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Abstract
The synthesis and olefin polymerization behavior of a new TADDOL-based Ti(IV) 
complex, (4R,5R)-2,2-dimethyl-α,α,α′,α′-tetrakis[bis-(3,5-trifluoromethyl)phenyl]-1,3- 
dioxolane-4,5-dimethanolato-titanium(IV) dichloride, are described. Upon activa-
tion with MAO, this complex polymerized ethylene, producing ultra-high molec-
ular weight linear polyethylene (UHMWPE) with activities up to 4500  kg  mol 
(Ti)−1 [C2H4]−1 h−1 atm−1 and molecular weights up to 3.25 × 106. The optimal tem-
perature for UHMWPE synthesis was 50 °C. This complex is also capable of copoly-
merizing ethylene with 1-hexene and 1-octene, giving high molecular weight copoly-
mers with α-olefin incorporation up to 7.8%. The copolymers, obtained with a different 
ratio of comonomers, are statistical, according to the analysis of the 13C NMR spec-
tra. The reaction parameters that influenced the copolymerization behavior, such as 
comonomer concentration, reaction temperature and [Al]/[Ti] molar ratio, are exam-
ined in detail. Furthermore, high catalytic activities up to 12,531 kg mol(Ti)−1 [C2H4
]−1 h−1 atm−1 were observed in copolymerization of ethylene and 1-hexene or 1-octene 
with the 2/MAO catalytic system. The obtained copolymers possess high molecular 
weights (Mw = 1.4 × 106—ethylene/1-hexene and 1.86 × 106—ethylene/1-octene) with 
broad MWD (Mw/Mn = 3.04–8.23) and high comonomer incorporation degrees (up to 
6.2 mol% of 1-hexene and 7.8 mol% of 1-octene). Depending on the synthesis condi-
tions, it is possible to form both a statistical copolymer and a block copolymer.
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Introduction

Polyolefins account for more than 50% in weight of the produced polymers and 
remain at the top of the global production of synthetic polymers [1]. The ever-grow-
ing demand for new synthetic polymer materials is driving the development of new 
catalytic systems. Among a myriad of post-metallocene catalysts created in recent 
decades [2–6], complexes in which the ligand environment is formed exclusively 
from alkoxo-oxygen atoms are extremely rare. (Examples of such structures are 
shown in Fig. 1.)

Probably this is due to the low catalytic activity of such systems upon their acti-
vation by the conventional for non-metallocene cocatalysts (alkylaluminoxanes, 
alkylaluminum or alkylaluminum chlorides). For example, the diolate complex B 
(Fig. 1), activated with Et3Al2Cl3, catalyzed the formation of low molecular weight 
PE with productivity not exceeding 30.4 kg PE g(Ti)−1 h−1 [7].

However, when using mixtures of alkylaluminum chlorides and organomagne-
sium compounds proposed by Kissin et al. [8, 9], quite effective catalytic systems are 
formed. We have successfully used titanium dichloride and alkoxide complexes with 
1,4- and 1,2-diolate ligands (complexes B–E) to produce disentangled UHMWPE 
[10, 11]. Based on the assumption that higher catalytic activity can be expected from 
complexes with a less stable 7-membered chelate ring, we used the tetraaryl-1,3-di-
oxolane-4,5-dimethanols (TADDOL) derivative as ligands. TADDOLs, containing 
two adjacent diarylhydroxymethyl groups in a trans relationship on a 1,3-dioxolane 
ring, were introduced by Seebach et al. [12, 13] and found wide application in asym-
metric synthesis both as ligands and as organocatalysts [14]. We have previously 
shown that (TADDOL)TiCl2 complexes effectively catalyze the polymerization 
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Fig. 1   Examples of titanium(IV) complexes with diolate ligands active in ethylene polymerization
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of ethylene and propylene with the formation of high molecular weight polymers 
[15–19]. The maximum catalytic activity in ethylene polymerization with titanium 
TADDOLates (compounds F, Fig. 1) with a binary cocatalyst was shown by a com-
plex containing perfluorophenyl fragments [19].

The aim of the present work is to verify the hypothesis that an increase in the 
acidity of the TADDOL’s hydroxy groups will increase the catalytic activity of the 
corresponding complexes, as is the case for 1,2-diolate complexes [11]. In this work, 
we use the TADDOL ligand with four strong electron-withdrawing CF3 substituents 
in phenyl fragments, because introduction of fluorine into the ligands was expected 
to increase the Lewis acidity of the catalyst complex [20, 21]. For a reliable analysis 
of the effect of substituents on catalytic activity, we used MAO as the cocatalyst. 
The obtained catalytic system exhibits relatively low activity that avoids limitations 
due to mass transport [22]. We previously showed that structurally close complexes 
(compounds F, Fig. 1), activated by MAO, form only trace amounts of polymer [19].

Experimental

Catalysts and synthetic methods

All manipulations with air-sensitive materials were performed with rigorous exclu-
sion of oxygen and moisture in oven-dried Schlenk glassware on a dual manifold 
Schlenk line, interfaced to a high-vacuum line. Argon and ethylene of special-purity 
grade (Linde gas) were dried by purging through a Super Clean™ Gas Filters.

NMR spectra were recorded on Bruker Avance-400 instrument. Deuterated sol-
vents (CDCl3, THF-d8) were degassed by freeze–pump–thaw vacuum cycles and 
stored over 3 Å molecular sieves. Chemical shifts are reported in ppm and were 
determined by reference to the residual solvent peaks. All coupling constants are 
given in hertz. Air-sensitive NMR spectra were recorded in J. Young tubes with Tef-
lon valve plugs. IR spectra were recorded on a Magna-IR 750 spectrophotometer. 
Elemental analysis was performed by the microanalytical laboratory at A. N. Nes-
meyanov Institute of Organoelement Compounds.

Hexane was distilled over Na/benzophenone, and the water content was periodi-
cally controlled by Karl Fischer coulometry by using a Metrohm 756 KF apparatus. 
Methylaluminoxane (Sigma-Aldrich) was used as 7 wt% solution in toluene. Diiso-
propyl 2,3-O-isopropylidene-l-tartrate was synthesized according to the previously 
described procedure [23].

(4R,5R)‑2,2‑Dimethyl‑α,α,α′,α′‑tetrakis[bis‑(3,5‑trifluoromethyl)
phenyl]‑1,3‑dioxolane‑4,5‑dimethanol (1)

The synthesis was carried out under argon. A solution of n-butyllithium (2.68 mL, 
6.69  mmol) was added at − 78  °C to a solution of 3,5-bis-trifluoromethyl-phenyl 
bromide (1.30 g, 4.46 mmol).

The reaction mixture was heated to room temperature and kept at ~ 20  °C 
for 4  h. Then, the reaction mixture was cooled to − 78  °C and a solution of 
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diisopropyl 2,3-O-isopropylidene-l-tartrate (0.274 g, 1.00 mmol) in diethyl ether 
(30 mL) was added dropwise. After warming to room temperature, the reaction 
mixture was refluxed for 24 h and neutralized with a saturated solution of NH4Cl. 
The organic layer was separated, the solvent was evaporated, and the residue was 
recrystallized from hexane. Yield 1.19 g (13%), m.p. 192 °C (dec.), [α]D = + 187.3 
(c 0.5, CHC13). Found (%): C, 46.30; H, 2.16, F, 45.09. C39H22F24O4 (1010). Cal-
culated (%): C, 46.35; H, 2.19, F, 45.12. 1H NMR (d-THF), δ: 8.04 (s, 6 H, Ar); 
7.91 (s, 2 H, Ar); 7.90 (s, 4 H, Ar); 4.58 (s, 2 H, CH); 2.56 (s, 2 OH, CH); 1.04 
(s, 6 H). 19F NMR (d-THF), δ: − 65.58. 13C NMR, δ: 23.92, 24.18, 26.03, 65.97, 
66.19, 76.73, 81.17, 110.76, 121.98, 122.09, 124.69, 127.69, 128.62, 130.40, 
130.73, 130.88, 131.06, 131.21, 131.39, 131.54, 145.04, 147.32. FT-IR (KBr): 
652, 570 cm−1 ν(Ti–O).

(4R,5R)‑2,2‑dimethyl‑α,α,α′,α′‑tetrakis[bis‑(3,5‑trifluoromethyl)
phenyl]‑1,3‑dioxolane‑4,5‑dimethanolato titanium(IV) dichloride (complexes 2)

A 2.5  M solution of butyllithium in hexane (0.17  mL, 0.42  mmol) was added 
dropwise with stirring under argon to a cooled (− 78  °C) solution of ligand 1 
(0.20  mL, 0.20  mmol) in toluene (10  mL). The temperature of the reaction 
mixture was slowly brought to ambient temperature; the mixture was stirred 
for 4  h and cooled to − 78  °C. A solution of TiCl4 (0.024  mL, 0.20  mol) was 
added, and the mixture was again warmed to ambient temperature. After 3  h, 
the reaction mixture was filtered, the solvent was evaporated, and the prod-
uct was recrystallized from toluene. Yield 0.16  g (64%), m.p. 249  °C (dec)., 
[α]D = + 97.9 (c 0.5, CHC13). Found (%): C, 43.26; H, 2. 82, Cl, 5.64, Ti, 3.80. 
C39H20Cl2F24O4Ti.2C3H8OH (1246.10). Calculated (%): C, 43.33; H, 2. 91, Cl, 
5.68, Ti, 3.84. 1H NMR (d-THF), δ: 8.15–8.06 (m, 12 H, Ar); 4.85 (s, 2 H, CH); 
3.86 (s, 2 H, CH); 1.10 (s, 12 H), 0.69 (s, 6 H). 19F NMR (d-THF), δ: − 63.67. 
13C NMR, δ: 23.92, 24.12, 24.32, 24.52, 26.26, 62.03, 65.58, 66.27, 80.95, 88.94, 
112.36, 121.75, 121.98, 122.09, 122.15, 124.30, 124.96, 127.30, 127.33, 127.57, 
129.37, 130.01, 130.34, 130.65, 131.00, 131.06, 131.40, 131.72, 132.05, 145.63, 
150.63.

Ethylene polymerization and copolymerization were carried out in hexane in a 
0.5 L stainless steel reactor equipped with a mechanical stirrer. The reactor was kept 
under vacuum for 1 h at 90 °C before each experiment and then cooled to 20 °C, 
filled with dry argon and hexane, the cocatalyst (MAO), and in the case of copolym-
erization, the desired comonomers were introduced into it. The reactor was heated to 
a specified temperature, and the reaction mixture was saturated with ethylene. After 
saturation of the solvent with ethylene, polymerization was started by breaking the 
sealed glass ampule with pre-catalyst inside the reactor. The PE was kept constant 
throughout each run; the ethylene loss was compensated for by introducing addi-
tional gas from a high-pressure vessel. After a prescribed time, the ethylene gas feed 
was stopped, and 10% HCl solution in ethanol was added to terminate the polym-
erization reaction. The polymer was isolated by filtration, washed with ethanol and 
dried at 60 °C for 12 h in a vacuum oven.
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Preparation of block copolymer of ethylene and 1‑octene

The preparation of polyoctene-b-poly(ethylene-co-1-octene) block copolymer was 
attempted by a sequential addition polymerization procedure. To prepare a poly-
octene segment, to the stainless steel reactor prepared as described in the previous 
section, the cocatalyst MAO (1.04  mL of 2.7% solution in toluene, Aldrich) and 
the 1-octene (80  mL) were introduced. The reactor was heated to 50  °C, and the 
polymerization of 1-octene was started by breaking the sealed glass ampule with 
pre-catalyst inside the reactor. After 1 h, a sample of the reaction mass was taken for 
analysis and the solvent (100 mL of hexane) was introduced of the reaction and the 
entire solution was saturated with ethylene to produce a poly(ethylene-co-1-octene) 
segment. The PE was kept constant throughout each run; the ethylene loss was com-
pensated for by introducing additional gas from a high-pressure vessel. After a pre-
scribed time, the ethylene gas feed was stopped, and 10% HCl solution in ethanol 
was added to terminate the polymerization reaction. The polymer was isolated by 
filtration, washed with ethanol and dried at 60 °C for 12 h in a vacuum oven.

Polymer evaluation methods

DSC was performed with a differential scanning calorimeter DSC 204 F1 Phoenix 
(«NETZSCH») in helium atmosphere. The analyses were performed at the heating 
rate of 10 °C min−1 in the temperature range of 50–200 °C. The heating cycle was 
run twice. In the first scan, samples were heated and then cooled to room tempera-
ture. In the second scan, samples were reheated at the same rate. The characteristic 
melting temperatures and the heat of fusion for UHMWPE are given according to 
the first and second heating. For copolymers, only the results of the second scan 
were reported because the first scan was influenced by the mechanical and thermal 
history of samples.

Viscosity-average molecular weight of synthesized UHMWPE samples was 
calculated with the Mark–Houwink equation: Mv = 5.37 × 104 [η]1.37 [24], where 
Mv = viscosity-average molecular weight (g mol−1); [η] = intrinsic viscosity in deca-
lin at 135 °C (dL g−1); [η] = (2ηsp − 2lnηr)1/2/0.056 (ηsp—specific viscosity decalin at 
135 °C; ηr—relative viscosity in decalin at 135 °C; ηr = ηsp + 1).

Gel permeation chromatographic (GPC) analysis of polymers was carried out 
at 135  °C with a Waters GPCV-2000 chromatograph equipped with two columns 
(PLgel, 5 μ and Mixed-C, 3007.5 mm) and a refractometer. 1,2,4-Trichlorobenzene 
was used as a solvent; the elution rate was 1 mL min−1. Molecular weights (MWs) 
of polymer products were determined using the universal calibration dependence 
relative to polystyrene standards with a narrow MW distribution: for polystyrene 
К = 2.88 × 10−4, α = 0.64; for PE, К = 6.14 × 10−4, α = 0.67.

13C NMR spectra of ethylene/1-octene and ethylene/1-hexene copolymers 
(~ 5  wt% solutions in o-dichlorobenzene) were recorded at 100  °C on a Bruker 
Avance-400 spectrometer at 10.613 MHz. The relaxation delay was 15 s; the num-
ber of scans varied from 500 to 2000. The signal assignment in the 13C NMR spectra 
was based on the literature data [25, 26].
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IR spectra of polymers (thin films) were recorded on a PerkinElmer Spectrum 
100 spectrophotometer. 1-Hexene content in the ethylene/l-hexene copolymer was 
estimated by FT-IR method using the ACH3

1379/ACH2
1369 absorbance ratios [27] in accord-

ance with the methodology [28].
The degree of crystallinity was calculated using DSC data, as the ratio between 

crystalline peak area and the entire area under the curve in the 2θ region (15°–35°), 
excluding support and air dissipation.

Results and discussion

Synthesis of (4R,5R)-2,2-dimethyl-α,α,α′,α′-tetrakis(3,5-bis-(trifluoromethyl)-
phenyl)-1,3-dioxolan-4,5-dimethanol 1 was performed according to reported 
methods [21]. Direct interaction of ligand 1 with dichloro(diisopropoxy)titanium 
(TiCl2(OiPr)2) results in the one step formation of titanium(IV) dichloride com-
plex 2 (Scheme 1). The complex contains two coordinated isopropanol molecules, 
which are eliminated upon cocatalyst addition to yield vacant coordination sites, as 
in the previously described cases [19]. The results of elemental analysis, the 1H, 19F, 
13C NMR and IR data of complex 2 are consistent with the structure proposed in 
Scheme 1.

Thus, the signals of OH protons, observed at 2.56 ppm in the spectrum of the 
ligand 1, disappear in the 1H NMR spectrum of the complex 2, but signals of coordi-
nated isopropanol molecules appear at 3.86 (–CH–), 1.10 ppm (–CH3).

The 19F NMR spectrum of the complex and the ligand contains a signal typi-
cal for CF3 fragments (− 65.58  ppm—for 1 and − 63.67  ppm—for 2). In the IR 
spectrum of the complex 2, valence vibrations of the Ti–O bond are observed at 
550 cm−1 and 620 cm−1.

We have evaluated catalytic activity of compound 2 in ethylene polymeriza-
tion. The complex 2 produces almost linear polyethylene, as indicated by the low 
branching degree determined by 13C NMR and IR analysis. PE samples were 
insoluble in hot 1,2,4-trichlorobenzene so molecular weight was determined by 
viscometric method in decalin; the viscosity-average molecular weights are in the 
range of 1.94–3.25 × 106, which allows to attribute it to UHMWPE. An increase 
in the reaction temperature from 30 to 50 °C is accompanied by a 30% increase in 

Ar = 3,5-di-CF3-C6H3

TiCl2(O-iPr)2

1 2

Scheme 1   Synthesis of titanium(IV) dichloride TADDOL complex 2 
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the activity, but further increase in the temperature to 70 °C leads to the deactiva-
tion of the catalytic system (Fig. 2a). These data indicate moderate thermal stabil-
ity of the catalytic system.

The melting points of the polyethylene samples were measured by DSC 
(Table 1). The melting points are in the range of 141–143 °C at first heating run, 
which significantly exceeds the usual values for polyethylene. Such high values of 
Tm, as well as the thermal exo-effect observed on the DSC curves, are typical for 
disentangled UHMWPE [29, 30].

The 2/MAO catalytic system produces UHMWPE with moderate productivity 
(1500–4500 kg mol(Ti)−1  [C2H4]−1 h−1 atm−1), compared to structurally related 
TADDOL pre-catalysts F [19], as well as complexes with 1,2- and 1,4-diolate 
ligands [10, 11] and derivatives of 2-hydroxymethylphenol [31, 32], that were 
practically inactive in the presence of MAO (Fig.  1. Compounds A–F). Since 
the catalytic activity of the titanium(IV) TADDOL complexes has a tendency to 
increase with the increased acidity of the hydroxyl groups [11], we have com-
pared the catalytic performances of complex 2 with other structurally related 
titanium(IV) TADDOL complexes F (Fig. 1). However, the studied complexes 2 
(Scheme 1) and F (Fig. 1) do not obey this trend.

The results obtained in entries 1–3 of Table 1 are promising, so we have stud-
ied the catalytic behavior of this system in the copolymerization of ethylene with 
higher α-olefins. 1-Octene was used as the monomer, since the ethylene–octene 
copolymer (EOC), a relatively novel polyolefin elastomer, developed by Dow 
Chemical Company with metallocene catalysis, is attracting a lot of attention 
from both research and industry. Among ethylene-based elastomers, EOC is char-
acterized by an excellent compatibility with polyolefins, such as polyethylene 
(PE) and polypropylene (PP), lower level of crystallinity and a higher flexibility. 
Based on these properties, EOC is currently being used as an impact modifier of 
PP to replace ethylene propylene rubber (EPR) and ethylene propylene diene rub-
ber (EPDM) [33].
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Insofar as the maximum activity (4500  kg  mol−1 of Ti [C2H4] h  atm.) was 
recorded during ethylene polymerization at 50 °C; the optimization of the copoly-
merization conditions was carried out at this temperature. Copolymerization was 
performed at a variety of feed ratios (runs 4–7, Table 1; Fig.  2b) to investigate 
how the different concentrations of comonomer affect the catalytic activity and 
properties of the copolymers.

Table 1   Ethylene polymerization and copolymerization with 1-hexene and 1-octene by complex 2/MAO

Experiments were carried out in 60 mL of hexane with 5 × 10−5 mol of pre-catalyst at a constant ethylene 
pressure of 1 atm for 1 h, cocatalyst—MAO
a Activity, kg of PE mol−1 h−1 [C2H4]−1 atm−1

b Melting points were determined by DSC, and the values for the second heating runs are given
c Determined by DSC; second heating run (runs 1–3), first heating run (runs 4–14)
d Determined by gel permeation chromatography (GPC)
e Determined by 13C NMR data
f Viscosity-average molecular weight
g Comonomers were fed to the reactor in a stepwise fashion; first, 1-octene was introduced, after 
60 min—ethylene

Run Comonomer 
(g g−1)

[Al]/[Ti] T (°C) Aa Tm
b (°C) χc (%) Mw, Mn

d Mw/Mn Comonomer 
content (%)e

1 – 500 30 3428 143.2 82.3 3.25 × 106f – –
2 – 500 50 4500 141.9 80.1 2.19 × 106f – –
3 – 500 70 1500 140.4 76.4 1.94 × 106f – –
4 1-Octene, 100/2 500 50 4688 139.8 65.6 1.76 × 106

2.91 × 105
6.07 1.1

5 1-Octene, 100/5 500 50 6075 134.2 53.7 1.66 × 106

4.84 × 105
3.43 1.5

6 1-Octene, 100/9 500 50 6500 129.1 52.6 1.52 × 106

2.28 × 105
6.63 1.9

7 1-Octene, 
100/18

500 50 9506 126.4 40.7 1.29 × 106

4.25 × 105
3.04 3.5

8 1-Octene, 
100/18

250 50 5525 124.5 40.4 1.69 × 105

0.50 × 104
3.38 3.2

9 1-Octene, 
100/18

1000 50 10,063 125.4 39.6 2.11 × 105

3.71 × 104
5.69 4.5

10 1-Octene, 
100/18

2000 50 8038 125.9 35.4 9.64 × 105

1.88 × 104
5.14 7.8

11 1-octene, 100/9 500 30 10,386 130.1 65.2 1.86 × 106

2.26 × 105
8.23 1.9

12 1-Octene, 100/9 500 70 1730 127.6 51.7 4.82 × 105

8.95 × 104
5.38 1.8

13g 1-Octene, 100/9 500 50 10,875 128.1 62.8 6.74 × 105

2.35 × 105
2.87 2.5

14 1-Hexene, 100/5 500 50 12,531 132.4 68.8 1.40 × 106

2.02 × 105
6.96 6.2
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The increase in 1-octene content in the feed is beneficial both to productivity and 
the comonomer inclusion, while the molecular weight of the polymer is reduced. In 
this case, the comonomer synergistic effect is clearly evident: The productivity of 
this system in copolymerization is about twice higher than those observed in ethyl-
ene homopolymerization (entry 7 vs 2).

Unlike the polymerization process, the maximum productivity of the catalytic 
system in copolymerization is achieved at 30  °C. An increase in temperature to 
50–70  °C is accompanied by a significant decrease in activity (entries 6, 11–12, 
Table 1, Fig. 2a). The polymer with higher MW (1.86 × 106, entry 11) was produced 
at the lowest polymerization temperature (30 °C).

The DSC analysis of the copolymers shows one sole melting point in the range of 
125.4–139.8 °C, which is significantly lower than the melting points of homopoly-
mers (140.4–143.2 °C).

Analysis of the copolymer samples by GPC revealed that catalytic system 2/
MAO produces high molecular weight copolymers. (Mw values are in the range 
1.69 × 105–1.86 × 106.) All copolymers have a broad molecular weight distribution 
(Table 1, Fig. 3). The latter is explained by the presence of several types of active 
sites in the catalytic system.

The effect of [Al]/[Ti] molar ratio on the catalytic activity and properties of the 
resulting polymer was investigated. The activity grows with the ratio increase up to 
[Al]/[Ti] = 1000:1 reaching 10,063 kg mol(Ti)−1 [C2H4]−1 h−1 atm−1 (Table 1, entry 
9); further growth up to 2000:1 leads to a decrease in activity. Such a phenomenon 
can be well clarified by the influence of the Al concentration on the termination of 
polymer chains. Interestingly, the degree of inclusion of the comonomer monotoni-
cally increases with growth in [Al]/[Ti] molar ratio, reaching a maximum—7.8% at 
molar ratio 2000:1.

The preparation of polyoctene-b-poly(ethylene-co-1-octene) block copolymer 
was attempted by a sequential addition polymerization procedure: To prepare a 

Fig. 3   GPC curves of ethylene/1-octene copolymers obtained in entries 6, 11, 12, 13
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polyoctene segment, 1-octene was added to the activated complex and after 1 h, 
a sample of the reaction mass was taken for analysis. According to GPC data, 
the polyoctene segment had the following characteristics: Mw: 1.59 × 103; Mn: 
1.11 × 103; Mw/Mn: 1.42. After that, the ethylene feed was started to produce a 
poly(ethylene-co-1-octene) segment [34]. As a result, a semicrystalline high 
molecular weight polymer was obtained with high efficiency 10,875 kg mol(Ti)−1 
[C2H4]−1 h−1 atm−1 (Table 1, entry 13). The content of 1-octene was amounted to 
2.5%; the polymer is characterized by a rather narrow MWD − 2.87 (the smallest 
value in this series). The composition and structure of ethylene/1-octene block 
copolymer was confirmed by 13C NMR using the method of Randall et  al. [25, 
26] (Fig. 4).

The values of r1 = 10.48 and r2 = 0.2358 calculated according to [26], indi-
cate that reactivity of these monomers differs in ≈ 44 times. The consequence of 
this is the block nature of the resulting copolymer: r1 × r2 = 2.47. The presence of 
long ethylene sequences in polymer chains leads to the formation of a crystalline 
phase based on PE.

The copolymerization of ethylene with 1-hexene takes place with twice pro-
ductivity compared to ethylene/1-octene copolymerization (12,531 and 6075  k
g  mol(Ti)−1  [C2H4]−1  h−1  atm−1; Table  1, entries 5 vs 14), which is obviously 
explained by the higher reactivity of the 1-hexene comonomer.

Fig. 4   13C NMR (10.613  MHz) spectrum of ethylene/1-octene copolymer produced with 2/MAO 
(Table 1, entry 13, T = 50 °C; [Al]/[Ti] = 500; [C8H16] = 9.0 mass%)
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Conclusion

We have synthesized and fully characterized a new TADDOLate Ti(IV) complex—
(4R,5R)-2,2-dimethyl-α,α,α′,α′-tetrakis-[bis-(3,5-trifluoromethyl)phenyl]-1,3-diox-
olane-4,5-dimethanolato-titanium(IV) dichloride. This complex displayed moderate 
catalytic activity toward ethylene polymerization in the presence of MAO as a cocat-
alyst and produced UHMWPE with Mw 1.94–3.25 × 106 even at elevated reaction 
temperature.

The reaction conditions in ethylene copolymerization (the temperature, ethylene/
α-olefin and Al/Ti ratios) at a constant concentration of complex 2 have been opti-
mized. Comonomer incorporation and polymer MW can be controlled in a wide 
range by the variation of the reaction parameters. Both the productivity of the cata-
lytic system and the degree of comonomer content increase with increasing concen-
tration of the latter in the feed mixture.

This effect of the [Al]/[Ti] ratio on the composition of the copolymers can be 
explained by two reasons: 1—With an increase in the Al/Ti molar ratio above 500, 
the chain transfer reaction to the cocatalyst (MAO) becomes noticeable; 2—there is 
a change in the composition and structure of the active center(s).

The obtained results confirm our assumption that the introduction of electron-
withdrawing fluorine-containing substituents into the ligand structure is accompa-
nied by an increase in the catalytic activity of the corresponding titanium complexes.
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