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Abstract
The dendrimer has a high degree of geometric symmetry, a precise and controlla-
ble molecular size, a large number of surface-active functional groups, a rich cav-
ity inside the molecule, and a controlled molecular chain growth. The unique struc-
tural properties of the above-mentioned macromolecules have made it a research hot 
spot in many fields. Molecular simulation technology, as a new scientific research 
method, plays an important role in the basic theory and applied research of dendrim-
ers. This paper reviews the basic progress of molecular simulation technology in the 
field of dendrimers in recent years, including the application of dendrimers in medi-
cine, DNA, pharmaceutical carriers, proteins, amino acids, and so on.
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Introduction

The important member in the macromolecular system is dendrimers. Dendrimer is 
firstly reported in 1978 by Vögtel et al. by applying Michael addition and reduction 
approaches [1]. They succeeded to synthesize a branched tripropylamine-based mac-
romolecule by utilizing a primary amine and acrylonitrile to give a dinitrile, which 
called it a cascade molecule. Following this achievement, Tomalia et al. synthesized 
branched polyamide-amine (PAMAM) for the first time in 1985 [2]. Accordingly, 

 * Seyed Jamilaldin Fatemi 
 fatemijam@yahoo.com

 * Zeynab Abbasi 
 zeynababbasi10@yahoo.com

 S. Mahmood Fatemi 
 fatemi.mahmood@gmail.com

1 Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-133, Iran
2 Faculty of Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran

http://orcid.org/0000-0002-4194-2403
http://crossmark.crossref.org/dialog/?doi=10.1007/s00289-019-03076-4&domain=pdf


6672 Polymer Bulletin (2020) 77:6671–6691

1 3

the word of dendrimer as a specific member of macromolecule has become popular 
in scientific researches since the 1990s. In this regard, Tomalia and Fréchet wrote an 
interesting review article about the historical perspective concerning the discovery 
of dendrimers [3]. The features of a dendrimer are an exact molecular structure, a 
precise molecular weight, and monodispersity with repeated and regular branch [4]. 
Contrary to linear polymers, dendrimers illustrate a unique class of synthetic poly-
mers, highly rigid and strongly branched molecules which can be synthesized from a 
branch point or central segment [5].

In general, a dendrimer consists of three distinct segments: a core, scaffold, and 
surface structure. The core is placed in the center of the molecule and attached with 
a given number of branches which are called dendrons. Each dendron is composed 
of the scaffold (number of branching points) and surface groups. The number of 
branches characterizes the generation and the scale of a dendrimer, i.e., the number 
of branch points, the functionality, and the length of the spacer. It should be noted 
that the physical and chemical properties of the dendrimer are determined by the 
nature of functional groups, which extend to the surroundings [6].

Some of the important structural features of dendrimers are: abundant surface 
functional groups, various types of functionalized, precise molecular arrangements, 
precise nanoscale structure, highly geometric symmetry, and homologous series of 
cavity size. Therefore, they have many performance characteristics such as: solu-
bility, hydrodynamic performance, unique viscosity behavior, and versatility [7]. 
Various potential applications of dendrimers, including biological [8], biomedical 
[9], detection therapeutic, diagnostic, and detection [10] for cancer treatment [11], 
pharmaceutical, nanocarriers, and drug delivery [12], tissue engineering [13], brain 
delivery and cancer therapy [14], sensing [15], catalysis [16], molecular electron-
ics [17], photonics [18], nanomedicine [19], magnetic resonance imaging [20], gene 
delivery [21], optoelectronic applications [22], dendrimer liquid membranes for 
gas separation [23], and so on [24, 25], have been proposed because of their unique 
nanostructures and excellent physical properties.

Synthesis of dendrimers

There are two major routes to synthesize dendrimers consisting divergent and 
convergent. The divergent methodology was first introduced independently by 
Newkome et al. [26] and Tomalia et al. [2]. Divergent method is summarized in four 
steps as below: Firstly, a reaction starts with a core, and this core must have some 
features such as have reactive groups and a small functional molecule. Secondly, 
this core reacts with some blocks with some characterizations such as having a well-
designed building and having some functional groups which are able to transform 
into a new reactive point to form the first-generation dendrimer (G1). This proce-
dure is well known as dendritic growth. Thirdly, the G1 dendrimer will expose the 
reactive points on its surface, and G2 could be made after the second-stage dendritic 
growth. Finally, by repeating activation and growth process, higher-generation den-
drimers could be achieved [27].
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On the other hand, the synthesis dendrimers from divergent method suffer from 
some important issues such as time-consuming and steric-shielding effects. It should be 
noted that both of these limitations have a strong effect for synthesis of a big dendrimer. 
Besides the mentioned problems, if the final functional groups react with the interior of 
the dendrimer, it is unable to react with the building blocks. This procedure is known 
as dense-core theory and is common in the flexible dendrimers. After each generation 
growth, surface space for each active point is reduced, leading to a defect in the struc-
ture and unreacted active when making higher-generation dendrimers. This procedure 
is called a dense-shell concept and is common in the rigid dendrimers [28]. It should be 
noted that according to the flexibility of the backbones of dendrimers, they are divided 
into flexible and rigid dendrimers.

On the other hand, the convergence methodology was reported by Hawker and Fré-
chet in 1990 while they synthesized the poly (aryl ether) dendrimers [29]. This applies 
a reverse growth process as compared with the divergent one. Convergence approach 
starts from the building block and reacts with a focal-activated building block to form a 
dendron inward toward to the core to give birth to the dendrimer [30].

Dendrimers are designed into a given category base on the diverse functional 
groups, types of functionalized, and architecture of dendrimers. The important catego-
ries of dendrimers are: (1) carbon- or oxygen-based dendrimers such as polyether, poly-
ester, and glycodendrimers [31], (2) chiral dendrimers including chirality base on the 
core and chirality base on the branching unit [32], (3) metallodendrimer such as poly 
(propylene imine) pyridyl imine palladium [33] and poly (bis (imino) pyridyl) iron(II) 
[34], (4) peptide dendrimers which consists of a peptidyl branching core or covalently 
attached surface functional points such as multiple antigen peptide (MAP) [35], (5) 
phosphorus dendrimers [36], (6) porphyrin dendrimers [37], (7) silicon dendrimers 
including silane, carbosilane, siloxane, and carbosiloxane [38], (8) triazine dendrimers 
[39], (9) hybrid dendrimers [40], (10) PAMAM dendrimers [41], (11) polyamidoam-
ine organosilicon (PAMANOS) dendrimers [42], (12) poly propylene imine (PPI) den-
drimers [43], and (13) polylysine (PLL) dendrimers [44].

Characterization of dendrimers

A wide range of analytical techniques has been proposed for characterization of den-
drimers according to the various applications of dendrimers. Much scientific research 
is focused on developing and improving on techniques for characterization of dendrim-
ers. These techniques define the feature, property, and structure of dendrimers, such 
as optical activity, structural properties, thermodynamic properties, chemical composi-
tion, molecular mass, surface structure, size, shape, morphology, and homogeneity of 
dendrimers. Table 1 illustrates the summary of the technique for characterization of 
dendrimers.
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PAMAM dendrimer

The first dendritic structure synthesized concerning to the divergent route which 
received widespread attention was Tomalia’s polyamide-amine (PAMAM) 
dendrimer.

Today, PAMAM dendrimer is commercially available and has been studied exten-
sively. PAMAM dendrimer is the first commercial and synthetic dendrimer mem-
ber based on ethylene diamine core and amide repeating branched structures [67, 
68]. Ethylene diamine (EDA)-based poly amide dendrimers have been extensively 
investigated in biomedical applications and composite base materials since synthesis 
[69]. The molecular structure of PAMAM is shown in Fig. 1.

Molecular dynamics (MD) simulation

Simultaneously with the technology development, the applications and functions of 
molecular simulation techniques are becoming more and more demanding. In the 

Table 1  Characterization of dendrimers

Method Purpose References

UV–Vis spectroscopy Degree of protonation [45]
Capillary zone electrophoresis Dendrimer charge and hydrodynamic radius [46]
Circular dichroism Optical activity [47]
Electron paramagnetic resonance Surface structure [48]
Differential scanning calorimetry Thermodynamic properties [49]
X-ray diffraction Structural properties [50]
X-ray photoelectron spectroscopy Chemical composition [51]
Small angle neutron scattering Molecular characterization [52]
Laser light scattering Internal structure [53]
Electrospray ionization mass spectrometry Molecular mass [54]
Atom bombardment mass spectrometry Molecular mass [55]
Matrix-assisted laser desorption ionization 

mass spectrometry
Molecular mass [56]

Size exclusion chromatography Molecular weight [57]
Gel permeation chromatography Molecular weight [58]
Dielectric spectroscopy Dielectric, mechanical and molecular dynamic [59]
Nuclear magnetic resonance Structural characterization [60]
Infrared spectroscopy Surface engineering [61]
Fourier transform infrared spectroscopy Surface engineering [62]
Atomic force microscopy Visualization and characterization [63]
Transition electron microscopy Size and shape [64]
Analytical techniques Morphology and homogeneity [65]
Electrospray ionization Structural defects [66]



6675

1 3

Polymer Bulletin (2020) 77:6671–6691 

environmental protection, chemical and chemical industry and energy conservation 
are constant themes, and the improvement and promotion of new functional prod-
ucts will be one of the major development trends in the future. The development 
of computers has introduced the calculation methods and theoretical techniques of 
chemical, physical, and materials science, which has promoted the progression of 
new products. With the rapid development of molecular simulation technology, the 
world’s major companies in order to meet the research needs of different fields have 
developed a variety of molecular simulation calculation software, such as TINKER, 
Gromacs, Materials Studio, and LAMMPS. MD simulation method is a widely used 
computer simulation method [70–74]. In a nutshell, molecular simulation is a sys-
tematic computer simulation of real experimental molecules. Since the computer 
can clearly display the microstructure of the molecule and calculate the performance 
of the target product, some experiments, in which it is difficult or impossible to get 
the data, can be done using molecular simulation. Based on the experiment, a set 
of calculation algorithms and calculation models through some basic principles are 
established, on the basis of which a reasonable molecular structure and molecular 
behavior are calculated. Molecular simulation methods mainly have four theoreti-
cal methods, including quantum mechanical method, molecular mechanics method, 
molecular dynamics method, and Monte Carlo method, in which quantum mechan-
ics can describe the change of electronic structure, and molecular mechanics can 

Fig. 1  PAMAM dendrimer. The core, G0, and G1 are shown, reprinted with permission from Ref. [116] 
copyright 2019 American Chemical Society
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describe the changes in the ground state atomic structure. These two methods, 
strictly speaking, describe the molecular structure of absolute zero. MD can be used 
to describe the physical structure of the average structure and molecular structure 
at various temperatures. With MD simulations, the particles are moved based on 
Newton’s equations of motion and the forces the particles exert on each other. In this 
case, the particles follow realistic trajectories which are important for the study of 
dynamic properties and systems that are out of equilibrium. The simulations can be 
done in an NVE, NVT, or NPT ensemble. Here the letters indicate which quantities 
are kept constant during the simulation. N is the number of particles, V the volume, 
E the energy, T the temperature, and P the pressure. The time steps the system take 
cannot be too big; otherwise, the trajectory of the particles is no longer realistic. 
For the NVE ensemble, the steps need to be even shorter to ensure that energy is 
conserved. The fact that particles follow a realistic trajectory can also be a disad-
vantage. When the system gets stuck in a local minimum, it may take a long time 
before it crosses the barrier. If we are only interested in the equilibrium properties of 
the system and not in the dynamics/time evolution, it is better to use a Monte Carlo 
method. The Monte Carlo method of the molecule can describe the average struc-
ture of various temperatures by the introduction of the Boltzmann factor. In terms of 
obtaining a statistical average structure of a certain state, the Monte Carlo method 
of the molecule is often more effective than the molecular dynamics method. MD 
methods have irreplaceable advantages when studying dynamic processes on short 
timescales.

Application of PAMAM evaluated using MD simulation

The first MD investigations of dendrimer base macromolecules were achieved by 
Goddard and coworkers [75]. They applied many ligand molecules to encapsulate 
inside the dendrimer and succeeded to coat fifth-generation poly propylene imine 
dendrimers with Bengal Rose. Ivanov and Jacobson applied molecular modeling 
(MM) to purify the molecular model proposed by the PAMAM protein agonist 
(CGS21680) bound to the  A2A adenosine receptor dimerization in the guest mol-
ecule inside the dendrimer [76]. Efficient encapsulation was noticed in the interior 
of the backfolded molecule in comparison with their extended isomeric counterparts 
[77].

Application of PAMAM in medicine

MD simulation can obtain the structure of the complex and the driving effect behind 
it, but it is difficult to study the whole process of drug encapsulation and release. 
MD studies the PAMAM-based dendrimers and drug interactions mainly used in 
the full atomic MD. On this premise, Alderete et al. applied MD to investigate the 
complexation of mefenamic acid (MA) with low-generation (PAMAM-G2 and 
PAMAM-G3) PAMAM dendrimers [78]. They found that by increasing the den-
drimer generation, the internal drug encapsulation is enhanced. They suggested that 
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the PAMAM with the positively charged surface is the most relevant factor for drug 
association. Their MD results are in good agreement with experimental findings.

pH environment has a large effect on the efficacy of the drug in the human body, 
and therefore, MD is able to analyze the effects of drugs with different pH values, 
which can significantly improve the drug development rate. On this premise, Cabal-
lero and coworkers investigated the interaction between the nicotinic acid (NA) as a 
drug and PAMAM-G3 dendrimer at different pH by applying MD simulations [79]. 
They found that at pH = 3 the internal amine groups are protonated and the PAMAM 
cavities become less hydrophobic; therefore, the PAMAM–drug interactions become 
similar to solvent–drug interactions. They showed that VdW interactions between 
the methylene groups of the PAMAM-G3 dendrimer and drug stabilized the drug 
inside the PAMAM-G3 dendrimer at pH = 6 (Fig. 2).

Figure 2 illustrates the conformation of drug and the relation of them with a sur-
face amine of PAMAM-G3 dendrimer (Fig.  2a–c). RDFs of dendrimer–drug and 
water–drug are shown in Fig. 2d and e, respectively. Drug is more exposed to the 
water in conformation A rather than conformation B, and drug is closer to methyl-
ene groups of PAMAM-G3 dendrimer in conformation C. Their simulation results 
showed that PAMAM-G3 dendrimer is more favorable for drug entrapment when 
pH = 6, and their complexes are very stable. Giri et  al. investigated the impact of 
core chemistry, terminal group, and generation of dendrimer in binding of human 
serum albumin (HSA) to PAMAM dendrimers by measuring the HSA binding con-
stants (Kb) of PAMAM dendrimers [80]. Their MD simulation results illustrated 
that Kb of HAS to PAMAM depends on their chemical composition and size of their 

Fig. 2  Simulation snapshots of drug inside PAMAM-G3 at pH = 6, a conformation A, b conformation B, 
c conformation C, d radial distribution function (RDF) of the dendrimer around drug for conformations 
A, B, and C, e RDF of the water molecules around drug for conformations A, B, and C, reprinted from 
Ref. [79] Copyright (2019), with permission from Elsevier
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terminal groups. Figure 3 shows the impact of the dendrimer terminal group on the 
HAS Kb of PAMAM-G4 dendrimer.

Figure 3 illustrates that the lowest Kb values are observed for the PAMAM-G4 
dendrimer with neutral terminal groups due to weak hydrogen bonding interac-
tions between the protein amino acid residues and terminal groups of PAMAM-G4 
dendrimer. Figure 4 highlights the impact of dendrimer core chemistry on the HAS 
Kb of PAMAM-G4 dendrimer. From Fig. 3, it can be deduced that the HAS Kb of 
PAMAM-G4 dendrimer is not significantly related to core chemistry. Their results 
of the Kb value reveal some critical effects and interactions between the HSA pro-
tein and PAMAM dendrimer. Their MD results are in good agreement with their 
experimental findings. By using MD simulations, Maiti et al. tested the release pat-
tern of two soluble drugs including l-alanine and (Ala) salicylic acid (Sal) and two 
insoluble drugs including primidone (Prim) and phenylbutazone (Pbz) [81]. These 
four ligands were placed inside the ethylenediamine (EDA) core of PAMAM-G5 
dendrimer. Their potential of mean force (PMF) results showed that insoluble drugs 
(Prim and Pbz) have higher energy barriers than soluble drugs (Ala and Sal) (see 
Fig. 5). However, their biological activity depends on the surface charge properties 
of dendrimers. These data help to optimize and design the dendrimer-based drug 
delivery system.

Tanis and Karatasos used atomistic MD simulation and applied AMBER force 
field to investigate the complexation of ibuprofen and PAMAM-G3 dendrimer 
in aqueous solution under various pH conditions [82]. They indicated that the 

Fig. 3  Effects of the dendrimer 
terminal group on the HAS Kb 
of PAMAM-G4 dendrimer, 
reprinted with permission from 
Ref. [80] copyright 2019 Ameri-
can Chemical Society

Fig. 4  Effects of dendrimer 
core chemistry on the HAS Kb 
of PAMAM-G4 dendrimer, 
reprinted with permission from 
Ref. [80] copyright 2019 Ameri-
can Chemical Society
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PAMAM-G3 dendrimer–ibuprofen complex is unstable at low pH due to the lack of 
hydrogen bonding. No stable drug/dendrimer complex was detected at low pH, and 
the electrostatic interaction between ibuprofen and PAMAM-G3 dendrimer allows 
them to form stable complexes as shown in Fig. 6.

Also, Liu et al. used the Dreiding force field to find that surface grafting of PEG 
which promoted the PAMAM dendrimer to accommodate more drug molecules 
[83]. They found that at high pH, the PMF energy barrier of PAMAM dendrim-
ers with anticancer drug molecules including CE6, SN38, DOX, and MTX is much 
lower than that of physiological pH, so the high pH environment is suitable for drug 
embedding because the drug–dendrimer complex is formed.

Application of PAMAM in DNA

By individualized analysis of tumor DNA, chemotherapy patients may prolong 
survival by a factor of six. Doctors have determined that the precise treatment of 
cancer is increasingly dependent on the genetic test results and guidance of tumors. 

Fig. 5  PMF variation as a 
function of the drug–dendrimer, 
reprinted with permission from 
Ref. [81] copyright 2019 Ameri-
can Chemical Society

Fig. 6  Average distance between 
the drug and the PAMAM-G3 
dendrimer centers of mass, 
reprinted with permission from 
Ref. [82] copyright 2019 Ameri-
can Chemical Society



6680 Polymer Bulletin (2020) 77:6671–6691

1 3

PAMAM different algebras have different entanglement effects on single-stranded 
DNA. On this premise, Maiti and Bagchi studied sequence-dependent complexation 
between single-strand DNA (ssDNA) and various generation EDA-cored PAMAM 
dendrimers by using MD simulations and calculating free energy [84]. They revealed 
that the G2 and G3 did not have enough surface charge to neutralize ssDNA because 
part of the ssDNA far from PAMAM spread out in solution as shown in Fig. 7.

In another close study, the complexation between various generations of 
PAMAM dendrimers (G3–G5) and double-stranded DNA (dsDNA) have been stud-
ied by Nandy and Maiti [85]. They illustrated that dsDNA can be completely entan-
gled on PAMAM-G5 dendrimers. Therefore, it is generally believed that the charge 
between the positively charged dendrimer and the negatively charged genetic mate-
rial plays a key role in the structure of the complex. From the snapshots in Fig. 8, it 
is revealed that the dendrimer continues to search for a suitable binding position on 
DNA at the beginning and the dendrimer slides along the DNA backbone for both 
G3 and G4. They found that binding energies of the complexation follow the trend 
G5 > G4 > G3.

Fig. 7  a Structure of ssDNA–dendrimer complex during various stages of the wrapping process at the 
interval of few ns. b Variation of the number of contact points between DNA and dendrimer, reprinted 
with permission from Ref. [84] copyright 2019 American Chemical Society
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The stability of dsDNA entanglement on PAMAM is also one of the important 
indicators. In this regard, Yu and Larson used Monte Carlo simulation system to 
investigate the effects of PAMAM algebra, surface amidation, and solution salt 
concentration on the stability of PAMAM dendrimer and dsDNA complexes [86]. 
They showed that high salt concentration is not conducive to dsDNA and increased 
PAMAM dendrimer algebra in complex compress dsDNA more tightly. Also, 
Márquez-Miranda et al. applied MD simulations to study the effects of different sur-
face chemical groups of PAMAM dendrimers on nucleic acid molecules [87, 88]. 
They demonstrated that the PAMAM can form a stable complex with ssDNA, when 
the PAMAM terminal group is an amine group and the PAMAM cannot form a 
stable complex with ssDNA when the terminal group is a hydroxyl group because 
ssDNA has only a small amount of contact with PAMAM, and they cannot pass 
through the cell membrane.

Not only the size and surface chemistry of dendrimers focus of attention, but also 
flexibility and stiffness of PAMAM dendrimers are another critical factor in the for-
mation of dendrimers. On this premise, Pavan and coworkers used MD to investigate 
the effect of the stiffness of dendrimers on the structure of dendrimer–gene com-
plexes [89]. The MD simulation results showed that the stiffness of PAMAM den-
drimers plays a crucial role in the binding state. It is mainly regulated by combining 
the competition between enthalpy and entropy.

Fig. 8  a Structure of the DNA-PAMAM-G4 dendrimer complex during various stages of complex for-
mation. b the same for the DNA-PAMAM-G3 dendrimer complex, reprinted with permission from Ref. 
[85] copyright 2019 American Chemical Society
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The curves of RDF in Fig. 9 demonstrate the atomic density with respect to time, 
and the high peaks correspond to areas of low atomic mobility and high density 
of atoms. They found that flexible molecules tend to form a spherical composite 
structure, while rigid molecules are rearranged such that their terminal groups make 
more contact with the oligonucleotide. Ainalem and Nylander wrote an interesting 
review article and discussed about the PAMAM algebra, ionic strength, and other 
factors which affect the morphology of PAMAM and DNA complexes [90].

PAMAM for pharmaceutical carriers and biomedical applications

The development of novel PAMAM drugs and gene delivery with the greatest thera-
peutic potential and minimal side effects is a huge challenge for nanomedicine. As a 
delivery vector, the PAMAM must exceed many of the obstacles encountered before 
the biological agent is delivered to the target within the cell. As an important sup-
plement to experimental methods, computer simulation has a good advantage for 
studying intermolecular interactions [91–93]. As transporters, when PAMAM-
based dendrimers approach cells, they first interact with the cell membrane. There-
fore, understanding the interaction between dendrimers and biofilms is important 
for designing efficient dendrimer-based carriers. Maiti et al. simulated the structure 
of the first to 11th-generation PAMAM dendrimers [94]. They found very little 
strain in these structures up to G6; however, for G10 there is considerable strain 
throughout the entire structure, which increases dramatically for G11. They sug-
gested that the steric interactions of the surface groups prevent growth of full gen-
erations beyond G10. For example, in the case of PAMAM dendrimers with eth-
ylenediamine as the initial nucleus, G1 to G3 cannot form a dense spatial internal 
structure, and each branch sparsely forms an ellipsoid [95]. Until G4 and G5, this 
macromolecule has a relatively complete spherical outline and internal space. Ma 
et al. recently studied the role of PAMAM and negatively charged asymmetric mem-
branes, revealing the physical mechanism of dendrimers as carriers in gene transfec-
tion to cause gene–carrier complexes to escape from endocytosis [96, 97] and pro-
posed utilization of pH-responsive and possible pathways for gene-targeted transport 

Fig. 9  RDF of G2-5 (a) and F2-1 (b), reprinted with permission from Ref. [89] copyright 2019 Ameri-
can Chemical Society
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based on complex charge reversal [98]. Whether the stiffness of the dendrimer as a 
carrier can reach the index is key to successful delivery, so it must be considered 
whether the stiffness is optimal. Lyulin et al. used the coarse-grained MD simulation 
method to simulate the interaction between dendrimers and linear polyelectrolyte 
[99]. They observed the formation of compact dendrimer polyelectrolyte complexes, 
while strong electrostatic interactions induced dendrimer size reduction. Moreover, 
Lyulin et  al. studied the structure and dynamics of dendritic macromolecules in 
dilute solutes by explicitly excluding volume and hydrodynamic interaction Brown-
ian dynamics simulation, and compared the results with the mean field theory [100, 
101]. In addition, the influence of the stiffness of polyelectrolyte on the dendrimer 
polyelectrolyte complex was also studied by coarse-grained MD simulation method 
[102]. It was found that with the increase in polyelectrolyte stiffness, the polyelec-
trolyte structure composited with PAMAM changed interestingly from curling. If 
the U or V shape becomes bar shape, there may be an optimal stiffness for the trans-
port and release of biologically active guest molecules.

The PAMAM dendrimers need to penetrate into the drug body to act on the tar-
get cell, so there is a certain requirement for the target product embedding degree. 
Wang et al. used dissipative particle dynamics to find that increasing the PAMAM 
dendrimer algebra would enhance its permeability to bilayer membranes [103]. Yan 
et al. systematically studied the interactions between charged dendrimers and phos-
pholipid bilayers and their complex structures by using dissipative particle dynamics 
[104]. They found that the effect of increasing the hydrophilic component and phos-
pholipid head on the surface of the phospholipid bilayer led to the spreading of the 
dendrimer on the surface of the phospholipid bilayer, while the effect of increasing 
the hydrophobic component on the inside of the dendrimer on the phospholipid tail 
group led to the deeper embedding of the dendrimer into the phospholipid bilayer. 
Figure  10 shows the snapshots of the complexes comprised the charged G5 den-
drimer with the lipid bilayer membrane.

Fig. 10  Complexes between the charged G5 dendrimer and the lipid bilayer membrane. Panels d–f are 
the cross-sectional views of panels a–c respectively, reprinted with permission from Ref. [104] copyright 
2019 American Chemical Society
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In addition to considering the environmental pH as a drug, it is also necessary to 
consider the pH value of the carrier as a carrier. On this premise, Terao and Nakay-
ama studied the structure of charged dendrimers at different pH values, as well as 
multiple generations (G5, G6, and G7) by random MD simulations [105]. Gur-
tovenko et  al. used MD to simulate the calculated amount of charged dendrimers 
under explicit counterions and solvent molecules under neutral pH conditions [106]. 
They found that the addition of explicit counterions to the simulation has a large 
effect on the structure and kinetics of the charged dendrimer. Guo et al. used dis-
sipative particle dynamic methods to study the structure–performance relationship 
of a series of pH-responsive polymer transport systems [107, 108]. Luo and Jiang 
combined MD and dissipative particle dynamics methods to study the loading and 
release of pH-responsive amphiphilic copolymer poly(-amino ester)-polyethylene 
glycol (PAE-PEG) anticancer drug camptothecin [109]. In addition, the terminal pri-
mary amino group of the PAMAM molecule is distributed throughout the molecule 
and can be close to the core inside the molecule, rather than being located entirely 
on the surface of the molecule. This indicates that the terminal group of the den-
drimer has sufficient flexibility to be folded back into the interior of the molecule. 
It is consistent with the coarse-grained MD simulation performed by Zhong et al. 
using the Martini force field [91] and the all-atom MD results by Mait et al. using 
the Dreiding force field [110].

Application of dendrimers in proteins and amino acids

A large number of terminal functional groups and tight and precisely controlled 
molecular structure are the unique properties of dendrimers, which make them a 
good use in the field of proteins and amino acids. Su ling Chen et al. used coarse-
grained molecular dynamics to simulate the interaction of G4 PAMAM dendrimers 
with KALP peptides in different pH solutions [111]. They found that KALP peptide 
had little effect on the size, shape, and density distribution of dendrimers in two 
pH environments, and there was a certain space inside the dendrimer to accommo-
date KALP polypeptide molecules. The calculation of free energy shows that the 
two molecules are not easy to form a stable composite structure in acidic and neutral 
environments. Also, Schneider et  al. demonstrated the MD simulation of G0 den-
dritic macromolecules with alpha-chymotrypsinogen A (aCgn) and surface-modi-
fied guanidine (Gdm) and studied the effects of salt ions such as  Cl−,  SO4

2−, and 
 H2PO4− [112]. They proposed a priority coefficient of action, the thermodynamics 
of free energy in the migration of proteins from water to additives, and insight into 
how dendrimer salts affect protein–protein interactions. It can also be used to meas-
ure the tendency of protein surface additives. The multi-surface group binds the den-
drimer to the protein more strongly than the single functional group. Poly-l-lysine 
(PLL) dendrimers are amino acid macromolecules that act as drug delivery agents. 
Their branched structure allows them to be functionalized by different groups to 
encapsulate drugs into their structures. Rahimi et al. designed a process particle size 
model of PLL dendrimers and determined its parameters for simulating three gener-
ations of PLL dendrimers [113]. The results show that as the amount of production 
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increases, dendrimers change. It is more spherical. At pH = 7, the PLL dendrimer 
has more holes, allowing more water molecules to be encapsulated inside. The for-
mation of the spherical structure of the PLL dendrimer was confirmed by calculating 
the moment of inertia and the aspect ratio. Robert et al. [114] studied the structural 
changes of PLL dendrimers from the first-generation (G1) to the fifth-generation 
(G6) by means of all-atomic MD simulation and pointed out that the complexes of 
G1 and G6 dendrimers were spherical and regular, with highly recessed surfaces and 
dense nuclear structures. Neelov et al. [115] studied the properties of different PLL 
dendrimers using atomic MD simulations and reported that their properties are not 
dependent on temperature, but their internal group mobility is dependent on their 
formation. Kavyani et al. [116] used the GC-MD method to show that the length and 
nature of the PAMAM dendrimer core have an effect on the size and encapsulation 
capacity of dendrimers. Figure 11 highlights that at pH 7 the dendrimer terminals 
are closer to the core than at pH 5 and also proves that the PAMAM with the DAH 
core has the lowest RDF values, so the DAH core can create more cavities in the 
dendrimer structure.

In another work, Lee and Larson used GC-MD simulation to study the effects 
of PLL and PAMAM dendrimers on the DMPC bilayer membrane [117]. They 
obtained the bonding interaction parameters of coarse crystal PAMAM dendrimers 
with histidine and arginine terminal groups at pH 5 and 7 [118]. They pointed out 
that as the amount of histidine in the terminal group of the dendrimer increases, the 
size of the formed complex becomes larger.

Dendrimers in other applications

MD simulation provides a general simulation method. There are efficient methods 
for simulating various natural processes at the molecular level [119–123]. Den-
drimers have great application prospects in new nanocomposites. Therefore, under-
standing the interaction between dendrimers and surfaces is of great significance. 

Fig. 11  RDF of G4s dendrimer terminal beads at both pHs 5 and 7 with various cores. The dotted rec-
tangular in (a) is extended in (b), reprinted with permission from Ref. [116] copyright 2019 American 
Chemical Society
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Wolski and Wolski used the all-atom MD simulation method to study the behavior 
of PAMAM dendrimers adsorbed on the polarization model of gold surface [124]. 
The study found that with increase in pH value, the structure of dendrimers became 
more compact. Also, other applications of PAMAM dendrimers are fingerprint 
detection [125], biomedical applications [126], methanol oxidation [127], optical 
sensing [128], and so on [129].

Conclusions and perspectives

In recent years, due to the rapid development of fluid mechanics, quantum mechan-
ics, quantum science, and other disciplines, providing solid theoretical techniques 
for experimental design, computational molecular simulation has received more and 
more attention, which will become the mainstream development trend in the future. 
Molecular modeling can help researchers get a lot of information that is difficult or 
impossible to obtain during the experiment. As the application of molecular simula-
tion technology continues to expand, the simulation of dendrimers will be deeper. At 
present, the molecular simulation of dendrimers around the world is mainly focused 
on medicine, but dendrimers have a wide range of applications in the fields of sur-
factants, photographic materials, nanomaterials, and catalysis. Research on these 
areas has focused on theory rather than on practical applications in a specific area. 
Therefore, the future development trend of molecular simulation technology will be 
toward the practical application of broadening the dendrimer field.
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