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Abstract
The preparation of a lanthanum ion-imprinted polymer is described via surface ion 
imprinting, with polyethyleneimine as the functional monomer and SBA-15 as the 
matrix material. Its structure was characterized and analyzed, and static adsorp-
tion experiments were carried out to determine the best experimental conditions for 
the adsorption of lanthanum ions. The effects of initial concentration, temperature, 
adsorption time and pH on the adsorption of lanthanum ion surface-imprinted poly-
mer were investigated. In addition, the regeneration performance of La(III)-IIP-PEI/
SBA-15 on lanthanum ion was studied and showed that La(III)-IIP-PEI/SBA-15 has 
strong specific recognition ability and high reuse performance.

Keywords Surface ion imprinting · Polyethyleneimine · SBA-15 · Specific 
recognition ability

Introduction

SBA-15 is an important constituent of SBA series-type mesoporous molecular 
sieves [1]. Its structure is identical to that of MCM-41 mesoporous molecular sieves, 
both of which are two-dimensional hexagonal structures [2–6]. Due to improved 
hydrothermal stability, SBA-15 is widely used in catalytic and adsorption reactions. 
Sewage is commonly treated with adsorption technology [7], and its efficiency can 
be improved by using SBA-15. Due to the simple operation and high adsorption 
capacity of the adsorbent, the adsorption method has become the most effective in 
treating rare earth ion contamination [8].

SBA-15 molecular sieve was first synthesized by Academician Zhao [9] in 1998. 
The step of synthesizing SBA-15 molecular sieve requires two parts: The first part 
is to form a liquid crystal phase in solution through active agent molecules (such as 
P123) containing hydrophilic and hydrophobic groups at both ends and inorganic 
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monomer molecules under a certain condition. Organic–inorganic liquid crystal 
phase: At this time, the structure of the sample has a lattice parameter of nanometer 
size. The second part uses high-temperature heat treatment to remove the organic 
template, and the sample will form a highly ordered pore structure.

So far, there are three main methods for preparing SBA-15 molecular sieves: 
hydrothermal synthesis [10, 11], sol–gel method and microwave radiation method. 
The hydrothermal synthesis method is a reaction of an acid solution, a templat-
ing agent and a silicon source in a constant temperature water bath. After a certain 
period of time, it is crystallized, washed, filtered and dried. Next, the template is 
calcined by high temperature to obtain a mesoporous material.

The research focus of surface ion-imprinted materials is primarily on how to 
increase the adsorption capacity of materials [12], enhance the selection perfor-
mance and regeneration performance of adsorbent adsorption [13], optimize the 
optimal adsorption experimental conditions [14], simplify the recovery [15], more 
efficiently separate and purify within the process [16] and other aspects [17, 18]. 
The high selectivity of surface ion-imprinted polymers has made surface imprinting 
technology increasingly useful in the field of wastewater treatment.

Polyethyleneimine (PEI) contains amine groups in its molecular backbone, which 
can form strong coordination with rare earth metal ions [19–21]. PEI is a solid mate-
rial that can capture heavy metal ions and rare earth ions. Examples of studies of 
the adsorption of heavy metal ions by polyethyleneimine are PEI coated on ion 
exchange resin and silica gel surfaces [22–24].

At present, the main method used for rare earth separation is solvent extraction, 
but according to our understanding, solvent extraction is not only inefficient, but 
also not environmentally friendly. Therefore, it is very important to choose an effi-
cient and environmentally friendly separation method. In this paper, a surface ion-
imprinting technique was used to synthesize a lanthanum ion surface ion-imprinted 
polymer with good selective adsorption properties for lanthanum ions, which 
achieved separation and enrichment of rare earth lanthanum ions.

Experimental

Chemicals and reagents

Tetraethyl orthosilicate (TEOS, 98%), surfactant poly(ethylene glycol)-block-
poly(propylene glycol)-block-poly(ethylene glycol)(P123), La(NO3)3·6H2O, 
Gd(NO3)3·6H2O, Ce(NO3)3·6H2O and Pr(NO3)3·6H2O were all obtained from Sin-
opharm Chemical Reagent Co., Ltd. 3-chloropropyltriethoxysilane and epichlorohy-
drin were obtained from Aladdin Reagent. Hydrochloric acid (HCl), Al(NO3)3·9H2O 
and Fe(NO3)3·9H2O were purchased from Xilong Scientific Co., Ltd. Distilled water 
was used throughout.
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Preparation La(III)‑IIP‑PEI/SBA‑15

Preparation of alkylated SBA‑15

Alkylated SBA-15 matrix material was prepared under acidic conditions using P123 
as the template, ethyl orthosilicate as the silicon source and 3-chloropropyltriethox-
ysilane as the coupling agent. 2.01 g of P123 was weighed with an analytical balance 
and added to a 500-mL three-neck flask. Then, 50 mL of deionized water and 10.4 mL 
of concentrated hydrochloric acid were added to the three-necked flask and stirred 
until the P123 was dissolved in a constant temperature water bath at 40 °C. After 1 h, 
4.25 mL of tetraethyl orthosilicate was added dropwise to the three-necked flask, and 
the mixture was vigorously stirred for 1 h. Next, 0.45 mL of 3-chloropropyltriethoxysi-
lane was pipetted slowly into the mixed system and stirred for 22 h. The solution was 
poured hot into a clean 500-mL large beaker and statically crystallized for two days at 
room temperature. It was suction filtered, washed repeatedly with deionized water and 
dried overnight at 75 °C to obtain a white powder. According to the standard of adding 
1.5 g of raw powder per 200 mL of ethanol solution, Soxhlet was extracted with etha-
nol at 80 °C for 6 h and dried to obtain alkylated SBA-15.

Preparation of PEI/SBA‑15

2.5  g of polyethyleneimine was dissolved in 100  mL of deionized water, and the 
alkylated SBA-15 obtained in “Preparation of alkylated SBA-15” section was mixed 
therein and stirred in a water bath at 90 °C for 10 h. After the reaction completed, it was 
cooled and repeatedly rinsed with deionized water to remove the remaining PEI. PEI/
SBA-15 was obtained and dried at 80 °C overnight.

La(III)‑imprinted PEI/SBA‑15

The dried PEI/SBA-15 was added to a higher concentration of  La3+ (100  mL, 
1000 mg/L) solution and the pH was adjusted to 5. After the adsorption was saturated, 
the remaining  La3+ on the surface was washed with deionized water, and then thor-
oughly dried in a vacuum drying oven at 60 °C and removed.

Preparation of non‑ion‑imprinted polymers(NIP‑PEI/SBA‑15)

The step of adsorbing La(III) ions was omitted, while the remaining steps were identi-
cal as described in “Preparation La(III)-IIP-PEI/SBA-15” section.

Adsorption procedure

Static adsorption experiment

Thirty  milliliters of the low concentration  La3+ solution was added to a 250-mL 
Erlenmeyer flask 10 mg of the ground adsorbent was then added, and the conical 
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flask with plastic wrap. The mixture was shaken for 2 h in a constant temperature 
water bath shaker until the adsorption reached equilibrium, then centrifuged in a 
low speed centrifuge, where a certain amount of the supernatant was diluted into a 
25-mL volumetric flask and measured by arsenazo(III) colorimetry. The absorbance 
of the diluted solution was calculated and the concentration of cesium ions in the 
remaining solution was calculated to determine the adsorption capacity. The formula 
for adsorption amount is as follows:

where Q is the adsorption amount of the adsorbent (mg g−1), C0 is the initial con-
centration of the rare earth ion (mg L−1), Ce is the concentration of the lanthanum 
ion at saturation (mg L−1), V is the volume of the sample (L), and m is the mass (g) 
of the added adsorbent.

Selective identification of lanthanum ions

La3+ was separately placed in  Gd3+,  Ce3+,  Pr3+,  Y3+,  Fe3+ and  Al3+ as a binary 
coexisting system, and ion-imprinted polymer or non-ion-imprinted polymer was 
added for sufficient adsorption, where the concentration of each ion was determined 
by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The parti-
tion coefficient, Kd, of each metal ion was determined using Formula (2), the selec-
tivity coefficient k of the ion-imprinted polymer to  La3+ was calculated according to 
Formula (3), and then, the specific recognition ability of ion-imprinted polymer to 
 La3+ was evaluated.

where Kd is the partition coefficient of a specific metal ion, Qe is the saturated 
adsorption capacity of the metal ion (mg g−1), Ce is the concentration of the ion at 
equilibrium (mg L−1), and k is the selectivity of the  La3+ coefficient.

Characterization methods

The adsorbent was characterized by Fourier transform infrared spectroscopy and 
scanning electron microscopy; the concentration of rare earth ions in the solution 
was measured using a spectrophotometer, and the concentration of some mixed 
ions was measured by inductively coupled plasma atomic emission spectroscopy 
(ICP-AES).

(1)Q =
(C0 − Ce)V

m
,

(2)Kd =
Qe

Ce

(3)k =
Kd(La)

Kd(M)
,
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Results and discussion

Characterizations of adsorbents

Infrared spectroscopy analysis

Figure  1 shows the infrared spectra of SBA-15, PEI/SBA-15 and  La3+-IIP-PEI/
SBA-15. It is shown that the absorption peaks appearing at 462  cm−1, 806  cm−1 
and 1090  cm−1 are all vibration peaks of Si–O–Si. The peaks at 3420  cm−1 and 
1630 cm−1 can be assigned to the stretching vibration and bending vibration of the 
alcoholic hydroxyl group on the surface of SBA-15, respectively. The peak appear-
ing at 1420 cm−1 is the stretching vibration absorption peak of the C–N bond, and 
the peak appearing at 1630 cm−1 is the bending vibration peak of the N–H bond. 
All of these indicate that polyethyleneimine has been grafted onto the surface of the 
SBA-15 molecular sieve to form grafted PEI/SBA-15 particles. The newly emerg-
ing peak at 2926 cm−1 may be the C–H stretching vibrational peak of the methine 
formed in the epichlorohydrin reaction.

SEM analysis

Figure 2 shows the SEM images of the adsorbents.  La3+-IIP-PEI/SBA-15 showed a 
rough, uneven surface with noticeable cavities and pore. The difference in NIP-PEI/
SBA-15 indicates that the eluent successfully separated the template La(III) ions 
from the polymer, resulting in many pores [25–27].
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Fig. 1  The infrared spectra of SBA-15 (a), PEI/SBA-15 (b) and  La3+-IIP-PEI/SBA-15 (c)
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Effect of adsorption conditions on static adsorption properties of adsorbents

Effect of solution pH on adsorption process

For the adsorption process of rare earth ions, the pH of the system must be consid-
ered, because pH not only affects the form of rare earth ions in aqueous solution, but 
also affects the adsorption performance of the adsorbent itself. Rare earth ions are 
generally present in the form of ions in an acidic solution and ions slowly begin to 
precipitate in alkaline solution. In this experiment, five samples of the same concen-
tration of La(III) ion solution were prepared, and the pH of the solution was adjusted 
from 2 to 6 using a pH acidity meter. Then, static adsorption experiments were car-
ried out.

The adsorption amount of  La3+-IIP-PEI/SBA-15 was greatest when pH = 5 
(Fig.  3). When pH is low, the concentration of  H+ in the solution is high, which 
forms a coordination with –NH– in the polyethyleneimine, thus causing no blotting 
of  La3+. As pH increased, the  H+ content in the solution decreased, and most of the 
–NH– was released, thereby increasing the adsorption amount. When the pH con-
tinued to rise, the content of  OH− increased, which formed precipitates with  La3+ 
leading to decreased adsorption.

Adsorption kinetics study

The relationship between the adsorption of  La3+-IIP-PEI/SBA-15 and reaction time 
is observed in Fig. 4. It can be concluded that the optimum adsorption time is 1 h. 
To investigate the adsorption mechanism of rare earth ions and the rate limiting step 
of the adsorption process, the kinetics of adsorption changes with time [28, 29], and 
the relevant parameters are shown in Table 1.

The fitting parameters of the dynamic model of Table 1 indicate that the corre-
lation coefficient of the quasi-secondary dynamics is closer to 1. Therefore, it can 

Fig. 2  The SEM images
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be assumed that the adsorption of La(III) ions by  La3+-IIP-PEI/SBA-15 was more 
suitable for the quasi-secondary kinetic model. It also indicates that the rate limit-
ing step of the adsorption process of  La3+-IIP-PEI/SBA-15 was chemisorption.

Isothermal adsorption model of La3+‑IIP‑PEI/SBA‑15

The adsorption of  La3+-IIP-PEI/SBA-15 was carried out at 25  °C, 45  °C and 
65 °C (Fig. 5). The adsorption amount rapidly increased with the increase in ini-
tial concentration and then more slowly increased ending in a plateau. Adsorption 
saturation was achieved at an initial concentration of 500 mg L−1, and the adsorp-
tion amount reached 629.85 mg g−1 at 65 °C.

From the correlation coefficients of the two models in Table 2, the adsorption 
of  La3+ by  La3+-IIP-PEI/SBA-15 was more consistent with the Langmuir model, 
and the adsorption of  La3+-IIP-PEI/SBA-15 was monolayer adsorption.

Adsorption thermodynamics study of La3+‑IIP‑PEI/SBA‑15

The adsorption thermodynamic constants of  La3+-IIP-PEI/SBA-15 at all tempera-
tures are shown in Table 3. ΔG0 was less than zero, indicating that the adsorption 
reaction of  La3+-IIP-PEI/SBA-15 on La(III) ions can be spontaneously carried 
out at 25 °C, 45 °C and 65 °C.
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Fig. 3  Effect of pH on the adsorption properties of imprinted material
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Dubinin–Radushkevich (D–R) adsorption model

The adsorption energies, E, of  La3+-IIP-PEI/SBA-15 were higher than 8.0 kJ mol−1 
at 25 °C, 45 °C and 65 °C in Table 4. Thus, the adsorption of  La3+-IIP-PEI/SBA-
15 was chemical adsorption, which was consistent with the results obtained by the 
adsorption kinetics.

Selectivity study

The selectivity coefficient of SBA-15 reveals that SBA-15 has almost no selectivity 
for rare earth ions in Table 5.

As seen in Tables  6 and 7,  La3+-IIP-PEI/SBA-15 showed good selectivity to 
rare earth La(III) ions compared to  La3+-NIP-PEI/SBA-15.  La3+-IIP-PEI/SBA-15 
showed good separation of  La3+ adjacent to  Ce3+ and  Pr3+, while  La3+-NIP-PEI/
SBA-15 was not ideal for mixed ion separation. Thus, it was demonstrated that the 
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Fig. 4  Time curve of imprinted material

Table 1  Quasi-first-order, quasi-secondary dynamics fitting parameters of imprinted material

Pseudo-first-order equation Pseudo-second-order equation

k1 min−1 R2 Qm (mg g−1) k2 × 10–4/g (mg min)−1 R2 Qm(mg g−1)

0.0268 0.9536 483.96 6.28 0.9978 526.32
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Fig. 5  Isothermal adsorption curve of imprinted material

Table 2  Isotherm fitting 
parameters of  La3+-IIP-
PEI/SBA-15 at different 
temperatures

Adsorption model Temperature (°C)

25 45 65

Langmuir
R2 0.9846 0.9904 0.9996
Qm 416.67 555.56 588.24
KL 0.0208 0.02145 0.0394
R2 0.9827 0.9794 0.9972
Freundlich
n 1.63 1.08 1.03
KF 8.9245 1.167 1.341

Table 3  Thermodynamic fitting 
parameters

T (°C) ∆G0 (kJ mol−1) ∆S0 [J (mol K)−1] ∆H (kJ mol−1)

25 − 19.63
45 − 21.83 109.87 13.107
65 − 24.03
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ion-imprinted polymer successfully established the blotting site on the surface of the 
SBA-15 during the preparation process.

Elution and reuse

Sulfuric acid, hydrochloric acid, nitric acid and EDTA were selected as the desorp-
tion liquid. Figure 6 demonstrates that the desorption capacity of hydrochloric acid 

Table 4  Adsorption energies T (oC) E (kJ mol−1)

25 9.23
45 10.68
65 8.82

Table 5  Distribution coefficient 
and selectivity coefficient of 
SBA-15

La3+/M3+ Kd(La3+) (mL g−1) Kd(M3+) k

La3+/Fe3+ 1285.7 358.13 3.59
La3+/Al3+ 1166.67 300.69 3.88
La3+/Ce3+ 1164.2 1552.27 0.75
La3+/Pr3+ 1226.5 1238.89 0.99
La3+/Gd3+ 1311.76 1298.77 1.01
La3+/Y3+ 1254.9 1140.82 1.10

Table 6  Partition coefficient and 
selectivity coefficient of  La3+-
IIP-PEI/SBA-15

La3+/M3+ Kd(La3+) (mL g−1) Kd(M3+) k

La3+/Fe3+ 1025 67.97 15.08
La3+/Al3+ 1124.16 42.28 26.59
La3+/Ce3+ 1054.8 446.95 2.36
La3+/Pr3+ 1216.5 550.45 2.21
La3+/Gd3+ 1152.58 377.90 3.05
La3+/Y3+ 1214.08 298.30 4.07

Table 7  Partition coefficient and 
selectivity coefficient of  La3+-
NIP-PEI/SBA-15

La3+/M3+ Kd(La3+) (mL g−1) Kd(M3+) k

La3+/Fe3+ 1002.65 421.28 2.38
La3+/Al3+ 1140.21 440.24 2.59
La3+/Ce3+ 1145.28 1156.85 0.99
La3+/Pr3+ 1128.6 1064.72 1.06
La3+/Gd3+ 1232.05 1062.11 1.16
La3+/Y3+ 1015.29 646.68 1.57
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was the strongest. Five repeated performance tests were carried out using hydrochlo-
ric acid as the desorption liquid, and the adsorption rate was still higher than 80%. It 
is proved that  La3+-IIP-PEI/SBA-15 had good regenerative ability and can be reused 
many times.

Conclusions

The surface ion-imprinting technique was used to prepare the La(III)-imprinted 
polymer with polyethyleneimine as the functional monomer and SBA-15 as the 
matrix material. The structure was analyzed and the static adsorption experiment 
was carried out to determine the best experimental conditions. The conclusions are 
as follows:

1. The optima pH value for adsorption of low concentration rare earth ion solution 
was 5, and the optimal adsorption temperature was 65 °C,

2. Via linear fitting of experimental data, the quasi-secondary kinetic model can best 
describe the adsorption mode of  La3+-IIP-PEI/SBA-15,

3. The adsorption of  La3+-IIP-PEI/SBA-15 correlated well with the Langmuir iso-
therm adsorption model, and the thermodynamic analysis of the adsorption pro-
cess showed that ΔG0 < 0, which proved that the reaction was spontaneous,

4. Selective adsorption experiments were carried out on matrix materials SBA-
15,  La3+-IIP-PEI/SBA-15 and  La3+-NIP-PEI/SBA-15. It was concluded that 
 La3+-IIP-PEI/SBA-15 had good specific recognition ability for  La3+.

5. The desorption properties of different eluents for  La3+-IIP-PEI/SBA-15 were 
investigated, with the finding that the desorption capacity of hydrochloric acid 
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Fig. 6  Elution of imprinted material
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is the strongest. Five times of repeated use experiments were carried out with 
hydrochloric acid, and the adsorption rate was more than 80%, indicating that 
 La3+-IIP-PEI/SBA-15 had good recyclability.
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