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Abstract
In the present study, it was focused on developing mechanically stronger and ther-
mally more stable polyvinyl chloride (PVC) composites by using green reduced gra-
phene oxide (GRGO) filler to strengthen the negative features of PVC. For this pur-
pose, GRGO reduced by vitamin C (ascorbic acid) with antibacterial properties was 
selected as filler. The PVC/GRGO composites were produced via colloidal blend-
ing method at different amounts of GRGO in PVC matrix (0.1, 0.3, 0.5 and 1% by 
weight), while pure PVC was also produced for comparison. The XRD and FTIR 
results showed that GRGO incorporated in the polymer matrix; this finding was also 
evident in SEM analysis. TGA and DSC analyses showed that the composite with 
1% loading content of GRGO provided an important improvement on the thermal 
stability. The tensile strength and hardness of the composite having 0.1% GRGO 
increased by 42% and 98%, respectively. SEM image of PVC/GRGO-0.1 compos-
ite showed the galleries of GRGO filled with PVC. As a consequence, thermal and 
mechanical properties of PVC can be altered by changing loading content of GRGO. 
Moreover, the GRGO may be a good candidate for substitution of harmful fillers for 
PVC-based products.
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Introduction

Polyvinyl chloride (PVC) is a widely used thermoplastic of great technical and 
commercial importance [1, 2] since it is biocompatible, corrosion resistant, inert, 
versatile, durable and of low cost [3–5]. Today, the annual production volume 
of PVC is more than 35 million tones worldwide and PVC possesses the largest 
share of the medical market materials (blood bags, health-care devices, etc.) [1, 5, 
6]. In addition, it has some additional application areas such as films, children’s 
toys, food packaging, wall paper, bottle, flooring, roof tiles and electrical wire 
insulation [7–9]; however, its low thermal stability (heat distortion and relatively 
low softening temperatures) [3], inherent rigidity and poor mechanical proper-
ties limit its application areas [10, 11]. To extend its application area, PVC is 
commonly compounded with different amounts of additives (plasticizers, fillers 
or stabilizers) [5]. The most common additives are severely toxic, and they have 
negative effects on health [12]. Thus, there is a trend to use harmless additives, 
which reduce potential health and environmental hazards [13]. Graphene and gra-
phene derivatives such as graphene oxide (GO), reduced graphene oxide (RGO), 
modified graphene oxide, multilayer graphene (MLG) and graphene nanoplates 
(GNPs) are widely used as fillers for composites [14]. Pristine graphene is hydro-
phobic [15] and does not disperse well in polymer matrix [16]. The dispersion 
of the fillers within the polymer matrix is important to form intercalated or exfo-
liated composites and to enhance various properties of the composite materials 
[17]. GO and RGO as inexpensive filler materials are used to produce polymer 
composites because of their easy synthesis, large surface areas and layered struc-
tures [18–21]. GO is hydrophilic and contains epoxy, alcohol, carbonyl and car-
boxyl groups, and the RGO sheets have alcohol and carboxyl groups [22]. Thus, 
GO and RGO are used to settle dispersion problem [23]. At the same time, they 
have emerged as a new antibacterial material because of their less cytotoxic-
ity toward mammalian cells [24, 25] and they were often used for biomedical 
applications. The antibacterial activity of GO and RGO was reported by many 
researchers [26–28]. For instance, Hu et  al. [26] have evaluated the cellular 
uptake and cytotoxicity of GO and RGO nanosheets and showed that graphene-
based nanomaterials have found to be excellent antibacterial material with mild 
cytotoxicity due to different surface charges and functional groups of GO and 
RGO nanosheet surfaces. Also, Liu et al. [28] have investigated the antibacterial 
activity of four types of graphene-based materials (graphite, graphite oxide, GO 
and RGO) and found that the physicochemical properties (the density of func-
tional groups, size and conductivity) of these materials can affect the antibacte-
rial behavior. Solution-based chemical reduction is the most widely used that of 
among several methods to produce RGO [29]. Unfortunately, highly toxic nature 
and instability of the reducing agents (hydrazine hydrate, dimethyl hydrazine, 
hydroquinone, sodium borohydride, metal hydrides) give the reduction process 
of GO a negative aspect [30, 31]. Recently, nontoxic or natural products such as 
non-aromatic amino acids [32], leaf extracts of natural products [30], ethylene 
glycol [33], sodium carbonate [23], sugar [34] and green tea [35] have offered 
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environmentally friendly approaches to reduce GO [36, 37]. In our study, to this 
aim, we choose a green method in which GO is prepared from graphite by Hum-
mers method and then reduced by vitamin C to obtain green reduced graphene 
oxide (GRGO). It is an eco-friendly reducing agent with antioxidant properties 
[38, 39]. There are several studies conducted to improve thermal, chemical and 
mechanical properties of PVC composites by using graphene derivatives [10, 11, 
40, 41]. Deshmukh et al. [10] have prepared PVC/GO composite films by using 
colloidal blending method, and they investigated surface properties of these com-
posites. Hu et  al. [11] have examined the properties of GO and RGO modified 
with polydopamine- and poly(methyl methacrylate)-filled PVC nanocompos-
ite films. In their study, they reported that the improvement of mechanical and 
thermal properties was depended on the interfacial interactions. Yassin et  al. 
have reported the adjustable structural, optical, electrical and thermal properties 
of polymer matrix nanocomposites with the different GO concentrations. They 
found that the homogeneous and well-dispersed GO had helped in the signifi-
cant enhancement of the different properties of the composite [40]. Among the 
GO and RGO filler studies, to the best of our knowledge, there are no report on 
the green synthesis of graphene-based fillers for PVC and their effects on the 
mechanical properties of PVC composites, in the literature. The objective of this 
work is to produce a good candidate for the substitute of harmful or toxic fillers 
for PVC composites and to investigate the thermal and mechanical properties of 
PVC/GRGO composites which can be used for manufacturing of toys, baby prod-
ucts and biomedical products.

Materials and methods

Materials

Natural graphite (45  µm nominal particle size) powder (GF), concentrated sul-
furic acid (98%  H2SO4), potassium permanganate  (KMnO4), hydrogen peroxide 
(30%  H2O2) solution, hydrochloric acid (HCI), tetrahydrofuran (THF) and vitamin 
C [L(+)-Ascorbic Acid] were of reagent grade and purchased from Merck. All the 
reagents were used without further purification. All solutions were prepared using 
deionized (DI) water.

GO synthesis

GO was prepared from the GF by the Hummers method [42]. GF (1 g) was mixed 
with 69 mL of concentrated  H2SO4, and the mixture was stirred in an ice bath for 
around 30 min. After homogeneous dispersion of the GF in the solution is obtained, 
 KMnO4 (8 g) was added slowly to the solution and the reaction mixture was stirred 
for 15 min. Then, the ice bath was removed and the mixture was stirred at 35 °C 
overnight until obtaining a thick paste. Afterward, 70 mL of deionized (DI) water 
was added slowly into the reaction solution to avoid the reaction temperature rising 
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to a limit of 98 °C. After 2 h of vigorous stirring, 12 mL of 30%  H2O2 was added 
and the color turned golden yellow immediately. Finally, the mixture was then fil-
tered and washed several times with 3% HCl and DI water and dried at 65 °C for 
12 h.

GRGO synthesis

To prepare GRGO, 0.5 g of GO was dispersed in 100 mL of DI water. pH of the GO 
suspension was adjusted to ~ 10 by using ammonia solution. Then 0.75 g of vitamin 
C was added to the mixture and reaction medium was held at 95 °C for 12 h. After 
that the mixture was filtered and the GRGO was obtained as a black powder. This 
powder was washed with DI water several times.

Preparation of PVC/GRGO composites

PVC/GRGO composites were prepared by a colloidal blending method. PVC (1 g) 
was first dissolved in THF at 70  °C and was cooled to room temperature. GRGO 
powder was separately dispersed in THF at 25 °C. These mixtures were then added 
in another flask, and this mixture was stirred for 2 h at 60 °C. The resulting homo-
geneous dispersion was poured into glass petri dish and kept in an oven at 60 °C 
for slow evaporation of the solvent to get PVC/GRGO composites. The synthesis 
process of GRGO sample and PVC/GRGO composites is illustrated in Fig. 1. The 
GRGO content in the PVC/GRGO composite was varied between 0.1 and 1% by 
weight. A series of PVC/GRGO composites were prepared and coded as PVC/
GRGO-0.1, PVC/GRGO-0.3, PVC/GRGO-0.5 and PVC/GRGO-1 according to their 
GRGO content.

Characterization of GRGO sample and PVC/GRGO composites

Chemical and structural characterization of the GRGO and PVC/GRGO compos-
ites were carried out by FTIR analysis (Spectrum 100, Perkin Elmer), between 4000 
and 400  cm−1 and X-Ray diffraction analysis (XRD, PAN analytical, Empyrean) 
between 5° and 50°of 2θ. The surface morphology was examined by scanning elec-
tron microscopy (SEM, Supra 40VP, Zeiss). EDS analysis were performed on the 
same instrument. Thermogravimetric analysis (TGA, STA 409, Netzsch) was per-
formed by heating the samples from 20 to 600  °C at a rate of 10  °C  min−1 in a 
nitrogen atmosphere. Differential scanning calorimetry (DSC, STA 409, Netzsch) 
analysis was performed by heating the samples from 20 to 600 °C. The tensile test 
samples with a gage length of 80 mm were also tested according to the ASTM D 
3822 standard [43] on Lloyd LR 5 K tensile testing machine with a load cell of 10 N 
and the deformation rate of 20 mm/min. All tensile test results were presented as 
an average value of five tests with standard deviations. Microhardness measurement 
was carried out on a metallographic sample under the load of 10 g with a Knoop 
indenter. At least ten successive measurements were performed for each condition.
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Results and discussion

FTIR analysis

FTIR spectra of the GO and GRGO samples are shown in Fig. 2. The FTIR spec-
tra of GO in Fig. 2 confirms the presence of functional groups such as hydroxyl 
(O–H), carbonyl (C=O), carboxylic acid (C–OH) and epoxy groups (C–O) of 
GO. FTIR spectra of GO shows characteristic peaks which are at 3214 cm−1 O–H 
vibration of the adsorbed water [44, 45], at 1723 cm−1 (C=O stretch of carbonyl 
groups) [46], at 1392 cm−1 (C–OH stretch) [47] and at 1207–1043 cm−1 (C–OH 
and C–O bonds of carboxylic acid and epoxy groups) [47, 48]. These results con-
firm the oxygen-containing functional groups of the GO. The FTIR spectra of 
the GRGO, by the way, shows a decrease in the intensity of alcohol and carbonyl 

Fig. 1  Illustration for the preparation of GRGO sample and PVC/GRGO composites
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group peaks by comparison with GO (Fig.  2). In addition to that, the intensi-
ties of carboxylic acid-epoxy groups of GO were almost disappeared in the FTIR 
spectra of the GRGO. These results indicated that GO was successfully reduced 
by vitamin C according to removal of oxide functional groups [22]. As shown 
in Fig.  3, FTIR spectra of PVC/GRGO has characteristic peaks at 2911  cm−1 
and 2859  cm−1, corresponding to C–H stretching and vibration peaks, respec-
tively. For PVC/GRGO composites, the characteristic  CH2 stretching and vibra-
tion peaks were observed at 1426 cm−1. The peaks at 1252 cm−1 and 956 cm−1 
were assigned to CH-rocking and trans CH wagging vibration, respectively. The 
stretching peak of C–Cl was observed at 834 cm−1, and the peak at 611 cm−1 was 
assigned to cis CH wagging vibration [49]. As seen from Fig. 3, intensities of all 
characteristic peaks corresponding to PVC structure decrease with the increase 
in GRGO loading content. This result indicates GRGO loading in the polymer 

Fig. 2  FTIR spectra of GO and GRGO samples

Fig. 3  FTIR spectra of pure PVC and PVC/GRGO composites
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matrix is accomplished, because of diminished vibration intensities with the 
increment in GRGO content. 

XRD analysis

XRD patterns of GF, GO and GRGO samples are presented in Fig. 4. The diffrac-
tion peak of crystalline GF was found at 2θ° = 26.4°. The interlayer distance of GF 
was 0.337 nm. GO exhibited a sharp peak at 2θ° = 9.95° corresponding to the (002) 
plane of GO and inter-planner spacing of 0.888 nm. These results demonstrated that 
successful synthesis of the GO from GF by the Hummers method [50] and the inter-
layer distance increased from 0.337 to 0.888 nm. The oxygen-containing functional 
groups are responsible for the increase in the interlayer distance [51, 52]. GRGO 
had a broad peak that appears at 2θ° = 24.04°, while the characteristic peak of GO at 
2θ° = 9.95° was disappear. This indicated reduction of GO by vitamin C (Fig. 4) [53, 
54]. PVC/GRGO composites, however, have no peak in their XRD patterns (Fig. 5) 
due to their amorphous nature [55] and uniform dispersion of GRGO in the PVC 
matrix. These results confirm the intercalated structure of PVC/GRGO composites.

5 15 25 35 45
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2θº

GO

GRGO

GF

Fig. 4  X-ray diffraction patterns of GF, GO and GRGO samples

Fig. 5  X-ray diffraction patterns of GRGO sample and PVC/GRGO composites
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SEM analysis

Figure 6a, b shows microstructure of the GO and GRGO samples, respectively. In 
the SEM image of GO before reduction (Fig. 6a), a randomly aggregated morphol-
ogy of GO can be seen [56, 57]. Figure 6b which is the magnified SEM image of 
GRGO shows a wrinkle-like structure due to the rapid removal of hydroxyl, carbonyl 
and epoxy groups of GO [58]. The oxygen content atom percentages can be consid-
ered as a measure of the GO that was reduced, because of the EDS analysis provides 
the elemental content information. Oxygen content of the GRGO was 24.03%, while 
GO was 46.78% as shown in Table 1. This result also strengthens the evidence of 

Fig. 6  SEM images of a GO, b GRGO samples (magnification 30.000 KX)
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successful GO reduction. The results obtained from the FTIR are compatible with 
EDS results. Figures 7 and 8 present the SEM images of the surfaces and fracture 
cross section of pure PVC and PVC/GRGO composites, respectively. Figure  7a 
shows the pure PVC surface was smooth and has no signs of pits or pores. It could 
be seen that the fracture surface of pure PVC was relatively flat (Fig. 8a, b). Fig-
ure 7b exhibits the PVC composite with 0.1% GRGO was irregular and bumpy with 
a rough surface owing to polymer growing in the galleries of GRGO [59]. White 
regions in the SEM images corresponding to PVC can be clearly observed in the pits 
(see dashed circles in Fig. 7b). A high-magnification SEM image of PVC/GRGO-0.1 
composite shows that GRGO and PVC had good compatibility and the galleries of 
GRGO filled with PVC (see the black arrows in Fig. 7b1). Furthermore, as the con-
tent of GRGO increased to 0.1%, the morphology of the fracture surface was totally 
different and the layers stacked in a more compact manner (Fig. 8b, b1). The PVC/
GRGO-0.1 composite gave better dispersion with no agglomeration, and this gave 
better increase in mechanical properties compared with other samples (0.3, 0.5 and 
1% by weight). The PVC/GRGO-0.5 composite exhibited less bumpy but more deep 
pits than the PVC/GRGO-0.3 composite (Fig.  7c, d) because the number of deep 
pits increased with an increase in GRGO content. A high-magnification SEM image 
of PVC/GRGO-0.5 composite (Fig. 7d1) shows deep pits because enough polymer 
entering the galleries of GRGO was not found. When the GRGO content was 0.5%, 
the corresponding fracture surface was same as 0.1% and the GRGO were homoge-
neously distributed within the polymer matrix (Fig. 8d, d1). From the SEM image 
of the PVC composite with 1% GRGO (Fig. 7e), it could be seen that the number 

Table 1  EDS results of GO and GRGO samples

Samples EDS

GO

GRGO
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Fig. 7  SEM images of a pure PVC, b PVC/GRGO-0.1, c PVC/GRGO-0.3, d PVC/GRGO-0.5, e PVC/GRGO-
1(magnification 20.00 KX), b1 PVC/GRGO-0.1 and d1 PVC/GRGO-0.5 (magnification 120.00 KX)
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of pits increased. As the content of GRGO was 0.3 and 1.0%, the corresponding 
fracture surface is uneven and layered (Fig. 8c, c1, e, e1). Undoubtedly, the GRGO 
loading amount will lead to different mechanical behaviors, which will be discussed 
in mechanical properties section.

DSC analysis

Figure 9 shows the differential scanning calorimetry (DSC) thermograms and melt-
ing points of pure PVC and PVC/GRGO composites. Melting point of the pure PVC 
was observed at 297.90 °C. DSC curves of PVC/GRGO-0.1, PVC/GRGO-0.3, PVC/
GRGO-0.5 and PVC/GRGO-1 showed a correlated degradation peak centered at 
279.47 °C, 269.39 °C, 274.42 °C and 284.51 °C, respectively (Fig. 9). It could be 
seen that the melting point of pure PVC was shifted to a lower temperature with the 
GRGO loading. The reason could be attributed to the extensive effect of the addition 
of fillers because GRGO restricted polymer chain movement by H-bonding between 
hydroxyl groups on the edges of GRGO and the hydrogen groups of PVC chains 
[60–62]. As shown in Fig. 9, the melting point peaks of all composites both shifted 
to lower temperatures and became broad with the increase in GRGO content. The 
broad melting transition peak was concerned interaction between GRGO and PVC 
[63]. Moreover, the PVC/GRGO composite with the maximum GRGO content (1%) 
showed the highest melting point (284.51 °C). The PVC/GRGO-1 composite typi-
cally had the best thermal stability among the other composites used in this study 
[64, 65].

TGA analysis

TGA weight loss and derivative thermograms (DTG) for the PVC/GRGO compos-
ites with different GRGO content are given in Fig. 10, and thermal parameters are 
summarized in Table  2. PVC and its composites showed two and three stages of 
decomposition, respectively (T1, T2 and T3). The first decomposition temperature 
(T1) was observed in 172 °C for the pure PVC, corresponding to the loss of water 
from the chains of polymer. T1 temperatures of the PVC/GRGO-0.1, PVC/GRGO-
0.3, PVC/GRGO-0.5 and PVC/GRGO-1 composites were about the same (Table 2). 
Composites showed much lower T1 temperatures than pure PVC because the GRGO 
and PVC interaction facilitated the removal of water from the structure [60, 66]. The 
main decomposition temperatures (T2) were observed at 296 °C for pure PVC and 
between 285 and 288 °C for all composites (Table 2). The step in T2 temperature 
(285–288 °C) can be attributed to the emission of HCl according the degradation 
of both pure PVC and PVC/GRGO composites [67, 68]. C–Cl bonds are unstable 
in PVC at T2 temperature, and OH groups of GRGO attract to C–Cl unstable bonds 
in PVC. Cl is separated from C–Cl bond and the appearing of Cl radical. Cl radi-
cal takes a hydrogen from C–H bond, and HCl molecule leaves the polyene back-
bone [59, 62, 69]. T2 temperature of the PVC/GRGO-1 composite was higher than 
all PVC/GRGO composites. PVC/GRGO-1 provided better thermal stability than 
other PVC/GRGO composites. TGA analysis results were in good agreement with 
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that obtained from DSC (Fig. 9). Moreover, an increase in the third decomposition 
temperatures (T3) for PVC/GRGO composites compared to pure PVC was observed 
(Table 2). Thermal degradation of the composites was observed at this stage, result-
ing in the formation of volatile aromatic compounds and a stable carbonaceous resi-
due [70, 71]. As shown in Table 2, the weight loss of PVC/GRGO-1 composite was 
lower than the other PVC/GRGO composites which indicated that the dispersion of 
GRGO hinders the formation of volatile aromatic compounds along with an increase 
in carbonaceous residue [62]. The TGA results were consistent with the results 
obtained from DSC and XRD studies. DSC and XRD results showed that there was 
interaction between fillers and polymer matrix because GRGO was homogeneously 
dispersed in the PVC matrix. 

Mechanical properties

Mechanical properties of PVC/GRGO composites were characterized by their ten-
sile strength, elongation at break and hardness. The effects of GRGO loading con-
tent on tensile strength of the PVC/GRGO composites are shown in Fig. 11. Tensile 
strength of all PVC/GRGO composites was higher than pure PVC. However, ten-
sile strength of PVC/GRGO composites decreased with an increase in GRGO con-
tents. Tensile strength of the PVC/GRGO-0.1 increased by 42%, compared with that 
of pure PVC. SEM images confirmed the presence of PVC filling the galleries of 
GRGO in the PVC/GRGO-0.1 composite (Fig.  8b, b1). The influences of GRGO 
loading content on elongation at break and hardness of the PVC/GRGO compos-
ites are presented in Figs. 12 and 13, respectively. As seen from Fig. 12, compared 
to pure PVC, PVC/GRGO composites have had lower elongation at break. Zheng 
et al. [72] have reported that the decrease in elongation at break for PVC compos-
ites might be due to high brittleness. This result was in accordance with our results. 
However, hardness of the PVC/GRGO composites increased at all GRGO loading 
content (Fig. 13) and when the loading content is 0.1%, the value increased by 98% 
in contrast to that of pure PVC. The distribution of GRGO in PVC matrix, as dis-
cussed in thermal analysis and XRD sections, may result in an increase in resistance 
to indentation. Accordingly, the hardness of the composites increased at all GRGO 
loading content, because under the effect of external force, the uniform dispersion 
of filled phase in the composite can hinder the movement of dislocations which 
contribute to the improved hardness of the composites [73]. The rigid structure of 
the materials also partially contributes to the increase in hardness. According to the 
literature, there is a relationship between hardness and rigidity of composites [74]. 
Crespo et al. [74] experimentally examined the degree of influence of filler amount 
in PVC composites. They have reported the increased rigidity of the PVC compos-
ite that was accompanied with increase in hardness and tensile module. Results of 
mechanical characterization revealed that the incorporation of GRGO could improve 

Fig. 8  SEM images of fracture surfaces of a pure PVC, b PVC/GRGO-0.1, c PVC/GRGO-0.3, d PVC/
GRGO-0.5, e PVC/GRGO-1(magnification 250 X), a1 pure PVC b1 PVC/GRGO-0.1, c1 PVC/GRGO-
0.3, d1 PVC/GRGO-0.5 and e1 PVC/GRGO-1 (magnification 10.00 KX)

▸
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the strength and GRGO galleries filled with PVC at the lowest loading content, but 
increased brittleness in the PVC/GRGO composites.

Conclusions

The effects of GRGO on mechanical and thermal properties of PVC were studied. 
The following conclusions can be drawn from the results of this study.

• FTIR results showed that there was interaction between the GRGO and PVC. It 
could be affirmed the good dispersion of the GRGO samples in the PVC matrix 
as confirmed by XRD analysis.

• The SEM image confirmed the presence of PVC filling in the galleries of GRGO 
(for instance, PVC/GRGO-0.1 composite). The number of deep pits increased 
with the increase in GRGO loading contents, and enough polymer entering the 
galleries of GRGO was not found in PVC/GRGO-0.3, 0.5 and 1 composites.

• TGA and DSC analyses showed that the PVC/GRGO-1 composite provide an 
important improvement on the thermal stability in comparison with that of other 
composites.

• The tensile strength and hardness of the PVC/GRGO-0.1 composite 42% and 
98% higher, respectively, than the pure PVC.

• According to thermal and mechanical analysis results, the loading content of 
GRGO can be varied to change desired thermal and mechanical properties.

• Consequently, the GRGO is a good candidate for replacement of harmful/toxic 
fillers in the production of PVC, for instance used in toys, baby products and bio-
medical products.

Fig. 9  DSC curves of the pure PVC and PVC/GRGO composites
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Fig. 10  TGA and DTG curves of a pure PVC, b PVC/GRGO-0.1, c PVC/GRGO-0.3, d PVC/GRGO-0.5 
and e PVC/GRGO-1
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Fig. 10  (continued)

Table 2  Thermal parameters 
for the PVC/GRGO composites 
(10 °C/min heating rate, under 
nitrogen atmosphere)

Samples T (°C) range Weight loss 
at 600 °C (%)

Residue at 
600 °C wt 
(%)T1 T2 T3

PVC – 296 453 72.40 27.60
PVC/GRGO-0.1 138 286 447 89.12 10.88
PVC/GRGO-0.3 137 285 457 88.93 11.07
PVC/GRGO-0.5 140 287 457 89.07 10.93
PVC/GRGO-1 139 288 459 88.26 11.74



1945

1 3

Polymer Bulletin (2020) 77:1929–1949 

0

4

8

12

16

0 0.2 0.4 0.6 0.8 1 1.2

T
en

si
le

 st
re

ng
th

 (M
Pa

)

GRGO (wt. %)
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