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Abstract
We report the optical, lattice dynamical, and thermal characterization of the 
poly-methyl-meth-acrylate (PMMA) and poly-vinyl-alcohol (PVA) doped with 
(wt% = 2%, 4%, 8%, and 16%) of zinc oxide nanoparticles (ZnO NPs) deposited 
on glass substrate. The optical properties of as-prepared (PMMA-PVA)/ZnO NPs 
hybrid thin films such as transmittance (T%), reflectance (R%), absorption coeffi-
cient (α), optical constants (n and k), and optical dielectric functions (ε1 and ε2) are 
deduced using the experimental transmittance and reflectance spectra. Furthermore, 
a combination of classical models such as Tauc, Urbach, Spitzer–Fan, and Drude 
models are utilized to calculate the optical and optoelectronic parameters and the 
band gap of the as-grown nanocomposite thin films. Calculated refractive indices (n) 
of pure PMMA-PVA polymeric thin films are found to lie in the range (1.5–1.85). 
We found the optical band gap of PMMA-PVA thin film to be 4.101 eV. Introduc-
ing ZnO NPs into PMMA-PVA polymeric matrix leads to a noticeable decrease of 
the optical band gap. Furthermore, Fourier transform infrared spectroscopy (FTIR) 
transmittance spectra are measured and interpreted in the spectral range (500–
4000  cm−1) to identify the vibrational bands associated with the formation, rotation, 
and twisting of different bonds. Thermogravimetric analysis (TGA) is performed to 
test the thermal stability of as-grown thin films. We found that as-grown thin films 
are thermally stable below 110 °C. Therefore, realistic, scaled and practical devices 
based on doped polymerized films can be fabricated. Tuning optical, chemical, and 
thermal properties is of prime importance for the fabrication of state-of-the-art high-
tech devices.
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Introduction

Organic–inorganic nanocomposite thin films have increasingly gained inter-
est owing to their outstanding properties. Doped polymeric films constitute an 
important class of nanocomposite materials with nanofillers are homogene-
ously diffused in the polymer matrix [1–3]. Such blends are usually prepared by 
mechanical mixing of a polymer with metal nanoparticles via melt mixing, in situ 
polymerization of a monomer in the presence of metal nanoparticles or in  situ 
reduction of metal salts or complexes in a polymer matrix [4]. Nanocomposites 
often exhibit physical and chemical properties that are radically different from 
conventional microcomposites [5].

Hybrid thin films have been widely synthesized by different techniques such 
as emulsion polymerization [6, 7], microemulsion polymerization [8], solution 
polymerization [9], sol–gel method [10], sputtering, chemical vapor deposi-
tion (CVD), ion beam evaporation and pulse laser deposition [11]. However, the 
sol–gel technique has been increasingly conducted by researchers in the last few 
years to fabricate zinc oxide thin films due to the low cost of organic precursor 
used, simple tools used, low substrate temperature, and the feasibility of produc-
ing high-quality films [12].

The mechanical and thermal properties of the nanocomposites are improved 
upon introducing suitable nanoparticles. Doped polymeric thin films have been 
widely used for chromatographic separations, biochemistries, bioengineering, 
dental materials, and prosthetic replacement operations [13–15]. Our motivation 
to conduct this work stems from the fact that several inorganic nanoparticles have 
been introduced to improve the mechanical and thermal properties of PMMA 
[16]. In addition, PMMA is an important member in the family of polyacrylic 
and methacrylic esters [16]. PMMA has acquired unlimited interest and great 
features owing to its individual properties such as its exceptional optical clarity, 
good weatherability, and high strength, and excellent dimensional stability, lower 
optical absorption due to its high transparency in the visible region, low refrac-
tive index, hardness, thermal capacity, electrical performance, good mechanical 
properties, and simple synthesis [17].

Poly(vinyl alcohol) (PVA) is a polymer that has been studied intensively 
because of its good film forming and physical properties, high hydrophilicity, 
processability, biocompatibility, and good chemical resistance [18]. The proper-
ties of PVA can be improved or modified by adding inorganic functional mate-
rials [19]. PMMA-PVA nanocomposite has attracted much interest for scaled 
industrial applications [20]. This is mainly due to its lightweight, good mechani-
cal strength, and outstanding optical properties [21].

ZnO semiconductors have been widely investigated [22]. ZnO nanoparticles 
have attracted global attraction due to its outstanding physical properties [23, 24], 
its chemical stability, catalytic activity, antibacterial property, less toxicity, wide 
band gap (3.37 eV), large exciton binding energy around (60 meV), high refrac-
tive index, and ultraviolet absorption [25–29]. It has been widely used in prepar-
ing solar cells [30], gas sensors [31, 32], varistors catalysts [33–35], electrical 
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and optical devices [36–38], and electrostatic dissipative coatings [39]. The ZnO 
nanoparticles can be synthesized by homogeneous precipitation [40], mechanical 
milling [41], spray pyrolysis [42], and homogeneous precipitation [43]. The ZnO 
NPs have been added to several polymers, such as PMMA, PS, PVA, PVC, and 
PC, to enhance their physical and chemical properties [44–47].

The aim of this study is threefold. First, we synthesize high-quality (PMMA-PVA)/
ZnO NPs hybrid thin films of sizes appropriate for a diversity of applications. Sec-
ondly, we characterize the as-grown films optically by measuring their transmittance 
(T%), reflectance (R%), index of refraction (n), extinction coefficient (k), Urbach energy 
(EU), and optical band-gap energies (EU). Thirdly, chemical, vibrational, and thermal 
properties are investigated and interpreted by conducting and analyzing FTIR and TGA 
measurements.

Experimental details

Preparation of zinc oxide nanoparticles (ZnO NPs)

To prepare the ZnO nanoparticles, 2.18 g of zinc acetate dehydrate [Zn 
 (CH3CO2)2·2H2O] is dissolved in 40 mL of absolute ethanol in a beaker (Sol.1) using 
magnetic stirrer. In a different beaker (Sol.2), 0.4 g of NaOH was added to 40 mL of 
absolute ethanol. Both beakers are subsequently placed on a magnetic stirrer for twenty 
minutes. Once the mixing process is over, Sol.1 is placed in a water bath at a tempera-
ture of 70°C for 3 h. Next, the content of Sol.2 is dropped into Sol.1. and the ZnO NPs 
are separated from the ethanol by centrifugation. To obtain ZnO NPs in the powder 
form, the resulting solution is placed in a furnace at 60°C to 70°C for 24 h [48].

(PMMA‑PVA) doped by ZnO NPs thin films

PMMA-PVA and PMMA-PVA incorporated with ZnO NPs composites in the form of 
thin films are synthesized. A stock solution of PMMA-PVA in Chloroform  (CHCl3) 
was prepared by dissolving 1 g of PMMA and 1 g of PVA in 200 mL Chloroform. 
Magnetic stirring was performed for about 24 h. Pre-calculated amount of metal oxides 
nanoparticles (2%, 4%, 8%, and 16% of ZnO NPs) were added directly into a flask 
connect of PMMA-PVA solutions to produce metal oxides network in PMMA-PVA 
matrix. The entire solutions were stirred until the metal oxides nanoparticles have com-
pletely dissolved and dispensed. Smooth films were obtained by dipping the glass sub-
strate in the solution for 2 h to get a film of 500 nm thickness. The films were dried in 
an oven for 15 min at 70 °C to evaporate the solvent and organic residues.
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Results and discussion

UV–Vis spectroscopy

The spectrophotometer with a total internal reflectance sphere is used to investigate 
the optical properties of (PMMA-PVA)/ZnO NPs nanocomposite thin films at vari-
ous concentrations of ZnO NPs. Light is incident from the ambient (air) on thin 
films that is transmitted to the substrate and emerged from the air on the other side 
of thin-film samples. Figure  1 shows the transmittance spectra of (PMMA-PVA)/
ZnO NPs nanocomposite thin films at various concentrations of ZnO NPs deposited 
by dip coating technique. We found that undoped (PMMA-PVA) thin film exhibits 
high transmittance of about 91.6% at λ = 550  nm in the visible region. The addi-
tion of 2% and 4% ZnO NPs to the polymer solution results in a decrease of trans-
mittance to 88.38% and 87.73%, respectively. Increasing ZnO NPs in the polymer 
matrix to 8% causes a further decrease of the transmittance to 86.5%. A drastic 
decrease of transmittance to 79.4% as ZnO NPs concentration is increased to 16% 
in the polymer matrix. Additionally, an abrupt decrease of transmittance in the UV 
region (0–400) nm is detected indicating strong electronic transitions occur within 
the band gap that is considered as high-absorption region.

Figure 2 shows the reflectance of (PMMA-PVA)/ZnO NPs nanocomposite thin 
films at various concentrations of ZnO NPs. Obviously, as the ZnO NPs content 
in the polymeric film is increased, reflectance increases. We found that undoped 
(PMMA-PVA) thin film has low reflectance of about 4.6% in the visible region. 
Insertion of 2% and 4% ZnO NPs into the polymer solution increases reflectance 
to 6.2% and 7.3% in the visible spectrum region. We noticed that injection of 8% 
and 16% ZnO NPs into the polymeric matrix raises the reflectance to 7.6% and 

Fig. 1  Transmittance spectra of (PMMA-PVA)/ZnO NPs nanocomposite thin films at various concentra-
tions of ZnO NPs deposited by dip coating technique
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9.4%, respectively. Our results are promising in the sense that a gradual increase of 
reflectance as we add more concentration of ZnO NPs indicates that optical prop-
erties of (PMMA-PVA)-ZnO NPs nanocomposite thin films could be modified to 
produce highly reflective materials. It could be used for the fabrication of products 
like reflective tape, reflective ink, reflective marking paint, reflective cloth, reflective 
leather, reflective ribbon, and reflective safety silk fabric. Using such high reflective 
coatings could yield reflective materials that have several hundred times chromatic 
effects than other non-reflective materials. Reflective materials have been widely 
used in various warning signs, lifesaving marks, textile products, advertising, and 
other fields.

Optical absorption results provide deeper insight into understanding the optical 
band gap (Eg), the nature of electronic transitions between the valance bands and the 
conduction bands in the materials, Urbach energy (EU), Steepness parameter (σ) and 
electron–phonon interaction energy (Ee-p). The study of absorption coefficient spec-
tra of a polymer, hybrid material and semiconducting thin films is usually conducted 
in two steps according to the spectral region investigated. Mainly, in the high-energy 
part of the spectrum, the absorption coefficient spectra are characterized by the elec-
tronic states involved in the transition, and the lower part is categorized by atomic 
vibrations. The study of atomic vibrations provides a direct way of obtaining band-
gap energy and the details of the band structure [49–51]. Figure 3 shows the absorp-
tion coefficient (α) of (PMMA-PVA)/ZnO NPs nanocomposite thin films at vari-
ous concentrations of ZnO NPs. Our results indicate that undoped (PMMA-PVA) 
thin film exhibits vanishingly small α value found to be about 0.0116 in the UV 
region that attenuates sharply to 0.00017 in the visible region. Addition of 2%, 4% 
and 8% ZnO NPs to the polymer solution, results in α values of 0.00025, 0.00026, 
0.00029 in the visible region, respectively. Highly doped (PMMA-PVA)-ZNO NPs 

Fig. 2  Reflectance spectra of (PMMA-PVA)/ZnO NPs nanocomposite thin films at various concentra-
tions of ZnO NPs deposited by dip coating technique
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nanocomposite thin films demonstrate large α coefficients. In particular, α increases 
to 0.00046 as ZnO NPs concentration increases to 16% in the polymer matrix. The 
α parameter attains approximately fixed value in the visible spectrum region as the 
content of ZnO NPs increases. Richly doped (PMMA-PVA)-ZnO NPs nanocompos-
ite thin films act like as light filter for the entire range of visible spectrum.

Index of refraction n plays an important role in selecting the materials for specific 
optical applications. It can be calculated as,

The refractive index (n) as a function of the wavelength of incident light is shown 
in Fig. 4. In a high-absorption region (λ < 400 nm), the incident photon frequency 
resonates with the plasma frequency. In the spectral region, λ ≥ 400 nm, the refrac-
tive index decreases abruptly with wavelength and exhibits normal dispersion. In the 
high-wavelength region, it saturates and attains approximately constant value. We 
found that n of (PMMA-PVA) thin film exhibits values ranging between 1.48 and 
1.55 as the wavelength of incident light decreases from 700 to 400 nm. Insertion of 
2% and 4% of ZnO NPs into polymeric matrix leads to a significant increase in the 
values of n to 1.65 and 1.73, respectively. Injection of 8% and 16% of ZnO NPs into 
the polymer solution leads to a further increase of n values to 2.2 and 2.3, respec-
tively. The significant increase in the values of n as the concentration of ZnO NPs 
increases could be attributed to the condensation of smaller ions into larger clus-
ters as the NPs dispersed uniformly into the polymeric thin films [52]. As a result, 
(PMMA-PVA)/ZnO NPs nanocomposite thin films could be used for typical tasks 
such as photovoltaics, medical technology, semiconductor, flat-panel display, and 

(1)n =
(

1 + R

1 − R

)

+

√

4R

(1 − R)2
− k2

Fig. 3  Absorption coefficient (α) of (PMMA-PVA)/ZnO NPs nanocomposite thin films at various con-
centrations of ZnO NPs deposited by dip coating technique
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organic light-emitting diodes (OLED) production. Moreover, they may be employed 
in glass and optical industries.

Extinction coefficient (k) has an important role in the determination of a few opti-
cal parameters, chiefly those related to the absorption of light waves in the medium. 
k value measures the fraction of light lost due to the scattering and absorption per 
unit distance of the infiltration medium. It can be expressed (2) as,

where � is the absorption coefficient given by � = (1∕d) ln (1∕T) , with d being 
the average thickness of films measured to be 500 nm. Figure 5 displays k values 
of (PMMA-PVA)/ZnO NPs nanocomposite thin films at various concentrations of 
ZnO NPs. We insert 2%, 4%, 8% and 16% of ZnO NPs into the polymeric thin films. 
We observed a significant gradual increase of the value of k. In particular, we found 
that injection of 16% ZnO NPs increases � significantly indicating that high amount 
of light energy is being lost due to scattering and absorption in (PMMA-PVA)/ZnO 
NPs doped with a high concentration of ZnO NPs.

Dielectric parameter is closely related to the electronic band structure and sensitive 
to the density of states in the forbidden gap of a material. The complex dielectric func-
tion (� = �� + i���) is related to complex refractive index (N) by the equation:� = N2 
[49]. The calculation of dielectric function is achieved practically in terms of optical 
constants n and k. The two parameters are related to optical dielectric constant (��) 
and optical dielectric loss (���) by �� = n2 + k2 and ��� = 2nk [50]. Figures 6 and 7 
show the dielectric functions ( �′ and �′′ ) of (PMMA-PVA)/ZnO NPs nanocomposite 
thin films as functions of incident wavelength for various concentrations of ZnO NPs. 
The index of refraction and extinction coefficient spectra exhibit similar trends since 

(2)k =
�λ

4�

Fig. 4  Refractive index (n) of (PMMA-PVA)/ZnO NPs nanocomposite thin films at various concentra-
tions of ZnO NPs deposited by dip coating technique
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the four optical constants are related to each other via �� = n2 + k2 where n ≫ k , while 
��� = 2nk where k diminishes this product value. It is also observed that the values of 
the real part are comparatively higher than those of an imaginary one (𝜀� ≫ 𝜀��) . Subse-
quently, the low �′′ values account for the less dissipation of energy. In general, addition 

Fig. 5  The extinction coefficient (k) of (PMMA-PVA)/ZnO NPs nanocomposite thin films at various 
concentrations of ZnO NPs deposited by dip coating technique

Fig. 6  Optical dielectric constant ( �′ ) spectra of (PMMA-PVA)/ZnO NPs nanocomposite thin films at 
various concentrations of ZnO NPs deposited by dip coating technique
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of ZnO NPs to the composite polymer leads to an increase of the dielectric functions ( �′ 
and �′′ ) in the visible spectrum region.

Tauc plot of undoped and doped polymeric thin films obtained by plotting the inci-
dent photon energy (hυ) versus (αhυ)2. The plots are utilized to calculate the optical 
energy band gap Eg according to Tauc’s formula [51], (�h�) = B(h� − Eg)

m , where B 
is a band tailing parameter, Eg is the optical band gap, hv is photon energy, and m is the 
power factor that determines the type of transition. It exhibits the values of 1∕2, 3∕2, 2, 
and 3 for allowed direct, forbidden direct, allowed indirect and forbidden indirect transi-
tions, respectively. Figure 8 shows the Tauc plot of doped and undoped (PMMA-PVA)/
ZnO NPs nanocomposite thin films obtained by plotting photon energy ( h� ) versus 
(�h�)2. The main goal of this plot is to estimate band-gap energy Eg . The Eg of undoped 
(PMMA-PVA) thin film is found to be 4.069 eV. Addition of 2%, 4%, 8% and 16% 
ZnO NPs to the polymer solution results in a gradual slight decrease of Eg to 4.041 eV, 
4.016 eV, 3.98 eV, and 3.96 eV, respectively, as illustrated in Fig. 8. The manipulation 
of the band gap of the investigated doped polymeric thin films is anticipated to play a 
crucial role in organic electronics and the development of technological applications 
such as sensors, electrochromic devices, organic light-emitting diodes (OLEDs), and 
field-effect transistors (FETs).

In order to determine the width of the defect states formed inside thin film’s band 
gap, we employ the Urbach model. The advantage of using this model is its validity and 
feasibility to account for the shifts that can arise between the extended state of valance 
band maximum and localized state of the condition band minimum, Urbach empirical 
formula can be written as,

(3)� = �0 exp
(

hv∕EU

)

Fig. 7  Optical dielectric constant ( �′′ ) spectra of (PMMA-PVA)/ZnO NPs nanocomposite thin films at 
various concentrations of ZnO NPs deposited by dip coating technique



2028 Polymer Bulletin (2022) 79:2019–2040

1 3

where �0 is a constant, ℎv is the incident photon energy, and EU is the band tail 
width (Urbach energy) of confined states in the optical band gap. Figure  9 shows 
Urbach energy EU as a function of the incident photon energy of (PMMA-PVA)/ZnO 
NPs nanocomposites for different ZnO NPs concentrations. The width of the localized 
states of Urbach energy can be estimated from the slope of ln(α) in the linear region. 

Fig. 8  The Tauc optical band-gap energy of the dip-coated (PMMA-PVA)/ZnO NPs nanocomposite thin 
films at various concentrations of ZnO NPs deposited by dip coating technique

Fig. 9  Variation of Urbach energy E
U

 of the (PMMA-PVA)/ZnO NPs nanocomposites as a function of 
different concentration of ZnO NPs
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EU is simply the inverse of this slope. As can be clearly seen from Fig. 9, EU increases 
linearly for the high concentration of ZnO NPs. The higher value of EU confirms low 
crystallinity and strong disorder in the 16% ZnO NPs doped nanocomposite polymeric 
thin films.

Figure  10 shows the converse relationship between EU and Eg . Obviously, Eg 
increases as EU decreases when ZnO NPs concentration in the polymeric matrix is 
increased. This result can be interpreted as follows: as EU increases, the disorder and 
defect states within the film texture appear to become pronounced and thus it leads to a 
significant increment of the band tail width in the band structure of thin films. Conse-
quently, a decrease in the band-gap energy of the hybrid films is observed.

Optoelectronic parameters

Fundamentally, electronic, ionic, dipolar, and space charge polarization contribute 
to the dielectric function of thin films. The space charge contribution depends on the 
purity and the aptness of the glass substrate. Customarily, the influence of the space 
charge contribution is intensely noticeable in the low-frequency region. In the lower-
frequency region known as a normal dispersion region, the refractive index n equal the 
dielectric constant �′ and can be related to the density of states (ratio of free carrier to 
the effective mass) N∕m∗ and the high-frequency dielectric constant �∞ as expressed by 
Spitzer–Fan [52, 53],

where e is the electronic charge, c is the light speed, Nc is the charge carrier 
density and m∗ is the effective mass of the carrier. Plotting n2 versus �2 yields a 

(4)n2 = �� = �∞ −
1

4�2�0

(

e2

c2

)(

Nc

m∗

)

�2

Fig. 10  Relationship of the optical energy gap and the Urbach’s energy of the (PMMA-PVA)/ZnO NPs 
nanocomposites at different concentrations of ZnO NPs
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straight line in the long-wavelength region. The ratio N∕m∗ can be determined 
from the slope of the linear part, while �∞ is usually determined by extending 
the linear part of this curve to �2 = 0 . Figure 11 shows the dispersion nature of 
the index of refraction of (PMMA-PVA)/ZnO NPs nanocomposite thin films. 
The estimated values of both �∞ and Nc∕m

∗ are listed in Table  1. The value of 
�∞ of (PMMA-PVA) thin films is found to be 2.623. Addition of 2%, 4%, 8%, 
and 16% of ZnO NPs to PMMA-PVA polymeric thin films increases �∞ to 3.012, 
3.388, 3.445, and 4.093. Materials with high dielectric constant could be used for 
a variety of applications ranging from typical insulators in electrical and micro-
electronic encapsulation to appliances where dielectric functions are utilized for 
active device designs such as rectifiers, transducers, ordinary and supercapacitors, 
and transformers. The obtained values of the dielectric constant at zero wave-
length, �∞ are also found to be greater than the index of refraction, n , confirm-
ing the existence of the free charge carriers in (PMMA-PVA) and (PMMA-PVA)/

Fig. 11  The variation of the real part of the dielectric constant ( n2 = �� ) with the square of the photon 
wavelength ( �2 ) for (PMMA-PVA)/ZnO NPs nanocomposite thin films for various ZnO NPs concentra-
tions deposited by dip coating technique

Table 1  Estimation of some essential optical parameters of the (PMMA-PVA)/ZnO NPs nanocomposite 
thin films for various ZnO NPs concentrations

Parameter ZnO 0% ZnO 2% ZnO 4% ZnO 8% ZnO 16%

Density of states, Nc∕m
∗ ∗ 10+57 ( m−3 kg−1) 1.066 1.211 1.589 1.520 2.404

Charge carrier density, Nc ∗ 10+27 ( m−3) 4.273 4.852 6.372 6.090 9.635
High-frequency dielectric constant,�∞ 2.623 3.012 3.388 3.445 4.093
Relaxation time, � ∗ 10−14 (s) 2.493 2.439 2.943 2.463 2.429
Optical mobility, �opt ∗ 10−3 9.951 9.739 11.749 9.833 9.697

Optical resistivity, �opt ∗ 10−6 1.470 1.323 0.835 1.043 0.669
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ZnO NPs nanocomposite thin films that intensely contribute to the polarization 
process [54, 55]. As a result, the value of the charge carrier’s density increases 
from 4.273 ∗ 10+27 to 9.635 ∗ 10+27 atoms/m3 as the ZnO NPs concentration 
added to (PMMA-PVA)/ZnO NPs nanocomposite thin films increase from 0 to 
16%.

The imaginary part of the dielectric function ( �′′ ) versus the wavelength of the 
incident photon is analyzed to determine the relaxation time ( � ), optical mobility 
( �opt) and optical resistivity ( �opt ) using Drude free electron model [52],

Figure 12 shows the variation of the imaginary part of the dielectric constant 
( �′′ ) versus �3 for (PMMA-PVA)-ZnO NPs nanocomposite thin films at various 
concentrations of ZnO NPs. The relaxation time � is determined from the slope 
of the plot of �′′ against �3 and from the value of Nc∕m

∗ and taking m∗ = 0.44me 
[56]. From the determination of � , the optical mobility ( �opt ), as well as the opti-
cal resistivity ( �opt ) of the films, can be calculated as [52],

The calculated values of optical mobility ( �opt ) and optical resistivity ( �opt ) are 
listed in Table 1.

(5)��� =
1

4�3�0

(

e2

c3

)(

Nc

m∗

)

(

1

�

)

�3

(6)�opt =
e�

m∗

(7)�opt =
1

e�optNc

Fig. 12  The variation of the real part of the imaginary part of the dielectric constant ( �′′ ) with the ( �3 ) 
for (PMMA-PVA)/ZnO NPs nanocomposite thin films for various ZnO NPs concentrations deposited by 
dip coating technique
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FTIR of (PMMA‑PVA)/ZnO NPs nanocomposites thin films

The ability to tune the chemical and physical properties of surfaces using stead-
fast functionalization approaches is of vital significance for the progress in many 
industrial sectors, such as bio and chemical sensing [57], drug delivery [58], 
tissue engineering [59], solar cells [60], thin films batteries [61], and fabrica-
tion of semiconductor devices [62]. Recently, the prospect of engineering the 
chemical and physical properties of a surface by dispersing nanoparticles into 
thin polymer film has attracted significant consideration due to its easiness, 
strength, and tractability. Polymer films have attracted a great deal of research 
attempts [58, 59, 63, 64]. Thin polymer films can exhibit confinement-induced, 
peculiar physicochemical properties, such as changes in glass transition temper-
ature [65], elastic moduli [66], and crystallization [67]. Characterizing the prop-
erties of such thin films is therefore of high significance both technologically 
and methodically.

The chemical behavior and structure of thin films are often characterized 
by infrared absorption spectroscopy [68–71] or other vibrational spectroscopy 
techniques such as surface-enhanced Raman Spectroscopy [72]. Thin-film IR 
spectroscopy is commonly performed using attenuated total reflectance Fourier 
transform infrared spectroscopy (FTIR) [71, 73, 74].

Fourier Transform Infrared spectroscopy (FTIR) is performed to investigate 
the vibrational bands of the nanocomposite. Figure 13 displays the FTIR spectra 
of (PMMA-PVA)/ZnO NPs nanocomposite thin films with 0%, 2%, 8%, and 16% 
of ZnO NPs as a function of the wavenumber in the range (500–4000  cm–1). Fig-
ure 14 shows FTIR spectra of (PMMA-PVA)/ZnO NPs nanocomposites decom-
posed into three consecutive spectral ranges, mainly (a) (500–1500)  cm−1, (b) 
(1500–2500)  cm−1, and (c) (2500–4000)  cm−1. Our results indicate that PMMA-
PVA polymer thin films exhibit vibrational band at 669   cm–1 and bands at 
745.2  cm–1 and 926  cm–1 could be ascribed to the bending of C–O bond and C–H 
bond, respectively. Additionally, vibrational bands at 1214.5   cm–1, 1494   cm–1, 
and 1428.6  cm–1 could be attributed to the C–O bond stretching and O–H bond 
stretching, respectively. Likewise, vibrational band at 1725.08   cm–1 could be 
assigned to the stretching of C=O groups. Finally, the band at 3019  cm–1 could 
be attributed to C–H stretching of the Methylene group. In addition, we found 
that (PMMA-PVA)/ZnO NPs nanocomposite thin films exhibit vibrational 
bands at 1150.7   cm–1 that could be correlated with Zn–O bond. The observed 
increased bond intensity at 1725.08  cm−1 seems to be due to the presence of the 
(ester bond) stretching of PMMA-PVA. This could be explained by the fact that 
PMMA can coordinate with  Zn2+ ions on the surface of the ZnO nanoparticles 
in good agreement with Gowri and et.al. within numerical accuracy [75]. The 
variations of the peak’s intensities of the whole FTIR spectra of (PMMA-PVA)/
ZnO NPs nanocomposite thin films may be interpreted in terms of the intermo-
lecular bonding between the PMMA-PVA nanocomposites and ZnO NPs.
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Thermogravimetric analysis (TGA) of (PMMA‑PVA)/ZnO NPs thin films

The thermal stability of (PMMA-PVA)/ZnO NPs nanocomposite thin films is 
investigated by employing thermogravimetric analysis (TGA) at temperatures up 
to 400  °C as shown in Fig.  15. TGA thermograms of (PMMA-PVA)/ZnO NPs 
nanocomposites show considerable weight loss (WL) steps at different increasing 
temperatures, and heating rates based on adsorbed water, intermolecular/intramo-
lecular bonding and chemical stability. The TGA profile of (PMMA-PVA)/ZnO 
NPs nanocomposites has two WL steps at 110 and 250  °C irrespective of the 
degree of incorporation of ZnO NPs in the PMMA-PVA polymeric thin films. 
The first WL and second WL were slightly shifted toward lower and higher tem-
peratures demonstrating the effect of the change of intermolecular/intramolecu-
lar bonding. Similar to what our results on (PMMA-PVA)-SiO2 NPs, the WL of 
(PMMA-PVA)/ZnO NPs nanocomposite thin films is found to be inversely pro-
portional to the wt.% of ZnO NPs, indicating the strengthen of physicochemical 
bonding density by increasing the incorporation degree with ZnO NPs. Advan-
tageously, (PMMA-PVA)/ZnO NPs nanocomposites materials are found to 
be thermally stable at temperatures below 110  °C at which most of the optical 
applications of the nanocomposite can be accomplished. Despite that the slight 
and negligible slope in TGA curve below 110 °C occurred due to water/solvent 
adsorption and can be tackled using proper techniques of water treatment, ther-
mal stability of all investigated thin films has been confirmed.

Fig. 13  The FTIR spectra of (PMMA-PVA)/ZnO NPs nanocomposite thin films as a function of wave-
number at different ZnO NPs concentrations
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Scanning electron microscope (SEM)

The features of surface morphology of (PMMA-PVA)/ZnO NPs nanocompos-
ites are examined using scanning electron microscopy (SEM). The SEM micro-
graphs for different concentrations of ZnO NPs magnified at 20 μm magnifica-
tion scale are shown in Fig.  16. Figure  16a shows that undoped PMMA-PVA 
nanocomposites exhibit an amorphous nature with a smooth surface. Figure 16 
(b–e) shows the SEM images of ZnO NPs homogenously spread on the sur-
face of PMMA-PVA thin film matrix. The measured size of ZnO NPs lies in 
the (100–500) nm range in diameter. Obviously, good dispersion of ZnO NPs 
within the PMMA-PVA matrix is confirmed. Having obtained well-dispersed 

Fig. 14  The FTIR spectra of (PMMA-PVA)/ZnO NPs nanocomposite thin films as a function of wave-
number at different ZnO NPs concentrations decomposed into three consecutive spectral ranges: (a) 
(500–1500)  cm−1, (b) (1500–2500)  cm−1 and (c) (2500–4000)  cm−1
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(PMMA-PVA)-ZnO NPs nanocomposites with four different ZnO NPs concen-
trations, we proceed with synthesis process of ZnO NPs for optical, chemical 
and thermal characterizations.

Fig. 15  The TGA curves of (PMMA-PVA)/ZnO NPs nanocomposites at different concentrations of ZnO 
NPs with respect to (PMMA-PVA) content

Fig. 16  The SEM micrographs of (PMMA-PVA)/ZnO NPs nanocomposite thin films at different concen-
trations of ZnO NPs
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Conclusion

In summary, we report our results on synthesized (PMMA-PVA)/ZnO NPs nano-
composite thin films prepared using the dip coating technique. (PMMA-PVA)/
ZnO NPs thin films are prepared using the (PMMA-PVA) polymeric solution 
added to wt% of (2%, 4%, 8%, and 16%) of (ZnO) NPs. The optical proper-
ties of the synthesized thin films are measured, characterized, and interpreted. 
In particular, transmittance, reflectance, refractive index, extinction coefficient, 
absorption coefficient, and the optical band-gap energy of synthesized thin films 
are measured and characterized. Furthermore, Urbach energy and dielectric func-
tions are correlated with the UV–Vis measurements and calculated accordingly. 
On average, the transmittance of the undoped PMMA-PVA thin film is found to 
be 91.6% in the visible region. Our results indicate that transmittance of (PMMA-
PVA)/ZnO NPs nanocomposite thin films gradually decrease upon incorporating 
(ZnO) nanoparticles in the polymeric matrix. Consequently, other relevant optical 
properties of doped polymeric thin films are affected accordingly.

In addition, the refractive index of undoped PMMA-PVA thin film is found 
to be in the range (1.48 and 1.72). Our results indicate that the refractive index 
of doped polymeric thin films increases as (ZnO) NPs content inserted in thin 
films is increased. Moreover, the optical band gap of undoped PMMA-PVA thin 
film is found to be 4.069 eV as extracted from the Tauc plot. Interestingly, opti-
cal band-gap energy of (PMMA-PVA)/ZnO NPs thin films are found to decrease 
(4.041 eV, 4.016 eV, 3.98 eV, and 3.96 eV) as (ZnO) NPs concentration incorpo-
rated in polymeric thin films is increased.

To obtain a deeper insight into the vibration modes of both polymeric thin-
film system, FTIR absorbance spectra of (PMMA-PVA)/ZnO NPs nanocomposite 
thin film with different concentrations of (ZnO) NPs are measured in the spec-
tral range of 500   cm−1 up to 4000   cm−1. The FTIR profiles of (PMMA-PVA)-
ZnO NPs nanocomposite thin films are found to exhibit vibrational bands at 
1150.7 cm –1 that could be correlated with Zn–O bond. The observed increased 
bond intensity at 1725.08  cm −1 seems to be due to the stretching of the ester 
bond of PMMA-PVA. The variations of the peak’s intensities of the whole FTIR 
spectra of (PMMA-PVA)/ZnO NPs nanocomposite thin films may be interpreted 
in terms of the intermolecular bonding between the PMMA-PVA nanocomposites 
and (ZnO) NPs.

The thermal stability of (PMMA-PVA)/ZnO NPs nanocomposite thin films 
is investigated using thermogravimetric analysis (TGA) at temperatures up to 
400  °C. We found that the TGA profile of (PMMA-PVA)/ZnO NPs nanocom-
posite thin films exhibits two WL steps at 110 and 250  °C irrespective of the 
degree of the merger of (ZnO) NPs into (PMMA-PVA) thin films. The WL of the 
nanocomposite thin films is inversely proportional to the wt% of (ZnO) NPs, con-
firming that physicochemical bonding density is strengthened upon increasing the 
incorporation degree of (ZnO) NPs into polymeric thin films. Advantageously, 
(PMMA-PVA)/ZnO NPs nanocomposite thin films are found to be thermally sta-
ble at temperatures below 110 °C at which most of the optical applications can be 
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performed in spite of the slight and negligible slope in TGA curve below 110 °C 
which is mostly due to water/solvent adsorption that can be tackled appropriately.
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