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Abstract
Redox-active polytriarylamine with hydroxyl groups is a useful material for opto-
electronic applications, especially in the solution-processable multilayer devices. 
A novel regiocontrolled triarylamine-based polymer, poly(di-5-naphthyl-2-ol)phe-
nylamine, with 2-naphthol units was synthesized via oxidative coupling polymeri-
zation. Polymerization in tetrahydrofuran using a Cu-amine complex oxidant under 
 O2 atmosphere produced polymers with number-averaged molecular weights as high 
as 11,300 g mol−1. The structure of the polymer was characterized by 1H and 13C 
NMR spectroscopy, showing that the oxidative coupling polymerization occurred 
at the outer ortho position of the 2-naphthols, preserving the hydroxyl groups. The 
polymer exhibited good solubility in polar aprotic solvents, with a high thermal sta-
bility of 446 °C that corresponded to 5% weight loss. The UV–vis absorption of the 
polymer was similar to that of DNPA, indicating that the kinked-structured polymer 
hindered the formation of charge-transfer complexes. These results suggest promis-
ing applications of the developed polymer in optoelectronic devices.
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Introduction

Aromatic polymers, including polyphenylene, polyaniline, polypyrrole, and poly-
thiophene, have attracted significant interest due to their optoelectrical, thermal, 
and mechanical properties [1–4]. Typically, two polymerization methods are used 
in the synthesis of aromatic polymers: The first is a transition metal-catalyzed 
coupling polymerization of aryl dihalides [5–7], and the other involves oxidative 
coupling polymerization via electrochemical or chemical methods [8–11]. While 
the former strategy requires auxiliary functional groups for polymerization, such 
as dihalides, oxidative coupling polymerization can form carbon–carbon bonds 
from simple monomer structures [12]. Therefore, oxidative coupling polymeriza-
tion provides a more practical route for the synthesis of aromatic polymers.

Hydroxyl-modified aromatic polymers have been applied for primer coating [13, 
14], positive-type photosensitive polymer [15–18], and semiconductor manufactur-
ing as both protection and insulation layers [19–21]. The reactive hydroxyl groups 
allow simple functionalization of the polymer, facilitating their usefulness for sev-
eral applications [22–26]. However, oxidative coupling of phenolic hydroxyl groups 
generally involves C–O bond formation [27–29]. Therefore, a naphthol alternative 
has been used for oxidative coupling polymerization. Particularly, oxidative cou-
pling of 2-naphthol using a catalytic amount of a Cu-amine complex showed good 
regioselectivity with excellent yields [30] suitable for polymer synthesis with a 
regioregular structure and preservation of its hydroxyl groups. Successful synthesis 
of hydroxyl-modified regioregular aromatic polymers has been reported, and exten-
sive applications have been demonstrated [31–35].

The electron-rich and redox-active properties of triarylamine derivatives are 
useful for optoelectronic devices [36–38]. In addition, their bulky and propeller-
shaped structure provides a porous aromatic framework for mesoporous materials 
with a high surface area that is suitable for use in proton membranes [39–42]. Tri-
arylamine derivatives in polymers have advantages in terms of mechanical prop-
erties and easy processability compared to monomeric and oligomeric analogues 
[43–45]; especially, the oxidative coupling polymerization of triarylamine deriva-
tives provides a straightforward method for preparing polymeric triarylamine and 
has been used for the successful synthesis of triarylamine polymers [46].

Herein, we report the synthesis of regiocontrolled poly(di-5-naphthyl-2-ol)
phenylamine (PDNPA) by oxidative coupling polymerization of the triarylamine 
monomer containing two naphthol units. A novel triarylamine monomer was pre-
pared by replacing phenyl rings with 2-naphthol units. Introduction of the naph-
thalene rings can lead to steric repulsion, which is advantageous in preventing a 
close packing of polymer chains due to its large dihedral angle and suppressing 
the formation of charge-transfer complex [47]. In addition, the hydroxyl group on 
naphthalene ring imparts a good adhesion and site that can introduce cross-linka-
ble group for multilayer optoelectronic devices [48–50]. The synthesized polymer 
has BINOL structures in the main chain as a result of the oxidative coupling reac-
tion of 2-napthol and can also be used as a soluble polymer-supported BINOL for 
various catalytic applications [51–55].
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Experimental

Materials

Tris(dibenzylideneacetone)dipalladium(0)  [Pd2(dba)3], tri-tert-butylphosphine 
[(tBu)3P], sodium tert-butoxide (NaOtBu), toluene, anhydrous tetrahydrofuran 
(THF, 99.9%), anhydrous N,N-dimethylformamide (DMF, 99.8%), tetramethylenedi-
amine (TMEDA) tetrabutylammonium tetrafluoroborate  (Bu4NBF4), and anhydrous 
acetonitrile (99.8%) were purchased from Sigma-Aldrich. Aniline, methyl iodide 
(MeI), di-μ-hydroxo-bis[(N,N,N′.N′-tetramethylethylenediamine)copper(II)] chloride 
[CuCl(OH)TMEDA], and potassium carbonate  (K2CO3) were purchased from TCI. 
Hydrobromic acid (HBr, 48% solution), acetic acid (99%), and sodium bicarbonate 
 (NaHCO3) were purchased from Junsei. Ethyl acetate (EA, 99%), hexane (95%), and 
magnesium sulfate  (MgSO4) were purchased from Daejung. 5-Iodo-2-naphthol was 
prepared according to a previously described method [56].

Material characterization

The 1H and 13C NMR spectra of the synthesized materials were recorded using 
a Bruker Fourier Transform AC 400 (400  MHz) spectrometer. Chemical shifts 
were expressed in parts per million (ppm) with reference to the residual peaks of 
DMSO for 1H (2.49 ppm) and 13C (39.52 ppm). Mass spectra were obtained using 
a microTOF-Q, and elemental analysis was recorded using a FLASH 200 series 
instrument. Polymer molecular weights and distributions were measured via size 
exclusion chromatography (SEC). The SEC traces were obtained using a Viscotek 
TDA302 instrument equipped with a RI detector and packing column (three PLgel 
10 μm MIXED-B) using tetrahydrofuran (THF) as the eluent at 35 °C. The num-
ber and weight average molecular weights of the polymers were calculated relative 
to linear polystyrene standards. Thermogravimetric analysis (TGA) and differential 
scanning calorimetry (DSC) were conducted using TA Instruments TGA Q500 and 
DSC Q100 instruments, respectively. The TGA and DSC measurements were per-
formed under a nitrogen atmosphere at a heating rate of 10 °C min−1. The Tg val-
ues were determined from the second heating scan of the DSC thermograms after 
cooling to 0  °C from 200  °C. Wide-angle X-ray diffraction (WAXD) pattern was 
obtained with a Rigaku D/MAX-2500 X-ray diffractometer. Cu K alpha (1.5418 Å) 
was used as a light source. UV–vis spectra were measured on a JASCO V-530 spec-
trometer. The electrochemical experiments were performed using a CH instrument 
CHI 617B potentiostat equipped with a three-electrode system. Pt wire was used 
as the counter electrode, silver/silver nitrate (Ag/AgNO3) as the reference electrode, 
and a 2-mm-diameter platinum disk as the working electrode.

Preparation of 6-(2-methoxy)-1-iodonaphthalene (1) 5-Iodo-2-naphthol (8.65  g, 
32.03  mmol), anhydrous  K2CO3 (22.110  g, 160  mmol), and MeI (22.71  g, 
160  mmol) were dissolved in anhydrous DMF (100  mL). The solution was then 
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heated at 70  °C and stirred for 16  h under a nitrogen atmosphere. The reaction 
mixture was subsequently poured into water and extracted with ethyl acetate. The 
organic layer was successively washed with water and dried over anhydrous  MgSO4. 
The solvent was evaporated, and the remaining residue was purified via column 
chromatography on silica gel with ethyl acetate/hexane (1/4, v/v) as the eluent to 
yield an orange viscous liquid (9.01 g, 99%). 1H and 13C NMR spectra are shown in 
Figs. S1, S2.

1H NMR (DMSO-d6, 400  MHz, ppm): 7.94 (dd, 1H, J = 7.2, 1.2  Hz), 7.89 (d, 
1H, J = 7.6  Hz), 7.87 (d, 1H, J = 6.8  Hz), 7.35 (1H, d, J = 2.4  Hz), 7.28 (dd, 1H, 
J = 9.2 Hz), 7.20 (1H, t, J = 8 Hz), 3.89 (3H, s). 13C NMR (DMSO-d6, 100 MHz, 
ppm): 157.75, 134.96, 134.84, 132.88, 129.06, 127.91, 127.66, 120.36, 106.69, 
99.15, 55.44.

Preparation of di(1-(6-(2-methoxy)naphthyl))phenylamine (2) The synthesis of com-
pound 2 was performed based on a similar procedure that was described previously 
[57]. To a two-necked round-bottomed flask (RBF) equipped with a reflux con-
denser, 1 (8.93 g, 31.43 mmol), aniline (1.32 g, 14.19 mmol),  Pd2(dba)3 (0.288 g, 
0.31 mmol), (tBu)3P (0.25 g, 1.24 mmol), NaOtBu (4.23 g, 44 mmol), and anhy-
drous toluene (80 mL) were added and stirred at 90 °C for 24 h under a nitrogen 
atmosphere. The mixture was poured into water and extracted with ethyl acetate. 
After drying over anhydrous  MgSO4, the solvent was evaporated. The residue was 
purified via column chromatography on silica gel with dichloromethane/hexane 
(1/1, v/v) as the eluent to yield a white solid (4.017 g, 86%). 1H and 13C NMR spec-
tra are shown in Figs. S3, S4.

1H NMR (DMSO-d6, 400  MHz, ppm): 7.80 (2H, d, J = 9.2  Hz), 7.67 (2H, d, 
J = 8.4 Hz), 7.37 (4H, m), 7.12 (2H, t, J = 8 Hz), 7.04 (2H, dd, J = 9.2, 2.8 Hz), 6.96 
(2H, dd, J = 7.4, 1.2 Hz), 6.84 (1H, t, J = 7.2 Hz), 6.56 (2H, dd, J = 8.6, 1.2 Hz), 3.85 
(6H, s). 13C NMR (DMSO-d6, 100  MHz, ppm): 157.25, 149.96, 144.17, 136.28, 
129.04, 126.83, 125.09, 124.70, 124.55, 122.15, 120.60, 119.75, 118.68, 106.84, 
55.16. Anal. Calcd. for  C28H23NO2: C, 82.94; H, 5.72; N, 3.45; O, 7.89. Found: 
C, 83.01; H, 5.70; N, 2.90. ESI–MS: m/z 406.17 for [M + H]+ (Calcd for [M]: m/z 
405.17).

Preparation of di(1-(6-(2-hydroxy)naphthyl))phenylamine (DNPA) To an RBF 
equipped with a reflux condenser, 2 (5.51  g, 13.59  mmol), HBr (17.1  mL, 48% 
solution), and acetic acid (70 mL) were added and stirred at 130 °C for 12 h. The 
mixture was subsequently poured into water and extracted with ethyl acetate. The 
organic layer was repeatedly washed with a basic solution (0.1 M  NaHCO3 aqueous 
solution). After drying over anhydrous  MgSO4, the solvent was removed under pres-
sure. The residue was purified via column chromatography on silica gel with ethyl 
acetate/hexane (1/1, v/v) as the eluent. The resulting product was dissolved in tolu-
ene and precipitated in heptane to yield a gray solid (3.95 g, 77%).

1H NMR (DMSO-d6, 400 MHz, ppm): 9.79 (2H, s), 7.78 (2H, d, J = 9.2 Hz), 7.53 
(2H, d, J = 8.4  Hz), 7.28 (2H, t, J = 8  Hz), 7.17 (2H, d, J = 2.4  Hz), 7.09 (2H, t, 
J = 7.8 Hz), 6.95 (2H, dd, J = 9.2, 2.4 Hz), 6.90 (2H, dd, J = 7.4, 1.2 Hz), 6.80 (1H, 
t, J = 7.2 Hz), 6.54 (2H, dd, J = 8.6, 1.2 Hz). 13C NMR (DMSO-d6, 100 MHz, ppm): 
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155.42, 150.08, 144.22, 136.57, 128.96, 126.54, 125.31, 124.04, 123.97, 121.43, 
120.30, 119.54, 118.82, 109.43. Anal. Calcd. for  C26H19NO2: C, 82.74; H, 5.07; N, 
3.71; O, 8.48. Found: C, 81.75; H, 5.18; N, 3.02. ESI–MS: m/z 378.14 for [M + H]+ 
(Calcd for [M]: m/z 377.14).

Polymerization

PDNPA (run 8) To an RBF, DNPA (0.132  g, 0.35  mmol), CuCl(OH)TMEDA 
(8.13 mg, 0.0175 mmol), and THF (1 mL) were added and stirred at 30 °C under 
oxygen. After polymerization for 16 h, the reaction mixture was poured into metha-
nol containing a small amount of hydrochloric acid and subsequently filtered. The 
precipitate was washed in a Soxhlet apparatus with methanol and collected with 
THF, which was then condensed and precipitated in methanol. The final product was 
obtained after drying in vacuo at 60 °C, yielding a green powder (0.104 g, 78.6%).

Results and discussion

Synthesis of DNPA The synthetic routes for DNPA are shown in Scheme  1. The 
hydroxyl groups of 5-iodo-2-naphthol were protected before the palladium-catalyzed 
amination reaction. Compound 1 was reacted with 0.45 equiv. of aniline, and after 
deprotection of the methyl protecting groups, DNPA was afforded. DNPA was puri-
fied via column chromatography followed by reprecipitation of the toluene solution 
into heptane to yield a pale brown powder. The chemical structure of DNPA was 
verified by 1H-NMR and C-H correlated spectroscopy (COSY). Figure 1 shows the 
1H-NMR spectrum of the prepared DNPA, consisting multiplets at 6.54–7.78 ppm 

Scheme 1  Synthetic routes of DNPA
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and a broad peak at 9.79 ppm, which were assigned to the aromatic and hydroxyl 
protons, respectively. Figure 2 shows the C-H COSY spectrum for aromatic region 
of DNPA with corresponding peak assignments.

Cyclic voltammogram The oxidative coupling reaction includes a radical cou-
pling step, in which the radical species generated by one-electron oxidation are 
involved in the coupling process [58]. Therefore, it is important to measure the 

Fig. 1  1H-NMR spectrum of the obtained DNPA (400 MHz, DMSO-d6)

Fig. 2  C-H COSY spectrum of the obtained DNPA (400 MHz, DMSO-d6)
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oxidation–reduction potentials of DNPA to select the proper oxidant. The oxidation 
potential of the first one-electron transfer from DNPA was estimated using cyclic 
voltammetry (CV) with  Bu4NBF4 (0.1 M in acetonitrile) at a scan rate of 50 mV s−1 
under a nitrogen atmosphere. It should be noted that the effect of TMEDA on the 
oxidation of DNPA was confirmed by comparing the oxidation and onset potentials 
of DNPA, TMEDA, and DNPA + TMEDA mixed solution. As shown in Fig. 3, first 
electrochemical oxidation peaks of DNPA and TMEDA were measured at 0.590 and 
0.330 V, respectively, and the onset potentials of DNPA and TMEDA were 0.488 
and 0.160 V, respectively. For the DNPA + TMEDA mixture (Fig. 3, red line), it is 
clear that a new oxidation peak and onset potential appeared at 0.068 and − 0.024 V, 
respectively, which were observed only in the mixed solution. The cyclovoltametric 
results indicate that DNPA can be affected by TMEDA, and its electrochemical oxi-
dation shifted to a lower oxidation potential (even lower than the TMEDA oxidation 
potential). According to these results, CuCl(OH)TMEDA was selected as the oxi-
dant for use in the oxidative coupling polymerization of DNPA.

Polymer synthesis and thermal properties The polymerization of DNPA was per-
formed in the presence of CuCl(OH)TMEDA (5 mol% per monomer fed) in THF at 

Fig. 3  Cyclic voltammograms of 1  mM DNPA (black line), 2  mM TMEDA (blue line), and 1  mM 
DNPA + 2 mM TMEDA (red line) in acetonitrile containing 100 mM  Bu4NBF4 at a scan rate of 50 mV/s 
(color figure online)

Scheme 2  Oxidative coupling polymerization of DNPA
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30 °C (Scheme 2), and the results are summarized in Table 1. After polymerization, 
the resulting polymers were purified by repeated precipitation with methanol con-
taining a small amount of HCl and Soxhlet extraction with methanol to remove any 
remaining catalyst. With increasing reaction time, the molecular weights of poly-
mers increased. The polymers obtained from run 1–8 were soluble in THF, but run 9 
contained approximately 25% insoluble polymer. The polymer was soluble in polar 
organic solvents such as THF, DMF, and DMSO at room temperature (20 °C) but 
was only partly soluble even under heating in chloroform, methylene chloride, and 
acetone.

As shown in Scheme 3, the mechanism of oxidative coupling reaction could be 
explained by the redox process accompanying a single electron transfer between 
2-naphthalate and Cu(II) ion [10]. The resulting 2-naphthoxy radical is stabi-
lized by delocalization, and carbon–carbon coupling reaction is occurred on C−1 
position with the highest electron spin density. The monomers undergo succes-
sive oxidation and coupling reaction giving the high molecular weight polymer. 

Table 1  Oxidative coupling 
polymerization of DNPA

Polymerization was performed using CuCl(OH)TMEDA as an oxi-
dant in THF at 30 °C under  O2 atmosphere
a Determined by THF-SEC based on linear polystyrene standards
b Run 9 contained approximately 25% insoluble polymer

Run Time (h) Yield (%) Mn
a (kg mol−1) Mw

a (kg mol−1) PDIa

1 2 2.0 4.6 5.5 1.20
2 4 36.6 4.6 6.1 1.33
3 6 48.8 5.2 7.5 1.44
4 8 54.7 5.4 8.4 1.56
5 10 61.6 5.9 10.1 1.71
6 12 71.5 6.9 15.9 2.30
7 14 73.7 7.8 20.2 2.59
8 16 78.6 9.2 31.1 3.38
9b 18 80.8 11.3 54.2 4.80

Scheme 3  Mechanism of oxidative coupling reaction of the naphthol monomer
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During polymerization, the Cu(II) is recovered by oxidation of the Cu(I) under 
oxygen.

The structure of PDNPA (run 8) was determined by NMR spectroscopy. The 
1H NMR spectrum of PDNPA hardly showed clear peak splitting (Fig.  4) due to 
the restricted conformations induced by the repulsion between bulky naphthalene 
rings. Consequently, the structure of PDNPA was estimated using 13C NMR and 
distortionless enhancement by polarization transfer (DEPT) spectroscopy. The aro-
matic region of the 13C and DEPT45 spectra and assignment of DNPA are described 
in Fig.  5. After oxidative polymerization, the outer ortho position (C-10 peak) of 
the 2-naphthols of DNPA shifted down field and subsequently disappeared in the 
DEPT45 spectrum. This clearly indicated that coupling occurred selectively at the 
C-10 position. For better assignment, 13C NMR and DEPT45 analysis of the low 
molecular weight polymer (run 4) was also conducted (Fig.  S5). Unlike the high 
molecular weight polymer, it showed a sharp spectrum and provided useful informa-
tion for analysis of the polymer structure.

The thermal properties of PDNPA were investigated with TGA and DSC. PDNPA 
showed good thermal stability, with a polymer weight loss of < 5% at 446 °C (Td5) 
under a nitrogen atmosphere. In addition, PDNPA exhibited high char yields of 73% 
at 800  °C. In the derivative thermogravimetry (DTG) curve, the major degrada-
tion peak appeared at 687 °C and the second degradation peak appeared at 438 °C 
(Fig. 6). The DSC trace exhibited no endothermic peaks or baseline shift indicating 
a melting point or glass transition, respectively. The crystalline structure of the poly-
mer film was further studied with the WAXD. The polymer film was prepared by 
spin coating the polymer solution (THF) on a silicon wafer. As shown in Fig. 7, the 
WAXD pattern of polymer indicated that the polymer was amorphous.

Fig. 4  1H-NMR spectrum of PDNPA (run 8; 400 MHz, DMSO-d6)
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UV–vis absorption properties The normalized UV–vis absorption spectra of DNPA 
and PDNPA in THF are shown in Fig.  8. DNPA and PDNPA showed maximum 
absorptions at 344 and 356  nm, respectively. The UV–vis absorption onset of 
DNPA (381  nm) and PDNPA (388  nm) was similar, indicating a small extension 
of π-conjugation in PDNPA. This suggests that the steric repulsion of the naphtha-
lene rings induced a large dihedral angle between neighboring naphthalene rings. 

Fig. 5  Aromatic regions in the NMR spectra of DNPA and PDNPA (run 8); a 13C NMR spectrum of 
DNPA; b 13C NMR spectrum of PDNPA; c DEPT45 spectrum of PDNPA (100 MHz, DMSO-d6)

Fig. 6  TGA and DTG curves of PDNPA (run 8) under  N2
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In addition, this kinked structure may prevent interchain interactions between poly-
mer chains, hindering the formation of charge-transfer complexes, which results in 
reduced electroluminescence efficiency and an additional emission band in the long 
wavelength region when applied in optoelectronic devices [59, 60]. The optical band 
gap of PDNPA, as calculated from the onset absorption, was 3.19 eV.

Conclusions

Regiocontrolled PDNPA was prepared via oxidative coupling polymerization of 
DNPA using CuCl(OH)TMEDA as an oxidant. By increasing the polymerization 
time, the polymer molecular weight increased, but an insoluble portion was formed 
at times exceeding 16 h. The structure of PDNPA was characterized by 1H and 13C 

Fig. 7  WAXD pattern of the 
polymer film (run 8)

Fig. 8  UV-vis absorption spectra of DNPA and PDNPA (run 8) in THF
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NMR spectroscopy, indicating that the polymerization reaction selectively occurred 
at the outer ortho C-10 position of the 2-naphthol groups, leaving the hydroxyls 
unreacted. PDNPA exhibited good solubility in polar organic solvents and showed 
a high thermal stability of Td5 at 446 °C. Similar onset absorptions of DNPA and 
PDNPA in their UV–vis spectra revealed that the regioregularly kinked polymer 
structure prevented interchain interactions of the polymer chains. The hydroxyl 
groups of PDNPA allow for further modification for various purposes. In particular, 
this novel polymer could be applied in hole-transporting materials for solution-pro-
cessable multilayer OLEDs through the introduction of cross-linkable groups.
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