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Abstract
New benzothiadiazole-based long-wavelength organic dyes (Y-1 and Y-2) were pre-
pared for effectively sensitizing diphenyliodonium hexafluorophosphate (IOPF) to 
initiate the fast curing of bisphenol-A epoxy resin (E51) under visible light, avoid-
ing traditional UV light sources that have high energy and high radiation. Y-1 and 
Y-2 have absorption spectra extended to more than 550 nm. By using Y-1 and Y-2 
as photosensitizers for IOPF, E51 reach high epoxy conversions of 95% under light 
wavelength of 470-nm irradiation. IOPF and benzothiadiazole dyes present at the 
same time show good visible-light initiating activity. The high curing conversions 
are attributed to the photoelectron transfer reaction between diphenyliodonium hex-
afluorophosphate and benzothiadiazole dyes, based on our photochemical and elec-
trochemical experiments. In addition, the terminated groups or of Y-1 (–F) and Y-2 
(–OCH3) have a great influence on the photopolymerization rate of the curing sys-
tems and thermal properties of E51 after cured. In addition, E51 was even polymer-
ized about 70% in the presence of 510-nm light filter.

Keywords Visible-light curing · Benzothiadiazole · Diphenyliodonium 
hexafluorophosphate · Long-wavelength organic dyes · Bisphenol-A epoxy resin

Electronic supplementary material The online version of this article (https ://doi.org/10.1007/s0028 
9-020-03345 -7) contains supplementary material, which is available to authorized users.

 * Yu Chen 
 cy26tj@163.com

1 Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Tianjin 
University of Technology, Tianjin 300384, People’s Republic of China

2 Tianjin Dage Technology Co., Ltd., Tianjin 301700, People’s Republic of China

http://orcid.org/0000-0003-1314-5316
http://crossmark.crossref.org/dialog/?doi=10.1007/s00289-020-03345-7&domain=pdf
https://doi.org/10.1007/s00289-020-03345-7
https://doi.org/10.1007/s00289-020-03345-7


4850 Polymer Bulletin (2021) 78:4849–4862

1 3

Introduction

Nowadays, light curing technologies have been widely used on coating industry, 
food packing and material forming and processing, e.g., 3D printing [1–5]. The 
light curing induced by visible light and even infrared light is more harmless to 
the human body than that induced by ultraviolet (UV) lights [6]. A variety of 
photoinitiators, dyes and other photosensitizers as well as modified monomers 
or prepolymers have been successfully developed to match different light wave-
lengths [7–9].

Diphenyliodonium hexafluorophosphate (IOPF) is a conventional cationic 
UV photoinitiator [10, 11]. A broader spectrum can be matched by adding dye 
sensitizers to improve the visible-light initiation activity of IOPF, and thus, the 
epoxides can be initiated to crosslink under visible light [12–14]. Epoxy resin is 
a common epoxides in the curing system [15–17]. Many industrial applications 
use epoxy resin as one of the engineering polymer materials, such as coating 
and adhesive substances, semiconductor manufacturing [18, 19]. The bisphenol-
A type of epoxy resin (E51) is inexpensive aromatic epoxy resin. It was often 
used as thermal curing materials and has slow photopolymerization rate [20, 21]. 
Researches have been focused on promoting E51 to fast cationic photopolymeri-
zation instead of thermal curing in the past few years, due to its good properties 
after polymerized [22–26].

Wang et  al. [22] studied the photoinitiated and thermally initiated cationic 
polymerizations of diglycidyl ether of bisphenol A epoxy oligomer. Abadie et al. 
[23] concluded suitable addition of the sulfonium salt lowered the activation 
energy for the bisphenol-A epoxy system. Vabrik et al. [24] successfully synthe-
sized diglycidyl ether of bisphenol-A epoxy resin-acrylated polyurethane semi-
interpenetrating polymer networks upon irradiation with ultraviolet light. Chen 
et al. [25] developed a two-component photoinitiator system for promoting cati-
onic polymerization of bisphenol-A-based epoxy under visible light. Wang et al. 
[26] synthesized dyes to sensitize iodonium bis(4-methylphenyl)hexafluorophos-
phate for cationic polymerization of E51 under the laser diode at 455 nm. These 
results indicate that using this safe and low-cost bisphenol-A epoxy resin and its 
derivatives is practical in the field of light curing technology.

Dyes with different structures and absorption ranges have been reported as 
long-wavelength sensitizers in the visible-curing systems initiated by diphenyli-
odonium hexafluorophosphate [9, 27]. However, benzothiadiazole-based organic 
dyes are few involved. Among the dyes, benzothiadiazole is a good electron-
attracting group that forms a push–pull structure with an electron-donating group. 
A long-conjugated molecule forms from the structure, which broadens the long-
wavelength absorption spectrum. In the field of dye-sensitized solar cells, it is 
reported that benzothiadiazole-based dyes can match the simulated solar light 
[28–31]. In addition, 4,7-dibromo-2,1,3-benzothiadiazole is very reactive for 
nucleophilic substitution reactions and coupling reactions [32]. Benzothiadiazole 
functionalized dyes are readily accessible. The side groups on benzothiadiazole-
based molecules affect the HOMO level. Inserting fluorine lowers the HOMO, 
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but introducing alkoxy raises it [33]. Using long-wavelength benzothiadiazole 
functionalized molecules to interact with UV photoinitiator are promising for 
application in sensitization of curing systems upon visible light. Their flexible 
molecular orbital energy levels have a positive influence on matching with iodo-
nium salt to generate synergistic effect.

In this study, a series of visible-light curing systems based on two benzothiadia-
zole dyes with different ratios of IOPF were designed. Facile synthesis of the two 
benzothiadiazole dyes was accomplished in our laboratory. Near-infrared (NIR) and 
UV–visible spectroscopy technologies were utilized for detecting epoxy conversion 
of E51 and photolysis of photoinitiator, dye and their mixtures, respectively. In the 
light curing study, cationic photopolymerization of E51 were investigated under a 
470-nm light emitting diode (LED) irradiator in the absence and presence of 510-
nm light filter. The influence of dye absorption, the photoelectron transfer reaction 
between IOPF and dyes and sample thickness on the curing systems of E51 were 
studied, and discussion for further understanding the structure–property relationship 
were also involved. There are still few 510-nm photosensitizers for photopolymer-
ization. The two benzothiadiazole dyes have good interact with IOPF under both 
470-nm light and 510-nm light, and it is hoped to be a very promising candidate for 
long-wavelength light curing technology.

Experimental

Materials

The materials and agents used were as follows: diphenyliodonium hexafluorophos-
phate (IOM, cationic photoinitiator, TCI (Shanghai) Chemical Industry Develop-
ment Co., Ltd.); benzothiadiazole dyes (Y-1 and Y-2) were prepared in our labora-
tory; bisphenol-A epoxy resin (E51, photosensitive resin, Jiangsu Sanmu Group Co. 
Ltd.); epichlorohydrin  (C3H5ClO, chemical pure, Beijing Chemical Works). The ini-
tial material 4,7-dibromo-2,1,3-benzothidiazole is purchased from Energy Chemi-
cal (Beijing). Tetrabutylammoniun hexafluorophosphate (n-Bu4NPF6) of 0.1 M was 
added into a dichloromethane solution (DCM) as electrolyte, which was purchased 
from Tokyo Chemical Industry Co., Ltd. (Tianjin), for cyclic voltammetry (CV) 
measurements.

Synthesis of benzothiadiazole dyes

The synthetic route of Y-1 and Y-2 is shown in Scheme 1. The intermediates 1 and 2 
are prepared according to literatures [34–37].

Synthesis of 1 and Y-1: 10-mmol p-fluorobromobenzene, 20-mmol KOH and 
20-mL DMSO solution were sequentially added into a one-neck round flask of 
100 mL to form a mixture, which was stirred 10 min at room temperature. Then, 
10 mmol of p-fluoroaniline was added to the system. Their reactions lasted 2 h at 
room temperature in the dark. Finally, products were obtained by extracting three 
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times with a water/ethyl acetate mixture of 40/20 mL, and the organic solvent was 
removed without purification. Then, 1.0 mmol 4,7-dibromo-2,1,3-benzothidiazole, 
3.0  mmol compound 2, 0.9-g  Pd2(dba)3, 448-mg t-BuOK, 0.14-mL P(t-Bu)3 and 
30-mL toluene reacted 12 h in a 100-mL two-neck flask under argon. After the reac-
tion product was extracted with ethyl acetate, the extracts passed through a column 
(PE: EA = 20:1).

Y-1: This was 1H NMR (400  MHz, DMSO-d6) δ 7.15–7.10 (m, 10H), 7.03 
(m, 8H). 13C NMR (101 MHz, CDCl3) δ 162.09, 159.68, 154.07, 145.92, 145.89, 
137.65, 131.82, 127.18, 127.10, 125.88, 118.01, 117.79.

Synthesis of 2 and Y-2: The synthetic procedure of 2 and Y-2 is the same as 
Synthesis of 1 and Y-1, 10-mmol p-methoxybromobenzene was used instead of 
10-mmol p-fluorobromobenzene.

Y-2: this was 1H NMR (400  MHz, DMSO-d6) δδ 7.08–7.03 (m, 10H), 6.91-
6.87 (m, 8H), 3.73 (s, 6H).13C NMR (101 MHz, CDCl3) δ 158.21, 154.09, 146.49, 
142.89, 137.66, 128.04, 126.03, 125.95, 125.47, 117.74, 117.52, 116.61, 57.43.

UV–Vis absorption, fluorescence emission spectroscopic and CV measurements

IOPF, dyes and E51 were weighed and fully mixed, and samples include IOM/Y-
I/E51, IOM/Y-2/E51, IOM/E51, Y-1/E51 and Y-1/E51.UV–vis absorption spectra 
were measured by UV-2600 UV–vis spectrophotometer (Shimadzu, Japan). Absorp-
tion changes with irradiation time were measured for dichloromethane solution of 
IOPF, dyes and IOPF/dye/E51 under a light source (FUV-6BK UV curing machine 
connecting with light emitting diode (LED) irradiator (470 nm), Guangzhou Ban-
woo Electronic Technology Co., Ltd.). The fluorescence emission spectra of Y-1 and 

Scheme 1  The synthesis route of Y-1 and Y-2 
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Y-2 are also compared. The fluorescence spectra conducted on a F-4500 fluores-
cence spectrophotometer (Hitachi, Japan) were used.

The CV tests were performed on a Zennium electrochemical workstation (ZAH-
NER, Germany) using a three-electrode system. Oxidation and reduction potentials 
of Y-1 and Y-2 were determined by cyclic voltammetry (CV) in acetonitrile solu-
tions containing 0.1 M  NBu4PF6 as a supporting electrolyte.

NIR spectroscopy measurement

NIR spectroscopy was performed on a 5700 infrared spectrometer (Nicolet, USA) to 
analyze the curing samples to detect the characteristic absorption peaks changes for 
the epoxy group of E51 with illumination time. The sample prepared was placed in a 
plastic round-hole mold with a diameter of 6 mm. An average value was determined 
from three repeated NIR tests. The light source for cationic light curing was an LED 
irradiator with a wavelength of 470 nm (110 mW  cm−2, A single-channel UV-A illu-
minometer, Beijing Normal University Optoelectronic Instrument Factory). When a 
filter was used, it was placed between the LED irradiator and the sample. The epoxy 
conversions were calculated by detecting the characteristic absorption peak of epoxy 
groups (at 6071 cm−1) with illumination time [25, 26]. The equation is as below.

where ST is the area of the epoxy C–H characteristic absorbance peak, S0 is the ini-
tial area of the epoxy C–H characteristic absorbance peak, RT is the area of the refer-
ence peak (at 4678 cm−1) and R0 is the initial area of the reference peak.

Thermal stability test

Thermal stability study for the products of IOPF/Y-1/E51 and IOPF/Y-2/E51 after 
cured was investigated by thermogravimetry (TG) analyses. TG curves were per-
formed on TG 209 F3 Tarsus (NETZSCH, Germany) at a heating rate of 10 °C/min 
under a nitrogen atmosphere.

Results and discussion

Absorption, fluorescence emission spectra and cyclic voltammograms of Y‑1 
and Y‑2

The synthetic Y-1 and Y-2 was characterized by 1H NMR and 13C NMR spectra, 
as shown in Supplementary Materials. As shown in Fig. 1a, b, Y-1 has a stronger 
absorption band than Y-2, while much weaker fluorescence emission than that of 
Y-2 when at the same concentration. UV–vis absorption spectrum of IOPF of  10−4 
M in dichloromethane is shown in Fig.  1c. The absorption of IOPF is limited at 
UV region. It is necessary for IOPF to induce visible light curing by incorporat-
ing with long-wavelength dyes. In our studied dyes, the –F and –OCH3-terminated 
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substitutes have an impact on their spectral properties. The visible-light absorption 
of Y-1 and Y-2 is exhibited by the distinct peak at 524 and 506 nm, respectively. 
The influence of dye structure on their electrochemical behavior was evaluated by 
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Fig. 1  UV-Vis absorption (a) and fluorescence emission spectra (b) of Y-1 and Y-2 in dichloromethane 
with concentrations of  10−4 M. c UV–vis absorption spectra of IOPF of  10−4 M in dichloromethane. d 
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CV method, as shown in Fig. 1d. The first oxidation potentials of Y-1 and Y-2 are 
0.874 V and 0.899 V. Figure 2 displays the normalized absorption and fluorescence 
emission spectra of Y-1 and Y-2 in dichloromethane. The smaller band gap of Y-1 
than Y-2 suggests that a stronger conjugation was obtained by introducing two meth-
oxy groups. This is consistent with its redshift maximum absorption peak. For their 
energy levels, the optical band gap (Eg

opt) of Y-1 and Y-2 are calculated to be 3.45 
and 3.76  eV by measuring the intersection wavelength of absorption and fluores-
cence spectra in Fig. 2 [38]. The above-spectroscopic and electrochemical data of 
Y-1 and Y-2 are listed in Table  1. Based on the Rehm–Weller equation, the free 
energy changes (△Gel) for the photoelectron transfer reaction between the excited 
states of Y-1/Y-2 and IOPF were separately calculated. The reduction potential of 
IOPF is − 0.653 V [39]. The calculated values of △Gel are negative for IOPF/Y-1 
and IOPF/Y-2. Therefore, the photoelectron transfer between IOPF and the studied 
dyes is thermodynamically allowed.

Theoretical calculations and thermal properties

To gain insight into the electronic properties and geometries of Y-1 and Y-2, quan-
tum chemical calculations based on DFT at the B3LYP/6-31G level were car-
ried out. The optimized geometric structures and frontier orbital of Y-1 and Y-2 
are shown in Fig.  3. From Fig.  3a, the dihedral angles between the benzothia-
diazole core and the diphenylamine of Y-1 are (C20–C12–N10–C3, 39.609°) and 
(C35–C14–N11–C6, 42.953°), and those of Y-2 are (C20–C12–N10–C3, 40.115°) 
and (C35–C14–N11–C6, 40.115°). The bond lengths between the benzothiadiazole 
core and the diphenylamine of Y-1 are (1.414 Å, N10–C3) and (1.415 Å, N11–C6), 
and those of Y-2 are (1.416 Å, N10–C3) and (1.416 Å, N11–C6). The result is attrib-
uted to Y-2 incorporating bis(4-fluorophenyl)amine having a very symmetric con-
figuration as compared to Y-1 with 4-fluoro-N-(4-methoxyphenyl)aniline. Both Y-1 
and Y-2 have a capability of photoinduced electron transfer by the HOMO–LUMO 
excitation, according to and frontier orbital results from Fig. 3b. The highest occu-
pied molecular orbital (HOMO) of Y-1 and Y-2 almost delocalize over the whole 
molecule, while the lowest unoccupied molecular orbital (LUMO) is localized at the 
benzothiadiazole core.

Photopolymerization

NIR technology was utilized to study the variation in epoxy conversion with illumi-
nation time for the visible-curing systems: IOPF/Y-1/E51 and IOPF/Y-2/E51. The 

Table 1  Photochemical and electrochemical data of Y-1 and Y-2

Name λmax
abs/nm λfl

max/nm Eox/V Ered/V Eg
opt/eV △Gel/eV

Y-1 293 525 426 0.874 0.529 0.767 3.45 − 1.93
Y-2 281 506 360 0.899 0.527 0.837 3.76 − 2.21
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Fig. 3  Optimized geometric structures (a) and frontier orbitals (b) of Y-1 and Y-2 
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effects of IOPF/benzothiadiazole-based organic dyes ratio, sample thickness and 
different light irradiation on the curing systems of cationic polymerization of E51 
were investigated. The curing systems of IOPF/E51, Y-1/E51 and Y-2/E51 are also 
analyzed for comparison. A LED light irradiator with the wavelength of 470 nm was 
applied for our research. A filter of 510 nm with transmittance about 86% were sub-
sequently used, and the measured transmittance value is shown in Supplementary 
Materials (Fig. S1).

Figure 4a shows the epoxy conversion of E51 as a function of irradiation time 
under 470-nm LED irradiator. The amount of IOPF and two organic dyes are 
2.0 wt.% and 1.0 wt.%, separately. At 470-nm light with intensity of 110 mW  cm−2 
and sample thickness of 120 μm, E51 conversions reach up to 94.3% and 94.9% by 
IOPF sensitized by Y-1 and Y-2. IOPF/Y-2/E51 exhibits a faster curing rate than 
IOPF/Y-1/E51. This result may be related to the photoelectron transfer between 
IOPF and the studied dyes. As calculated in section “Absorption, fluorescence emis-
sion spectra and cyclic voltammograms of Y-1 and Y-2,” the calculated free energy 
changes (△Gel) for the photoelectron transfer reaction between the excited states of 
Y-2 and IOPF (− 2.1 eV) is more negative than that between the excited states of 
Y-1 and IOPF (− 1.93 eV), suggesting higher reactivity for IOPF and Y-2 [25]. In 
addition, the curing results of polymerizations in the IOPF/E51, Y-1/E51 and Y-2/
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E51 system show that IOPF initiated E51 alone achieves conversion about 6.2%, and 
also the Y-1/E51 and Y-2/E51 systems cannot induce E51 alone under LED light.

In order to further understand the structure–conversion relationship of the studied 
curing systems, a 510-nm filter was put between the LED irradiator and the sample. 
Different ratios of IOPF/benzothiadiazole dyes and sample thickness were investi-
gated for the curing systems. The curing results of IOPF/Y-1/E51 and IOPF/Y-2/
E51 systems are shown in Fig.  4b, c. In the presence of 510-nm filter, both the 
IOPF/Y-1/E51 and IOPF/Y-2/E51 system approach epoxy conversions close to 70%. 
In Fig. 4b, the concentration of IOPF and Y-1 has greatly influenced the epoxy con-
version in IOPF/Y-1/E51 systems. Although the concentration ratio of IOPF/Y-1 are 
the same as 2:1, the IOPF of 4 wt.% with sensitization by Y-1 of 2 wt.% exhibits 
much faster initiation performance than IOPF of 2 wt.% with Y-1 of 1 wt.%. The 
increase in concentrations of photoinitiator and photosensitizer greatly enhanced the 
curing performance of E51 under filter. Meanwhile, IOPF/Y-1 initiated E51 more 
efficiently at 60-μm sample thickness than that at 120-μm sample thickness. The 
photoinitiation rate of IOPF/Y-1 is apparently influenced by changing sample thick-
ness. In contrast, the IOPF of 4 wt.% with sensation by Y-2 of 2 wt.% exhibits good 
initiation performances at both 60-μm and 120-μm sample thicknesses, as shown in 
Fig. 4c. The photoinitiation rate of IOPF with Y-2 at 60-μm sample thickness is only 
a little faster than at 120-μm simple thickness. On the whole, curing systems based 
on Y-2 have better activity than those based on Y-1 under the long-wavelength light 
of 470 nm and 510 nm. As known, IOPF have no absorption at 470 nm and 510 nm. 
Y-1 has wider absorption band range, but maybe a stronger synergistic interaction 
occurs between IOPF and Y-2 than that between IOPF and Y-1.

Besides, the products after cured under 510-nm filter of IOPF/Y-1/E51 and 
IOPF/Y-2/E51 show good properties on thermal stability. Based on TG analyses in 
Fig. 4d, IOPF/Y-1/E51 and IOPF/Y-2/E51 display a thermal decomposition temper-
ature (Td) of 364.2 °C and 327.2 °C, and the weight losses during TG are 15% and 
4% upon heating up to 300 °C, respectively. Y-1 and y-2 sensitized IOPF not only 
accelerated the curing of E51, but also obtained the curing polymer with high ther-
mal stability [25]. IOPF/benzothiadiazole dyes are very promising candidate pho-
toinitiation system for visible light curing beyond 500 nm. This work is hoped to 
provide experimental basis for such long-wavelength irradiated curing applications.

Synergistic effect of IOPF and benzothiadiazole dyes

UV–vis absorption spectra were employed to compare the absorption peak changes 
of IOPF/benzothiadiazole dyes mixtures and benzothiadiazole dyes alone before and 
after illumination. The interaction between IOPF and benzothiadiazole dyes was 
further studied. Figure 5 presents normalized absorption changes with illumination 
time of IOPF/Y-1, IOPF/Y-2, Y-1 and Y-2 in solution, respectively. The absorbance 
was measured at a certain interval.

Figure  5a shows a new absorption at 600–800  nm increases at first and then 
gradually decreases for IOPF/Y-1, so as that shown in Fig. 5b for IOPF/Y-2. The 
decreasing change of absorption at around 510 nm favors the synergistic effect of 
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Y-1 and Y-2 on sensitizing IOPF even in the presence of the filter. The results indi-
cate consumption of dyes occurs under interactions with IOPF. As a comparison, 
Fig. 5c, d displays the main absorption of Y-1 and Y-2 does not change with pro-
longed illumination, and there is almost no photolysis in the solution of benzothia-
diazole dyes alone. Thus, the synergistic effect of benzothiadiazole dyes with IOPF 
can be inferred from the phenomena, and it enhances the efficient initiation of E51 
to be fast cured under visible light [40].

Conclusions

The synthesized benzothiadiazole dyes (Y-1 and Y-2) assist the UV photoinitiator 
IOPF in the absorption of visible light, and they can effectively initiate the curing 
of bisphenol-A epoxy resin (E51) under 470-nm LED irradiator in the absence and 
presence of 510-nm filter. The parameters of IOPF/Y-1/E51 and IOPF/Y-2/E51 cur-
ing are investigated using NIR spectroscopy and photolysis. Y-1 has superiority 
of longer maximum absorption wavelength at 525 nm than that of Y-2 at 506 nm. 
However, IOPF/Y-2 initiated E51 much faster than IOPF/Y-1, which is possibly due 
to easier synergistic effect between IOPF and Y-2. The final epoxy conversions of 
IOM/Y-1/E51 and IOM/Y-2/E51 curing systems are close to 95% under the 470-nm 
LED irradiator and even reach 70% in the presence of 510-nm filter. The photolysis 
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Fig. 5  Photolysis of a IOPF/Y-1, b IOPF/Y-2, c Y-1 and d Y-2 in epichlorohydrin
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of IOPF and benzothiadiazole dyes has good activity after mixing, from which a 
synergistic effect between the two is inferred.
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