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Abstract
Influence of acrylonitrile content and ceramic type on cure characteristics, mechani-
cal, morphological, and dielectric properties of acrylonitrile butadiene rubber 
(NBR) vulcanizates was examined. Two types of ceramic filler, namely barium 
titanate (BT) and calcium copper titanate (CCTO), were synthesized by solid-state 
reactions. The ceramic powders were then characterized by X-ray diffraction, parti-
cle size analyzer, and scanning electron microscopy (SEM). Ceramic/rubber com-
posites were then mixed in an internal mixer at 60 °C and a rotor speed of 60 rpm. 
Two acrylonitrile contents of NBR, namely 33 wt% and 42 wt%, were tested. Incor-
poration of ceramic fillers in NBR matrix and increasing acrylonitrile content short-
ened scorch and cure times, but increased minimum, maximum, and delta torque. 
Furthermore, SEM results revealed that the BT-filled NBR composites showed bet-
ter filler–matrix interactions than the CCTO-filled NBR composites. This matches 
the better mechanical and dielectric properties of the BT-filled NBR composites.

Keywords  Acrylonitrile butadiene rubber · Acrylonitrile content · Barium titanate · 
Dielectric properties · Calcium copper titanate · Mechanical properties

Introduction

Nowadays, polymers have been developed a variety of different compounds with 
unique potential for various applications, i.e., membrane for wastewater treatment 
[1–4], pH-stimulated micellization for drug delivery [5], shape memory polymer 
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[6–7], and self-healing polymer [8]. In particular, high permittivity ceramics-filled 
polymer composites are motivated by potential electrical and electronics applica-
tions, such as energy storage capacitors, actuators, and smart packaging technology, 
due to their light weight, flexibility, acceptable dielectric properties, and easy pro-
cessing [9–11]. Among the choices of polymer matrix, nitrile rubber or acryloni-
trile butadiene rubber (NBR) has received attention because it contains acrylonitrile 
groups (C≡N) that contribute by orientation polarization [12]. NBR is a family of 
elastomers obtained by the random co-polymerization of acrylonitrile and butadi-
ene. It has an extensive variety of grades dependent on acrylonitrile content and has 
excellent oil resistance over a wide range of temperatures [13], excellent abrasion 
resistance, low compression set, good heat resistance, and high tensile properties 
when suitably compounded. The polar acrylonitrile group also affects the glass tran-
sition temperature (Tg) and hence the entropy elastic behavior [14]. However, poor 
properties in elasticity, low temperature resistance, and poor insulation capacity tend 
to go with increasing acrylonitrile content [12]. In addition, NBR does not exhibit 
self-reinforcement effect [13, 15], which is usually attributed to its uniform micro-
structure with crystallites acting as additional crosslinks in the network structure, 
and these tend to align in the direction of stretching [16]. Hence, excellent mechani-
cal properties are only obtained by combinations with reinforcing fillers. Carbon 
black [17], clay [18–20], silica [21, 22], graphene oxide [23, 24], carbon nanotubes 
[24], and carbon nanofibers [25] have been tested in NBR matrix. However, there 
are hardly any reports on adding a high permittivity ceramic to NBR rubber. Among 
the ceramic fillers, barium titanate (BT) and copper calcium titanate (CCTO) have 
been much investigated in polymer composites [26–46].

The present study is motivated by the need to develop flexible dielectric mate-
rials. NBR with different acrylonitrile contents was chosen as the polymer matrix 
to prepare composites with different ceramic fillers, here barium titanate (BT) and 
calcium copper titanate (CCTO). X-ray diffraction (XRD), particle size analysis, 
and scanning electron microscopy (SEM) were used to characterize the ceramic 
fillers. The effects of acrylonitrile content and ceramic type on cure characteristics, 
mechanical, dynamic mechanical, thermal, morphological, and dielectric properties 
of NBR/ceramic composites were evaluated.

Experimental

Materials

The ceramic fillers, BT and CCTO, were synthesized by conventional solid-state 
reactions. The reagent-grade high-purity calcium carbonate (CaCO3), copper (II) 
oxide (CuO), and titanium dioxide (TiO2) used as starting materials were supplied 
by LabChem public Co., Ltd. (Surat Thani, Thailand). The acrylonitrile butadiene 
rubber (NBR) with 33% and 42% acrylonitrile contents was received from Nan-
tex public Co., Ltd. (Kaohsiung 832, Taiwan). 2-Mercaptobenzothiazyl disulfide 
(MBTs) and sulfur were provided by Vessel chemical public Co., Ltd. (Bangkok, 
Thailand). Zinc oxide (ZnO) and stearic acid were obtained from Bossoftical public 
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Co., Ltd. (Songkhla, Thailand). All substances were used as received without fur-
ther purification.

Characterization of ceramic fillers

X-ray diffraction (XRD) was operated at 40 kV, 30 mA, from 10° to 90° (2θ) with 
Cu-Ka radiation, and the device was equipped with a 0.154 monochromator. Particle 
size analysis and SEM imaging were used to assess the particle sizes and morpholo-
gies of the ceramic fillers.

Preparation and characterization of NBR/ceramic composites

NBR/ceramic composites were melt mixed in an internal mixer at 60 °C with 60 rpm 
rotor speed. The compounding formulation and procedure are listed in Tables 1 and 
2. The rubber compounds were sheeted out on a two roll mill after compounding 
in an internal mixer and were kept in a desiccator for 24  h at room temperature 
before vulcanizing and testing. 2-mm-thick rubber composite sheets were hydrauli-
cally compression molded at 160 °C for the respective cure times, tc90, determined 

Table 1   Compounding 
formulations

Ingredient/compound Amount (phr)

N33 N33B N33C N42C

NBR 33% acrylonitrile content 100 100 100 –
NBR 42% acrylonitrile content – – – 100
Sulfur 1.5 1.5 1.5 1.5
Zinc oxide 5 5 5 5
Stearic acid 2 2 2 2
MBTs 1.5 1.5 1.5 1.5
BT – 60 – –
CCTO – – 60 60

Table 2   Details of the materials 
and mixture schedule

Mixing procedure Function

Internal mixer Cumulative time 
(min)

Mastication of NBR 0 Main matrix
Addition of sulfur 2 Curing agent
Addition of ZnO 4 Activator
Addition of stearic acid 6 Activator
Addition of ceramic filler 7 Filler
Addition of MBTS 10 Accelerator
Dumping 12
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by MDR test. The moving die rheometer (MDR) was used to determine minimum 
torque (ML) and maximum torque (MH), torque difference (MH–ML), scorch time 
(ts1), and cure time (tc90) of virgin NBR and its compounds. The measurements were 
performed at 160  °C according to ASTM2240 at a fixed oscillation frequency of 
1.66 Hz with 1 arc degree amplitude.

The tensile strength, elongation at break, 100% modulus, and 300% modulus were 
obtained from tensile testing according to ASTM D-412. The tests were carried out 
at 23 ± 2 °C, using a 500 mm/min cross-head speed. Also, 6-mm-thick samples were 
Hardness Shore A tested according to ASTM D2240 with a durometer. Thermo-
gravimetric analysis (TGA) was carried out with a simultaneous thermal analyzer 
with a heating rate of 10 °C/min in the temperature range from 25 to 1000 °C. The 
samples were tested in nitrogen atmosphere in the early stage, with switch to oxygen 
atmosphere when the temperature passed 550 °C. A PerkinElmer DMTA 8000 was 
used for dynamic mechanical thermal analysis. The samples were tested in tension 
mode from − 100 to 50 °C at a heating rate of 3 °C/min, with frequency and strain 
fixed at 10 Hz and 0.1%, respectively. The dielectric constant (ɛ′) and dielectric loss 
(ɛ″) were measured using an impedance analyzer in the frequency range 105–107 Hz 
at AC potential of 1 V. The samples were placed between two parallel plate elec-
trodes of 5 mm diameter and tested at room temperature. The morphology of the 
composites was determined by scanning electron microscopy (SEM) (FEI-Quanta 
400, OR, USA). The samples were first cryogenically fractured after immersion in 
liquid nitrogen and were then sputter coated with gold before imaging.

Results and discussion

Characterization of ceramic fillers

Figure 1a shows XRD patterns of BT and CCTO ceramic fillers. The structure of BT 
was characterized by XRD peaks at 2θ of 21.5°, 31.5°, 38.9°, 45.4°, 50.9°, 56.1°, 
and 66.1° corresponding to the (100), (110), (111), (200), (210), (211), and (220) 
planes. The XRD pattern of CCTO had peaks at 29.60°, 34.49°, 38.54°, 42.44°, 
45.97°, 49.2°, 61.4°, 72.2°, and 82.56°, which were assigned to the lattice planes 
(211), (220), (310), (222), (321), (400), (422), (420), and (620), respectively. These 
results confirmed BT and CCTO crystal structures. Additional quantitative informa-
tion of the particle size distributions of BT and CCTO is exhibited in Fig. 1b. The 
particle size of BT was larger than that of CCTO, with mass-average particle sizes 
approximately 5.56 and 3.41 µm, respectively. Irregular shapes were noted for both 
CCTO and BT particles, as seen in Fig. 1c.

Cure characteristics of composites

Cure characteristics of the virgin NBR and the NBR/ceramic composites in terms 
of scorch time, cure time, and minimum, maximum, and delta torques are listed 
in Table  3. The vulcanization curves of all samples are shown in Fig.  2. All the 
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Fig. 1   a XRD patterns, b particle size distribution, and c SEM micrographs of BT and CCTO particles
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samples exhibited marching cure, so that the modulus kept increasing with time. 
This is attributed to the butadiene-containing polymers, with less polysulfidic bonds 
but rich in disulfidic and monosulfidic crosslinks with high crosslink density [47]. 
The marching characteristic was more pronounced for the N42C compounds, prob-
ably because the amount of double bonds in NBR rubber is limited. In addition, the 
acrylonitrile functional group (–C≡N) might hinder the reactions between sulfur and 
the allylic radicals in butadiene units, at the higher acrylonitrile content resulting 
in a retard optimum cure time. However, the scorch time of N42C became faster 
as acrylonitrile content increased. Choi et al. explained that the polar acrylonitrile 
groups of NBR activated the zinc complexes resulting in the fast crosslink reaction 
[48]. In addition, Chokanandsombat et al. reported the effect of polar acrylonitrile 
groups on the decomposition of accelerators to produce ammonium mercaptide 
which acted as actual cure accelerator [49]. In addition, ML, MH and MH–ML of 
N42C were higher than those of N33C. This is because an increase in acrylonitrile 
content gave a higher polarity, leading especially to greater rubber–rubber interac-
tions, which limited molecular mobility. It is noted that increased acrylonitrile con-
tent also made the composite stiffer, because chemical and physical reactions among 
acrylonitrile groups produced high crosslinking level in NBR [50]. In addition, the 
NBR/ceramic composites had shorter cure and scorch times compared to N33. Dur-
ing compound mixing, the composites were subjected to shear during blending, 

Table 3   Cure characteristics of virgin NBR and NBR/ceramic composites

Sample ML (dN m) MH (dN m) MH–ML (dN m) ts1 (min) tc90 (min) CRI

N33 0.81 11.61 10.80 6.21 18.23 8.31
N33B 1.65 16.18 16.49 2.18 15.06 7.76
N33C 1.68 21.29 19.61 2.23 13.28 9.04
N42C 1.96 24.60 22.64 2.05 15.51 7.43

Fig. 2   Cure curves of virgin NBR and NBR/ceramic composites
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generating heat. This heat induced premature curing [51]. N33C exhibited higher 
cure rate index than N33B. This indicates higher rate of vulcanization in the CCTO 
compounds. Moreover, the ceramic fillers tended to increase ML, MH and MH–ML 
over that in N33. This might be attributed to increase filler–filler interactions and 
filler–rubber interactions. The torques seen in these curves were concordant with 
measured hardness.

Mechanical properties

Stress–strain curves of the samples and mechanical properties are shown in Fig. 3 
and in Table 4, respectively. It was found that N33, N33C, and N42C did not crys-
tallize under stress, resulting in a low tensile strength. Furthermore, N33 exhibited 
the lowest Young’s modulus, 100% modulus, 300% modulus and hardness among 
the NBR/ceramic composites because the rigid ceramic particles in the soft matrix 
increased stiffness. This correlated with increased MH and MH–ML as previously 
mentioned. With regard to the N33, 60 phr of BT incorporated into NBR caused 
a 125% increase in tensile strength. However, N33C gave tensile strength and 

Fig. 3   Stress–strain behavior of virgin NBR and NBR/ceramic composites

Table 4   Mechanical properties of virgin NBR and NBR/ceramic composites

Sample Tensile strength 
(MPa)

Elongation 
at break 
(%)

100% Modulus 
(MPa)

300% Modulus 
(MPa)

Hardness (shore A)

N33 2.15 ± 0.14 441 ± 3 0.87 ± 0.04 1.51 ± 0.04 42.1 ± 0.4
N33B 4.80 ± 0.14 561 ± 3 1.02 ± 0.04 1.63 ± 0.04 48.3 ± 0.3
N33C 1.95 ± 0.01 353 ± 3 1.69 ± 0.02 1.75 ± 0.03 51.4 ± 0.4
N42C 3.17 ± 0.03 251 ± 3 1.92 ± 0.01 2.02 ± 0.03 55.7 ± 0.3
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elongation at break below those of N33B and even lower than N33. Saidina et al. 
[37] reported a similar result in which the tensile properties of CCTO/epoxy com-
posites were poorer than the corresponding values for BT/epoxy composites. This 
might be attributed to poor interactions between CCTO and NBR. This indicates 
that CCTO was a non-reinforcing filler, while BT served as a reinforcing filler. The 
reinforcing effect of N33B was due to good filler–rubber interactions via hydrogen 
bonding between acrylonitrile groups and hydrogen groups on BT particles [52, 53]. 
The N42C exhibited higher 100% modulus, 300% modulus, tensile strength, and 
hardness but lower elongation at break than the N33C. The hardness, 100% mod-
ulus, 300% modulus, and tensile strength were improved by 8.4%, 13.6%, 15.4%, 
and 62.5%, respectively, while elongation at break decreased by 28.9% on increas-
ing acrylonitrile content. Yuan et  al. showed similar results in which the tensile 
strength of CuSO4/NBR composites increased noticeably with increasing acryloni-
trile content [54]. This is attributed to stronger chemical interactions with NBR at a 
higher acrylonitrile content. This limited molecular mobility, increased stiffness, and 
decreased flexibility of the material.

Morphology characterization

Figure  4 shows fractured sample surfaces. N33 displayed smoother surface than 
the NBR/ceramic composites. The dispersed ZnO particles were observed as 
white spots in N33. Inhomogeneous surfaces were observed for the NBR/ceramic 

Fig. 4   SEM images of fracture surfaces of virgin NBR and NBR/ceramic composites
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composites. N33B exhibited rougher surface than N33C, indicating strong interac-
tions of BT and NBR that improved the mechanical properties over those of N33C. 
The smoother surface of N33C implies poor interfacial compatibility, resulting in 
poor mechanical properties and poor dielectric constant compared with N33B. How-
ever, with increasing acrylonitrile content, apparently a rough surface of N42C was 
obtained. This is attributed to increased chemical interactions of the attached groups 
and side chains in NBR matrix, due to the polar groups in the elastomer.

Dynamic mechanical analysis and thermal stability

Dynamic mechanical properties of virgin NBR and ceramics-filled composites are 
demonstrated in Fig. 5. In comparison with the virgin NBR sample, it can be seen 
that the storage modulus of N33B increased while the storage modulus of N33C 
decreased. Higher storage modulus indicates higher stiffness of a composite, due to 
strong interactions between BT and NBR. Though the storage modulus of N33B 
was increased, N33C had a reduced modulus due to the weak filler–rubber adhesion. 
However, with increasing acrylonitrile content, the storage modulus also increased. 
This is due to the strong intermolecular interactions of C≡N groups in NBR matrix 
at a high acrylonitrile content. These results agree well with the tensile properties. 
The glass transition temperatures of samples were obtained from the peak locations 
of tanδ. The Tg slightly shifted to higher temperatures for N33B and N33C, rela-
tive to N33. The Tg of N33 was at − 20.6 °C. The incorporation of BT and CCTO 
slightly increased the Tg values to − 19.6  °C and − 19.0  °C for N33B and N33C, 
respectively. This indicates that ceramic particles obstructed the rubber chains, 
increasing Tg. Moreover, an increase in Tg was observed with increasing acryloni-
trile content. The Tg of N42C was observed at − 6.8 °C because of stronger chemical 
interactions among C≡N groups in NBR matrix that restricted mobility of rubber 
chains. Yuan et al. [54] and Song et al. [55] also reported a similar result in which 

Fig. 5   Storage modulus (E′) and tan � as functions of temperature for virgin NBR and NBR/ceramic 
composites
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high acrylonitrile content gave a higher Tg than low acrylonitrile content. The results 
of TGA analysis on virgin NBR and ceramics-filled NBR composites with various 
ceramic types and acrylonitrile contents are shown in Fig. 6. It was found that the 
incorporation of ceramics into NBR matrix improved thermal stability of the com-
posites, shifting the TGA curves toward higher temperatures. In addition, the NBR/
ceramic composites displayed larger residual weights. This could be explained by 
the good thermal stability of the ceramic fillers themselves. There is no significant 
difference between N33C and N42C. This suggests a distinct improvement in the 
thermal stability of the NBR/ceramic composites by ceramic fillers, in this study.

Dielectric properties of composites

Dielectric constant, dielectric loss, and conductivity as functions of frequency in the 
range from 105 to 107 Hz for all samples are shown in Fig. 7. The lowest dielectric 
constant was observed for N33. This was due to the intrinsic properties of the BT and 
CCTO ceramic fillers, which typically have higher dielectric constants than NBR. In 
comparison with N33, a 20% increase in dielectric constant of N33B at 105 Hz was 
obtained. However, N33C provided a lower dielectric constant than N33B. The dielec-
tric constant of N33B was higher than N33C by 15% at 105 Hz. This is probably due 
to the poorer compatibility of CCTO with NBR matrix. However, it was found that 
N42C showed the lowest dielectric constant. The lower dielectric constant of N42C 
with higher acrylonitrile content compared with N33C was attributed to strong inter-
molecular interactions, which can limit orientation polarization [12]. Thipdech et  al. 
found that the dielectric constant of virgin NBR increased with acrylonitrile content 
at frequencies below 104  Hz due to added C≡N dipoles, causing an increase in the 
orientation polymerization. However, NBR with 42.5% acrylonitrile content exhibited 
a larger drop in dielectric constant than the other cases with acrylonitrile contents of 
42.5, 33, 28, and 18.5% when frequency exceeded 104 Hz [56]. Figure 7b presents the 
dielectric losses of the samples. A broad relaxation appeared at about 106 Hz because 

Fig. 6   TGA thermograms of virgin NBR and NBR/ceramic composites
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of the elastomer chain segmental motions [12, 57]. On incorporating ceramic fillers 
into NBR, there was no significant change in dielectric loss on adding BT, while there 
was a larger decrease in dielectric loss on adding CCTO and on increasing acrylonitrile 
content. The reduction in dielectric loss for ceramics-filled NBR was due to the fillers 
hindering C≡N dipole re-orientation [58]. This means that the ceramic fillers in NBR 
improved to some extent the insulating properties of NBR. In addition, a shift toward 
lower frequencies was observed on increasing acrylonitrile content, which may reflect 
resistance to C≡N dipole relaxation. As the acrylonitrile content increased, the stronger 
interactions between acrylonitrile groups hindered dipole re-orientation.

Conclusions

The following conclusions can be drawn from this study:

Fig. 7   a Dielectric constant and b dielectric loss of virgin NBR and NBR/ceramic composites
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1.	 Faster scorch and cure times as well as larger minimum, maximum, and delta 
torques were obtained on adding ceramic fillers into NBR matrix. The BT-filled 
NBR composite exhibited lower minimum, maximum, and delta torques and 
scorch time but higher cure time compared to the CCTO-filled NBR composite, 
while minimum, maximum, and delta torques and cure time increased but scorch 
time decreased with increasing acrylonitrile content.

2.	 BT-filled NBR composite exhibited a higher tensile strength of 4.80 MPa and 
elongation at break of 561% compared to virgin NBR or CCTO-filled NBR com-
posite. In addition, 100% modulus, 300% modulus, tensile strength, and hardness 
increased, while elongation at break decreased with acrylonitrile content.

3.	 A rough surface was obtained with increasing acrylonitrile content and using BT 
as filler due to strong interactions of BT and NBR matrix

4.	 Higher Tg was observed after addition of ceramic fillers into NBR matrix and 
on increasing acrylonitrile content, from − 20.6 to − 6.8 °C. In addition, these 
ceramic fillers tested also improved thermal stability of the composites, but acry-
lonitrile content did not significantly affect it.

5.	 BT-filled NBR composite demonstrated a higher dielectric constant of ~ 25 and a 
lower dielectric loss of 0.15 at room temperature and frequency of 105 Hz com-
pared to virgin NBR or CCTO-filled NBR composite. The dielectric constant 
decreased with acrylonitrile content. These composites have potential candidates 
in flexible dielectric materials.
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