [19, 41].

Contact angle of NFs

Figure 13 shows the water contact angles for MC NFs, PVA NFs, and MC co-
blended with PVA NFs. The mats are hydrophilic when the contact angle is less 
than 90°, so the lower contact angle is the stronger hydrophilicity. Conversely, 
the mats become hydrophobic when the touch angle is greater than 90°. Fig-
ure 13 shows the images of 1 μL water droplets that live on the electrospun NFs 
mats surface. The MC and PVA NFs water touch angles are 27.22° (Fig.  13a) 

Fig. 11   XRD Graph of NFs (MC NFs, PVA NFs and MC with PVA NFs)
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Fig. 12   AFM images of MC with PVA NFs

and 48.73°, respectively (Fig. 13b). On the surface of MC and PVA NFs mats 
the water droplet had a lot of spread. Figure  13c shows a good hydrophilicity 
contact angle of (62.40°), which clearly indicates that the addition of PVA and 
MC improves wettability of prepared NFs. Such values were averaged from five 
samples at different locations of the sheet, suggesting that the MC, PVA and MC 
with PVA NFs dispersed equally and formed the high porosity blend NFs that 
resulted in a hydrophilic surface [48].

Rate of biodegradation

Figures  14and 15 show the rate of biodegradation of MC, PVA, and MC with 
PVA NFs. The PVA NFs, MC with PVA NFs had the highest degradation resist-
ance because they retained their initial weight after a week. In the case of MC 
with PVA NFs, the percentage of mass loss was reduced with time intervals up 
to the seventh day. Most of the fibers were swollen and part of the fibers bro-
ken down after 7th day incubation in PBS 7.4. The composition of the NFs was 
found with a minimal amount of minor cracks and voids. The smaller fiber diam-
eter of the NFs will increase the NFs ’surface-to-volume ratio and the degrada-
tion rate [37, 42]. These indicate good integrity of the NFs for long-term use in 
the human body condition, an importance requirement on dressing materials.

Antimicrobial property

Spectrophotometric measurements after antimicrobial evaluation of different NFs 
samples show that bacterial cells adhered readily onto the surface of MC (Fig. 16). 
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However, the reduced optical density of PVA NFs and MC-PVA NFs, indicates less 
bacterial adhesion on it compared to MC NFs only. The reduction in cell adhesion 
for MC-PVA NFs may be explained by antibacterial nature of PVA that inhibits the 
permeability of negatively charged bacterial cell through positively charged func-
tional groups of PVA. Enhanced inhibition ability against the growth of E. coli for 
MC-PVA NFs clearly ensures its potential as an ideal substitute for drug delivery 
application [37, 38].

Conclusion

In summary, the fabrication of NFs was done using MC with PVA as co-blended 
polymers using the electrospinning method. Optimized NFs showed excellent bio-
compatibility, biodegradable properties, non-toxicity, and ease of solubility in com-
monly used organic solvents for pharmaceutical application. Effect of formulation 
and processing variables was studied to get critical quality attributes like fiber diam-
eter and tensile strength. Further, the prepared formulation was characterized by 
SEM, tensile strength, FTIR, DSC-TGA, XRD, AFM, Contact angle, and rate of 

Fig. 13   Contact angle of a MC NFs b PVA NFs mat and c MC PVA NFs mat
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Fig. 14   SEM images MC, PVA and MC with PVA NFs after 7thday’s incubation in PBS

Fig. 15   Biodegradation study graph of MC NFs, PVA NFs, and MC with PVA NFs
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biodegradation. An antimicrobial study was also carried out to prove the potential of 
prepared NFs. The test of assessment and characterization demonstrated strong pol-
ymer compatibility into prepared NFs. Overall, all findings in the present research 
work suggest the potential use of MC with PVA NFs for drug delivery applications 
like topical.
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