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Abstract
A hybrid hydrogel based on polypyrrole and hydrothermally prepared α-Fe2O3 
nanoparticles was synthesized via in situ chemical polymerization of pyrrole using 
sodium trimetaphosphate as a crosslinker. Wide-angle X-ray diffraction study con-
firmed the presence of α-Fe2O3 in the prepared material. Mapping of the elemental 
composition using energy dispersive X-ray spectroscopy showed the uniform distri-
bution of the inorganic particles inside the polypyrrole matrix. The effect of α-Fe2O3 
on the structure of the hybrid hydrogel and on the mechanism of charge storage 
was studied with scanning electron microscopy, cyclic voltammetry, galvanostatic 
charge–discharge and impedance spectroscopy. The specific capacitance was found 
to increase from 250  F  g−1 for the polypyrrole hydrogel up to 509  F  g−1 for the 
α-Fe2O3-doped hydrogel at the current density of 0.2 A g−1. The hematite incorpo-
ration also affected the morphology of the hydrogel leading to a slight increase in 
the double-layer capacitance accompanied with a strong increase in the pseudoca-
pacitance: from 239 F g−1 up to 486 F g−1. The initial polypyrrole hydrogel and the 
hybrid hydrogel demonstrated a capacitance retention of about 75% and 79% after 
3000 charge–discharge cycles at the current density of 4 A g−1, respectively.
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Introduction

As a power source, supercapacitors (SCs) fill the niche between the conventional 
electrochemical batteries and the dielectric capacitors. They demonstrate a higher 
cycle stability and power density than the former [1, 2] and a higher energy den-
sity than the latter. To achieve the beneficial characteristics of SCs, elaboration 
of porous electroconducting and ionically conducting materials containing elec-
trochemically active additives or chemical groups is required. This will allow for 
effective utilization of double-layer capacitance and fast faradaic redox reactions 
(pseudocapacitance) [3].

Recently, electrode materials for SCs based on electrically conductive poly-
mers (ECPs)—polypyrrole (PPy), polyaniline, polythiophene and their deriva-
tives have attracted a considerable interest due to their advantages such as electri-
cal conductivity, flexibility, redox activity and easy control of morphology during 
synthesis [4]. When used as electrode materials, electroactive polymer hydrogels 
(EPHs) demonstrate electrical and ionic conductivity simultaneously inside the 
whole volume of an electrode. Porous electroactive hydrogels facilitate ion trans-
port in the material that increases the power density of the electrode [5, 6].

The specific capacitance can be improved by introduction of electrochemically 
active additives which increase the pseudocapacitance of the material. For this 
purpose, the composites of ECPs with organic [7–9] and inorganic additives are 
intensively studied. The most commonly used inorganic additives are the elec-
troactive transition metal oxides (EOs), such as  MnO2 [10, 11],  Fe2O3 [12, 13], 
and  CeO2 [14, 15], which are not hazardous and have a high theoretical specific 
capacitance.

The α-Fe2O3 (hematite) nanoparticles with the n-type semiconductor proper-
ties are among the most promising EOs used in the preparation of the supercapac-
itor electrodes [16, 17]. They are electrochemically stabile [18] and have a suit-
able band gap (2.0–2.2 eV) [19], high values of specific power (2250 W kg−1) and 
energy (63.15 W kg−1) [20]; they also have a large specific capacitance: the maxi-
mum reported value achieved for α-Fe2O3 nanostructures was 340.5 F  g−1 [21]. 
As a rule, smaller hematite particles with a large surface-to-volume ratio allow 
to achieve a higher capacitance [22]. Hydrothermal synthesis is the most versa-
tile method used for the preparation of fine nanoparticles: the morphology and 
crystallite size of the product can be controlled by tuning the temperature, pres-
sure, isothermal holding time and the composition of the hydrothermal environ-
ment [23]. Additionally, hematite nanoparticles incorporated into the PPy matrix 
increase the electrical conductivity of the PPy due to a more dense packing of 
macromolecules on the polymer-particle interface [24]. It is worthy to mention 
that suchlike hybrid hydrogels demonstrate a combined pseudocapacitance due to 
simultaneous reversible redox transitions of PPy chains and iron atoms.

Insufficient electrical contact between ECPs and EOs and inhomogeneous dis-
tribution of the particles in the polymer matrix deteriorate the beneficial proper-
ties of the hybrid materials. This can be partially avoided by synthesis of ECPs in 
the form of a thin layer on the EOs [25–27] or by synthesis of EOs directly on the 
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surface (or in the bulk) of ECPs [28, 29]. At the same time, a porous, swellable 
form of ECPs—the EPHs—increases the availability of EOs for insertion/extrac-
tion of the electrolyte counter-ions inside the composite electrode, which is a pre-
requisite for pseudocapacitance.

The EPHs have a continuous electroconducting network with a high ion penetra-
tion rate in the polymer bulk [30]. Various EPHs have been synthesized by crosslink-
ing the polymer chains via the hydrogen bonds or ionic interactions: using phytic 
acid [31, 32], trypan blue [33], or amino trimethylene phosphoric acid [34]. EPHs 
have also been produced by polymerization of pyrrole or aniline within another 
hydrogel based, for instance, on polyvinyl alcohol (PVA) [35, 36], acrylic acid-g-
cellulose nanocrystals [37], poly(acrylic acid) [38], heparin-methacrylate [39], 
3,4-poly(ethylenedioxythiophene) and poly(sodium 4-styrenesulfonate) [40], or by 
formation of a branched polymer structure (polyaniline-graft-polyacrylamide) [30].

Sodium trimetaphosphate (STMP) is a low cost and eco-friendly non-toxic and 
water-soluble salt that has been widely utilized in biomedical applications and in 
food industry as a crosslinker for such polysaccharides as starch [41], dextran [42], 
pullulan [43], xanthan gum [44] and synthetic polymers such as PVA [45, 46], 
PVA/poly(N-vinyl‐2‐pyrrolidone) [47]. STMP can be easily prepared by annealing 
 NaH2PO4.

The purpose of this work was to synthesize a hybrid hydrogel based on polypyr-
role and α-Fe2O3 nanoparticles, to investigate the effect of the nanoparticles on the 
structure of the material and on the mechanism of charge storage.

Experimental

Materials

Acrylamide (AAm), pyrrole (99%, extra pure), N,N,N′,N′-
tetramethylethylenediamine (TEMED) were purchased from Sigma-Aldrich, 
methanol (> 99.5%)—from (Vekton, Russia), ammonium persulfate (APS) (99%), 
Fe(NO3)3 × 9H2O and  NH4OH (≥ 25%  NH3 in  H2O) were purchased from Neva 
Reactive (Russia). All of the materials were used as received without purification. 
STMP was prepared from  NaH2PO4 × H2O (Vekton, Russia) by annealing at 400 °C 
for 8 h, and its chemical structure was confirmed with wide angle X-ray diffraction. 
Polyacrylamide (PAAm) was prepared and characterized according to our previous 
work [30]. Pyrrole (Sigma-Aldrich) was distilled under vacuum prior to use.

Synthesis of iron oxide nanoparticles

Fe(NO3)3 × 9H2O (4.04  g) was dissolved in 20  ml of distilled water. The ammo-
nia solution in water (25 wt%) was added dropwise until pH = 9 was reached. The 
resulting brown precipitate of iron hydroxide was repeatedly washed with distilled 
water until a negative reaction to  NO3

− ions was observed, and then dried in air at 
60  °C until reaching constant weight. Subsequently, the X-ray amorphous powder 
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of Fe(OH)3 was dehydrated under hydrothermal conditions at 120  °C and 7  MPa 
for 10 h. The resulting suspension of hematite nanoparticles was removed from the 
autoclave and dried at 60 °C on air until the constant mass was reached.

Synthesis of PPy‑STMP hydrogel

The synthesis of PPy-STMP hydrogels was carried out on carbon tissue inside a 
spacer with inner diameter 1.2 cm and height 2 mm. In a typical synthesis, 2.6 mg 
of pyrrole was dissolved in 77 µl of water–methanol mixture 5:2 (by volume) con-
taining 0.78  mg PAAm and 2  mg of STMP. The reaction mixture was sonicated 
for 5 min at 25 °C and then put onto the carbon tissue. After that 8.8 mg of ammo-
nium persulfate dissolved in 55 μl of a water–methanol mixture 1:2 (by volume) was 
quickly added to the reaction mixture. The obtained solution was kept overnight. In 
the text below this sample is marked as PPy-STMP.

Synthesis of PPy‑STMP‑Fe2O3hybrid hydrogel

The PPy-STMP hydrogel with the iron oxide particles imbedded in it was prepared 
by the same method as the PPy-STMP hydrogel with an addition of the powdered 
α-Fe2O3 (0.6  mg). The inorganic particles were added to the solution of pyrrole, 
STMP and PAAm. The amount of pyrrole was reduced in order to maintain approxi-
mately the same total mass of the active material on the electrode as was taken for 
PPy-STMP without metal oxide: m(PPy + Fe2O3) = 2.6 mg. Prior to polymerization, 
the dispersion was sonicated for 2 h at 25 °C in order to achieve a uniform distribu-
tion of the particles in the final material. Further in the text the hybrid hydrogel sam-
ple is marked as PPy-STMP-Fe2O3. A photograph of the as-prepared PPy-STMP and 
PPy-STMP-Fe2O3 hydrogel samples are given in ESI (Fig. S1a and b, respectively).

Characterization of hydrogels

Scanning and transmission electron microscopy

The morphology of both hydrogels was studied by scanning electron microscopy 
(SEM) using of Tescan scanning electron microscope VEGA 3 SBH (Czech Repub-
lic). Distribution of the α-Fe2O3 nanoparticles and of the crosslinking agent (STMP) 
in the hybrid material was characterized by energy dispersive X-ray (EDX) spectros-
copy using an Aztec Energy X-act microanalysis system (Oxford Instruments, UK).

The shape and size of the α-Fe2O3 nanoparticles formed under hydrothermal con-
ditions were determined by transmission electron microscopy (TEM) using a trans-
mission electron microscope Jeol JEM-2100F (Japan) operated at the accelerating 
voltage of 200 kV with the point resolution of 0.19 nm. The TEM samples were pre-
pared by casting drops of the hematite aqueous dispersions on a copper grid covered 
with ultrathin graphene paper.
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X‑ray diffraction study

The prepared hydrogels were investigated with wide-angle X-ray diffraction (WAXD) 
using a D2 PHASER diffractometer (Bruker, Germany) equipped with a  CuKα radia-
tion source (λ = 1.54056 Å) within the 2θ range of 15°– 65° with the scan step of 0.05°.

Fourier‑transform infrared spectroscopy investigation

Fourier-transform infrared (FTIR) spectra were taken with an IRAffinity-1S spectrom-
eter (Shimadzu, Japan) within the range of 1800–500 cm−1 for the dried and powdered 
hydrogels using KBr pellets in the transmission mode with the resolution of 1 cm−1 and 
100 scans per sample.

Electrochemical measurements

Electrochemical measurements of the hydrogel samples were performed in a three-
electrode set-up with the hydrogel working electrode (mass of the active material was 
2.6 mg) prepared in situ on the carbon cloth. Ag/AgCl was used as a reference and the 
Pt coil as a counter electrode. The 1 mol  l−1 water solution of  Na2SO4 was used as the 
electrolyte.

Cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) and electrochemi-
cal impedance measurements were performed with a P40-X potentiostat–galvanostat 
equipped with a module for impedance measurements FRA-24 (Elins, Russia). Specific 
capacitance of the material (C) was calculated from the discharge branches of the GCD 
curves as C = It/(m(ΔU − UIR)), where I is the electrical current, t is the time to full dis-
charge, ΔU is the potential window, UIR is the IR drop, and m is the mass of the active 
material on the working electrode. The methodology suggested by Trasatti et al. [48] 
was used to distinguish between the double-layer capacitance and the pseudocapaci-
tance arising due to electrochemical redox reactions inside the volume of the electrode 
material. For this purpose, the CV curves of the investigated samples were measured 
at the scan rates of 0.5–20 mV s−1 and the specific capacitance (CCV) at each scan rate 
was calculated according to equation:

where v is the scan rate, i(U) is the current dependence on the potential, U1 and U2 
are the lowest and the highest potentials within the scanning range, respectively.

Electrochemical impedance study was performed under the open circuit potential in 
the frequency range of 400 kHz–10 mHz. The experimental data was fitted using the 
equation for impedance of an equivalent circuit:

CCV =
1

2vm
(

U2 − U1

) ∫
U2

U1

i(U)dU,

Z = Rs +
1

1∕
(

Zw + Rct

)

+ 1∕ZCPE
,
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where Zw and ZCPE are the impedances of the Warburg and CPE elements, respec-
tively, described by the following equations:

where ω and j are the angular frequency and the imaginary unit, while α, Q, A 
and B are the refinable parameters.

Results and discussion

Hydrothermal synthesis of α‑Fe2O3 nanoparticles

Hematite nanoparticles prepared under hydrothermal conditions from inorganic pre-
cursors (chlorides, nitrates or sulfates) [14, 49–52] could have spherical, hexagonal, 
pseudo-cubic, rod-like or anisometric morphology with average sizes in the range 
of 30–100 nm depending on the temperature and duration of the treatment. In this 
work, the conditions were adjusted to obtain α-Fe2O3 nanoparticles with an average 
size of less than 10 nm to ensure a high surface area. For this purpose, the dehydra-
tion was conducted at a relatively low temperature (120 °C) during 10 h. Prior to 
hydrothermal synthesis, Fe(OH)3 was carefully washed to remove salt-forming ions. 
This lowered the mass transfer rate and hampered the recrystallization processes that 
led to the formation of small crystallites. TEM results shown in Fig. 1 demonstrate 
the mean size of the prepared hematite nanoparticles of 5 ± 2 nm. At the same time, 
larger rhombohedral crystallites with their sizes of 20–30 nm could also be found. 
Their appearance could probably be related to partial coalescence of the smaller 

ZW =
A

(j�)1∕2
coth

(

B(j�)
1

2

)

and ZCPE =
1

Q(j�)�
,

Fig. 1  TEM micrograph of 
α-Fe2O3 nanoparticles
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hematite nanoparticles. Nevertheless, the oxide particles used in this work were, on 
average, smaller than in the other works reported in the literature.

Chemical structure and morphology of hydrogels

The electroactive hydrogels based on PPy crosslinked with STMP and the hybrid 
hydrogels containing iron oxide nanoparticles were prepared by in  situ oxidative 
polymerization of pyrrole monomer with peroxydisulfate ammonia. The chemical 
structure of the prepared materials was examined with FTIR spectroscopy. The cor-
responding spectra are shown in Fig. 2. The characteristic PPy [53] (930, 966, 1049, 
1200, 1288, 1478, 1554 cm−1) and PAAm [54] (1103, 1450, 1679 cm−1) bands are 
clearly observed in the spectra. The band at 1707 cm−1 can be attributed to C=O 
stretching vibrations of the overoxidized or hydrolyzed pyrrole group. The weak 
shoulder near 1326 cm−1 can be attributed to the vibration of the P–O bonds that 
indicates the appearance of STMP molecules in the structure of the hydrogel. Two 
strong absorption bands in the region of 400–600 cm−1, which are characteristic of 
α-Fe2O3 [55, 56], are not visible in the spectrum of the hybrid hydrogel. This can 
be explained by a dense and highly IR-absorbing [57] PPy layer covering the oxide 
nanoparticles. However, this required that the successful incorporation of  Fe2O3 in 
the prepared hydrogel should be verified with other methods.

The results of WAXD measurements for prepared  Fe2O3 nanoparticles shown in 
Fig. 3 confirm their hematite structure (ICDD PDF #29–0713) [58]. The diffraction 
pattern of the PPy-STMP hydrogel demonstrates only an amorphous hallo with a 

Fig. 2  FTIR spectra of the α-Fe2O3, PPy-STMP and PPy-STMP-Fe2O3 samples
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maximum at about 2θ = 22° typical of PPy prepared with an addition of polyacryla-
mide [59]. Absence of sharp peaks confirms the successful incorporation of STMP 
as a counter ion inside the PPy hydrogel. PPy-STMP hydrogel synthesized in the 
presence of hematite nanoparticles displays reflections typical of α-Fe2O3.

SEM images of the initial and hybrid hydrogels (Fig. 4a, b, respectively) dem-
onstrate agglomerated granular morphology typical of the PPy-based materials. 

Fig. 3  X-ray diffraction patterns of dry samples. Vertical lines demonstrate positions of the α-Fe2O3 
reflections according to ICDD PDF #29–0713

Fig. 4  SEM images of PPy-STMP (a), PPy-STMP-Fe2O3 (b), size distribution of PPy granules in PPy-
STMP (c) and PPy-STMP-Fe2O3 (d) and EDX elemental mapping of P for PPy-STMP (e), P (f) and Fe 
(g) for PPy-STMP-Fe2O3
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Introduction of the oxide particles in the hydrogel matrix leads to a denser packed 
morphology with smaller granules (Fig. 4b). The densification takes place due to, 
probably, specific interactions between the iron oxide nanoparticles and PPy via 
hydrogen bonding. Agglomeration of the hematite nanoparticles is not observed 
in the hybrid hydrogels that suggest their uniform distribution in the material. The 
average size of the PPy particles seen in the SEM images (Fig. 4c, d) decreases from 
450 nm in PPy-STMP to 250 nm in PPy-STMP-Fe2O3.  Fe3+ ions can act as an addi-
tional oxidizer for the pyrrole monomer, thus increasing the nucleation rate and the 
resulting polymerization rate during formation of PPy.

The EDX maps of phosphorus distribution for the PPy-STMP and PPy-STMP-
Fe2O3 samples are shown in Fig. 4e and f, respectively. It is seen that the distribution 
of the crosslinker is not uniform in the initial hydrogel. This can reflect the process 
of microsyneresis inside the PPy-STMP hydrogel that can be responsible for the for-
mation of the porous structure visible in Fig. 4a. The distribution of the crosslinker 
in the hybrid hydrogel is much more uniform (Fig. 4f), although some fluctuations 
of the P concentration can still be seen. Figure  4g illustrates a homogeneous dis-
tribution of Fe in the PPy-STMP-Fe2O3 hybrid material. This gives an additional 
evidence of the high compatibility between the electroconducting PPy matrix and 
the oxide nanoparticles in the hybrid gel, that is beneficial for the electrochemi-
cal properties. This is in agreement with the results of mechanical measurements 
in compression mode, which are given in ESI (see Table S1 and Fig. S2). This is 
seen that the hybrid hydrogel is noticeably more durable and rigid than the pure PPy 
hydrogel. This is possibly related to additional crosslinking of the polypyrrole by 
iron oxide nanoparticles.

Electrochemical properties of PPy‑STMP hydrogels

The electrochemical capacitance of the PPy and hybrid hydrogels was studied using 
the GCD technique in a three-electrode cell in the potential range between − 0.5 and 
0.5 V vs Ag/AgCl reference. The discharge branches of the curves demonstrate a 
difference in the electrochemical behavior between the organic and hybrid hydrogels 
(Fig. 5a, b, respectively). The curve for the PPy-STMP-Fe2O3 hydrogel demonstrates 
a step in the potential range − 0.1… − 0.3 V vs Ag/AgCl which is not observed in the 
PPy-STMP hydrogel. The appearance of the step can be connected with a partial 
reduction of the iron ions  (Fe3+/Fe2+) on the surface of the nanoparticles. This pseu-
docapacitive process increases the specific capacitance of the hybrid hydrogel at low 
current density (0.2 A  g−1) up to the value of 509 F  g−1 in comparison with the pure 
organic hydrogel that demonstrates only 250 F  g−1.

The maximum specific capacitance found in our samples (509 F  g−1 at 0.2 A 
 g−1) is close to the maximal values reported for other similar materials based on 
PPy and iron oxides. For example, only 106 F  g−1 at 0.4 mA g−1 were reported for 
PPy/γ-Fe2O3 samples prepared via electrochemical synthesis of PPy in the pres-
ence of  Fe2O3 nanoparticles [60]; 140 F  g−1 at 0.2 A  g−1 was measured for a ter-
nary composite containing PPy, α-Fe2O3 and graphene oxide, prepared via two-step 
preparation method including hydrothermal synthesis of  Fe2O3 nanoparticles with 
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subsequent in situ oxidative polymerization of pyrrole [61]; 311 F  g−1 at 2 A  g−1 for 
a sample based on the PPy with a mixture of iron oxides (FeO,  Fe2O3 and  Fe3O4) 
and Na-carboxymethylcellulose, obtained via galvanostatic electrodeposition from 
a solution containing pyrrole, Fe(BF4)2 and Na-carboxymethylcellulose [62]. Nev-
ertheless, the PPy@Fe2O3 samples prepared at 180  °C via one-step hydrothermal 
method starting from Fe(NO3)3 and pyrrole demonstrated 560 F  g−1 at 5 A  g−1 [63].

As seen in Fig. 5c, the difference between the samples is significantly reduced 
with increasing current density. At the current density of 4 A  g−1 the capacitance 
of PPy-STMP-Fe2O3 is only 25% higher than that of the pure PPy-STMP sample: 
150 and 120 F  g−1, respectively, due to, probably, a limited speed of the faradaic 
process in the PPy-STMP-Fe2O3 sample. To separate the contributions of pseu-
docapacitance (Cp) and double-layer capacitance (Cdl) to the total capacitance 
(Ctotal), the samples were studied using CV with subsequent data analysis accord-
ing to the Trasatti method [48, 59–61]. For this purpose, the CV experiments 
were conducted at the scan rates from 0.5 (Fig. 6a) up to 20 mV s−1 (Fig. 6b). The 
results are presented in Fig. 6c in the form of the capacitance dependencies on the 
reciprocal square root of the scan rate (C(v−1/2)), and in Fig. 6d as the dependen-
cies of the reciprocal capacitance on the square root of the scan rate (C−1(v1/2)). 
According to the Trasatti method, the linear extrapolation of C(v−1/2) dependence 
to x = 0 (i.e. to infinitely high v) gives the value of the “scan rate independent” 
capacitance of the “outer” surface, which is considered as the double-layer capac-
itance (Cdl). The total capacitance (Ctotal) that includes both the “inner” surface 
capacitance and Cdl can be found by linear extrapolation of C−1(v1/2) dependence 
to x = 0 (i.e. infinitely low v). The “inner” surface capacitance connected with the 
ion insertion process can be considered as a pseudocapacitance (Cp) because the 
insertion/release of anions into/from the hybrid hydrogel is accompanied with an 
oxidation/reduction processes of the PPy chains and/or by  Fe2+/Fe3+ transition. 
Thus, the value of Cp can be calculated as Cp = Ctotal–Cdl. The values of Cdl found 
by extrapolation were 99 and 111 F  g−1, while the total capacitance values were 
338 and 597 F  g−1 for PPy-STMP and PPy-STMP-Fe2O3, respectively. A small 
increase in Cdl of the hybrid hydrogel in comparison with the pure PPy-STMP 

Fig. 5  Galvanostatic charge–discharge curves for PPy-STMP (a) and PPy-STMP-Fe2O3 (b) samples at 
different current densities and specific capacitances for the prepared hydrogels (c)
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hydrogel can be connected with a decrease in the average size of the PPy gran-
ules due to introduction of the α-Fe2O3 nanoparticles. At the same time, the val-
ues of Cp were 239 F  g−1 and 486 F  g−1 for PPy-STMP and PPy-STMP-Fe2O3, 
respectively. It could be proposed, that the additional capacitance of 247 F  g−1 
was provided by the  Fe2O3 nanoparticles. If the 23% mass fraction of the oxide on 
the electrode was taken into account, the resulting (recalculated) value of 1070 F 
 g−1 (relatively to the mass of  Fe2O3 only, i.e. 0.6 mg) would be comparable with 
the best results reported in the literature for  Fe2O3 [21]. Thus, the oxide incorpo-
rated into an electrode based on the conducting polymer hydrogel gets effectively 
involved into the electrochemical charge storage process.

The electrochemical impedance study was conducted within the frequency 
region of 400  kHz—10  mHz under the open circuit potential in the three elec-
trode cells. The impedance spectra and their fitting according to equivalent cir-
cuit (Fig. 7c) are shown in Fig. 7a and b for PPy-STMP and PPy-STMP-Fe2O3, 
respectively. The parameters of the equivalent circuit, found by fitting, are given 
in Table 1.

As seen in Fig. 7, the experimental points are well fitted with the equivalent 
circuit. Table  1 shows that the parameters of the Warburg element and Rct are 

Fig. 6  Cyclic voltammograms of the PPy-STMP and PPy-STMP-Fe2O3 samples at the scan rates of 0.5 
(a) and 20 mV s−1 (b); the capacitance dependence on the square root of the reciprocal scan rate (c), and 
the reciprocal capacitance dependence on the square root of scan rate (d)
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significantly higher for the PPy-STMP-Fe2O3 sample. The parameter A of Zw is 
connected with the diffusion and concentration of the redox-active components, 
and Rct reflects the rate of the redox process. The lower values of these param-
eters for the hybrid hydrogel suggest a stronger effect of the redox process in the 
whole electrochemical performance of the doped material in comparison with the 
pure PPy-STMP hydrogel. Thus, doping with the oxide particles increased the 
pseudocapacitance of the material. This result is in agreement with other electro-
chemical measurements.

The samples were tested for cycling stability by applying 3000 charge–discharge 
cycles at the current density of 4 A  g−1. The calculated dependences of the capaci-
tance retention on the number of cycles are shown in Fig.  8. It can be seen that 

Fig. 7  Electrochemical impedance spectra of PPy-STMP (a), PPy-STMP-Fe2O3 (b) and the equivalent 
circuit used for fitting the experimental data (c)

Table 1  The refined parameters 
of the equivalent circuit

Sample A B Q α Rct Rs

PPy-STMP 11.8 0.8 0.10 0.77 0.70 2.3
PPy-STMP-Fe2O3 5.5 0.5 0.10 0.76 0.05 2.8

Fig. 8  Electrochemical cycling 
stability of the PPy-STMP and 
PPy-STMP-Fe2O3 hydrogels at 
the current density of 4 A  g−1
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the PPy-STMP and PPy-STMP-Fe2O3 hydrogels have similar values of the retention 
ratio of 75 and 79%, respectively. These are moderate values: for example, a α-Fe2O3 
nanorods/polyaniline/carbon nanotubes hydrogel reported in [64] demonstrated 
96.3% capacitance retention after 10,000 cycles at the scan rate of 100  mV  s−1, 
while a graphene/Fe2O3 composite hydrogel maintained 75% of the initial capaci-
tance after 200 cycles at the scan rate of 20 mV s−1 [65]. The degradation observed 
during cycling was probably caused by a mechanical destruction (swelling-shrink-
ing) of the material during the charge–discharge process. A better cycle stability of 
the composite hydrogel could result from the  Fe2O3 nanoparticles acting as addi-
tional crosslinking centers.

Conclusions

The pure PPy-STMP and PPy-STMP-Fe2O3 hybrid hydrogels were synthesized by 
in situ chemical polymerization. The hybrid hydrogel demonstrated a specific capac-
itance of 509 F  g−1 that is more than two times higher than the value for the pure 
PPy hydrogel (250 F  g−1) at the current density of 0.2 A  g−1. The α-Fe2O3 nanopar-
ticles prepared hydrothermally and uniformly distributed in the PPy matrix contrib-
uted to a stronger effect of pseudocapacitance. In addition, the capacitance retention 
during cycling of the hybrid hydrogel is not lower than of the initial PPy-STMP 
hydrogel: 79% of the initial capacitance retained after 3000 cycles at the current 
density of 4 A  g−1. The average size and the distribution width of the PPy granules 
decreased dramatically (from 450 to 250 nm) upon addition of the  Fe2O3 nanoparti-
cles. This structural change leads to a 10% increase in double layer capacitance.
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