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Abstract
Thermoplastic starch (TPS), an inexpensive, renewable, widely available and bio-
degradable biopolymer, has been promoted as a promising alternative to synthetic 
polymers based on fossil resources. However, it exhibits weak mechanical properties 
and high moisture uptake. Reinforcing fillers have been used to improve the prop-
erties of thermoplastic starch. This work studies the effects of Al2O3 particle size 
on dielectric, thermal, physical, mechanical and morphological properties of ther-
moplastic starch–TiO2–Al2O3 composites at the fixed TPS:TiO2:Al2O3 weight ratio 
97:2:1. The Al2O3 particle sizes tested were 0.05 μm, 1 μm and 5 μm. Dielectric, 
thermal, mechanical and morphological properties were determined. With increas-
ing Al2O3 particle size, slight increases were observed in contact angle, hardness 
and thermal stability, while dielectric constant, dissipation factor and glass transi-
tion temperature decreased. However, the Al2O3 particle size did not significantly 
affect tensile properties. Scanning electron microscopy was used to investigate the 
morphology in the composites. In summary, the incorporation of TiO2 and Al2O3 
in thermoplastic starch could extend its potential in flexible films, compost bags and 
packaging applications.

Keywords  Thermoplastic starch · Particle size · Titanium dioxide · Aluminum 
oxide · Cassava starch

 *	 Wannarat Chueangchayaphan 
	 wannarat.p@psu.ac.th

1	 Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani 
Campus, Surat Thani 84000, Thailand

2	 Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, 
17600 Jeli, Kelantan, Malaysia

http://orcid.org/0000-0002-0970-9783
http://crossmark.crossref.org/dialog/?doi=10.1007/s00289-019-02688-0&domain=pdf


5890	 Polymer Bulletin (2019) 76:5889–5902

1 3

Introduction

Starch is employed in numerous industrial applications on making food and non-
food products, owing to its low cost, availability and ability to impart a broad 
range of functional properties. Starch has become a most promising candidate for 
future materials and alternatives to the fossil resources that have recycling limita-
tions and cause environmental concerns, because of its attractive cost and per-
formance [1, 2]. Starch is composed of both amylose molecules and amylopectin 
molecules with α-(1–4)-linked d-glucose backbones and α-(1–6)-linked branches. 
Native starch from plants is granular and partly crystalline and is not suitable 
for thermoplastic materials. When a plasticizer (typically water) is added, gelati-
nization will occur under heat and high shear, and the native granular starch is 
disrupted and converted to thermoplastic starch (TPS) that can be processed simi-
larly to other more conventional thermoplastic polymers [3–7]. Various sources 
of starch have been extensively investigated to obtain biodegradable thermoplas-
tic starch, such as potato starch [3, 8], corn starch [8], rice starch [9] and wheat 
starch [10]. Cassava or tapioca is among the most important starch sources in the 
tropics and is extensively used in tropical Africa and South America as well as 
parts of Asia, especially Indonesia and Thailand [11]. Thailand was one of the 
top five producers globally in 2012 [12]. In addition, cassava flour is substantially 
rich in starch with only small amounts of other components and is a good source 
of inexpensive good purity starch [13]. Thermoplastic cassava starch has been 
prepared for bioactive, biodegradable, flexible and edible films or packages [8, 
14–19].

However, TPS has as its disadvantages: brittleness, poor mechanical proper-
ties, high water sensitivity and poor barrier properties [20]. To improve the prop-
erties of thermoplastic starch, it is blended with other polymers, such as natural 
rubber [21], polystyrene [22], polyvinyl alcohol [23–25], polyethylene [26], poly-
propylene [27], polylactic acid [28–30], polycaprolactone [31], chitosan [32, 33], 
poly(butylene adipate-co-terephthalate) [34], or polyhydroxyalkanoates [35], and 
reinforced with organic or mineral fillers, such as cellulose [3, 36–41], talc [42], 
or clay [43, 44], ZnO [45]. Titanium dioxide (TiO2) is a multipurpose filler used 
with polymer matrices, and is nontoxic, inert and inexpensive with inherent pho-
tocatalytic activity against microorganisms, staining, allergens and odors [46]. 
Several studies have assessed the influences of TiO2 addition on the properties of 
various biopolymers. For example, Zhu et al. [47] prepared poly(lactic acid)/TiO2 
composite films. It was found that the addition of TiO2 nanoparticles increased 
tensile strength and crystallinity, as well as improved the barrier properties. Amin 
and Panhuis [48] found that the mechanical properties and water resistance were 
improved by addition of TiO2 in chitosan matrix. Khan et al. [49] prepared regen-
erated bacterial cellulose/TiO2 nanocomposites to enhance bactericidal activ-
ity and tissue regeneration properties. Oleyaei et  al. [46] studied the effects of 
TiO2 concentration on functional, UV transmittance and mechanical properties 
of potato starch/TiO2 nanocomposite films, with a view to food packaging appli-
cations. Ostafińska et  al. (2017) prepared thermoplastic starch/TiO2 composites 
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with highly homogenous good dispersion of the filler by a two-step method, 
including solution casting followed by melt mixing. The modulus increased with 
TiO2 loading [50]. Aluminum oxide (Al2O3) or alumina is commonly used as 
filler in commercial applications due to its low cost, electrical insulation abil-
ity, and high temperature tolerance [51]. The incorporation of Al2O3 has been 
reported for polymer matrices including natural rubber [52], silicon rubber [53], 
poly(lactic acid) [54], epoxy [55], and chitosan [56, 57].

Individually TiO2 or Al2O3 fillers improve the properties of polymers. Combina-
tions of TiO2 and Al2O3 have been used to enhance the properties of thermoplastic 
starch composites. The aim of this work was to study the effects of Al2O3 filler par-
ticle size on dielectric, mechanical, morphology and thermal properties of thermo-
plastic starch–TiO2–Al2O3 composites.

Experimental

Materials

Food grade native cassava starch was provided by Kriangkrai Co., Ltd., Thailand. It 
was first heated for 24 h in a vacuum oven at 60–70 °C to remove moisture and was 
immediately placed in a desiccator to prevent moisture re-absorption. The glycerol 
used as a plasticizer had 1.26 g/cm3 density and was manufactured by Unilever Co., 
Ltd., USA. Titanium dioxide (TiO2) nanopowder (< 100 nm, mixture of rutile and 
anatase TiO2) and alumina, Al2O3 (0.05 μm, 1 μm and 5 μm) were purchased from 
Sigma-Aldrich Co.

Preparation of TPS composites

Native cassava starch was weighed and introduced in a kitchen blender. Glycerol 
was then added and continuously pre-mixed at room temperature and 1000 rpm for 
10 min to obtain a homogeneous dispersion. The weight ratio of glycerol and cassava 
starch was 30:70. The mixture was placed in a desiccator for 24 h, after which it was 
further dry-mixed with TiO2 and Al2O3 particles. The weight ratio TPS:TiO2:Al2O3 
was held fixed at 97:2:1. In order to obtain thermoplastic starch (TPS), the mixture 
was continuously melt blended in an internal mixer at 140  °C with 60  rpm rotor 
speed for 6 min. During mixing, the torque was monitored, in order to assess plasti-
cization and processability of the starch. The starch lost its original granular struc-
ture and was transformed into a molten homogeneous TPS. The TPS composite was 
sheeted out on a two-roll mill, and 1-mm-thick sheets were prepared by 1500 psi 
compression at 165 °C for 15 min.

Testing mechanical properties

Tensile testing was performed to characterize the mechanical properties of the ther-
moplastic starch composites, using a Hounsfield Tensometer, model H 10 KS. The 
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sample sheet was cut by a cutting machine into the dumbbell shape specified in 
ASTM D680-14 standard [58]. Specimens were tested for each formula at 25  °C 
with a cross-head speed of 500 mm/min. The stress–strain curves are reported. The 
tensile strength (σb) and elongation at break (εb) were determined from the curves. 
The Young’s modulus (E) was determined as the initial slope of the linear portion of 
each stress–strain curve. The Shore A hardness was measured according to ASTM 
D2240-15 with an indentation durometer [59].

Sample characterization

Thermogravimetric analysis was performed on a TA Instruments® TGA Q 500 with 
a heating rate of 10  °C/min from room temperature to 600  °C in nitrogen atmos-
phere. Dynamic mechanical thermal analysis used a Rheometric Scientific® DMTA 
V. The experiment was carried out in the dual-cantilever bending mode at a fre-
quency of 1 Hz with 0.01% strain amplitude, and the heating rate was 3 °C/min. The 
temperature range was from − 120 to 80 °C. Dielectric constant (ε′) and dissipation 
factor or dielectric loss tangent (tan δ) were obtained by dielectric measurements. 
The sample with ~ 1 mm thickness was coated with high-purity silver paint before 
measurement with Precision LCR meter (Agilent, model 4285A) at room temper-
ature in the frequency range from 75 kHz to 30 MHz. The evaluation of the dis-
persion of fillers in TPS was performed by using a scanning electron microscope 
(SEM) (FEI Quanta, 400, USA). Fresh cross sections were obtained by fracturing 
after immersion in liquid nitrogen. All specimens were sputter coated with gold 
prior to SEM examination.

Results and discussion

Dielectric constant and dissipation factor

The dielectric constant and dissipation factor over the frequency range from 75 kHz 
to 30 MHz are shown in Fig. 1, for the thermoplastic starch–TiO2–Al2O3 compos-
ites with Al2O3 particle sizes 0.05  μm, 1  μm, and 5  μm. The dielectric constant 
rapidly decreased at low frequency and then gradually decreased at frequencies 
above 2 MHz. This behavior was almost similar in all cases tested. At low frequen-
cies, maximal polarization was possible [60], while the dissipation factor rapidly 
decreased with frequency in the low range (0–10 MHz), because both ionic relaxa-
tion and dipole relaxation are comparatively slow. The further increase in dissipa-
tion factor at the higher frequencies (> 10 MHz) might be due to relaxation of polar 
groups and ionic polymerization. The polar molecules cannot orient rapidly enough 
as the electromagnetic frequency is increased [61]. The dielectric constant decreased 
with Al2O3 particle size. The larger particles had lower specific surface and there-
fore less interfacial polarization. Thus, the smaller Al2O3 particles had compara-
tively improved dielectric properties in the thermoplastic starch–TiO2–Al2O3 com-
posites, with also stronger mechanical stress effects and extrinsic grain boundary 
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effects [62]. In addition, the polarization contribution by dipole–dipole interactions 
increased with closely packed particles, and the smaller particles had better parti-
cle–particle contacts and increased packing density [63].

Thermal analysis

Figure  2 exhibits the TGA and DTA of thermoplastic starch–TiO2–Al2O3 com-
posites, respectively. All the samples showed two main stages in the loss of mass. 
Within the temperature range from 30 to 280 °C, the loss corresponded to the vola-
tilization of both water and glycerol from the TPS. The second stage corresponded 
to starch decomposition (280–350  °C) [64]. Finally, the char yield at 600  °C was 
similar for all the samples because they had the same mixture proportions. As can be 
observed in Fig. 2a, TGA curves showed that increased Al2O3 particle size improved 
thermal stability of the composites. The DTA curves (Fig.  2b) show the thermal 
degradation characteristics more clearly. The maximum decomposition peaks in the 
DTA curves slightly shifted toward higher temperature as the particle size of Al2O3 

Fig. 1   The frequency dependence of a dielectric constant and b dissipation factor for the thermoplastic 
starch–TiO2–Al2O3 composites with different Al2O3 particle sizes
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increased, which agrees with the results from TGA. The maximum decomposition 
(DTAmax) peak with larger Al2O3 particles was lower than with smaller particles, 
indicating that the larger Al2O3 particles increased the rate of degradation of starch.

Dynamic mechanical thermal analysis

Storage modulus (E′) and loss modulus (E″) are related to stiffness, representing 
elastic and viscous components in deformation response, respectively, while the loss 
factor (tan δ) relates to molecular motions [65]; these are shown in Fig. 3. Figure 3a 
shows the storage modulus (E′) as a function of temperature for the thermoplastic 
starch–TiO2–Al2O3 composites with different Al2O3 particle sizes. Thermoplas-
tic starch filled with 5  μm Al2O3 provided higher storage modulus than the other 
cases. Glass transition temperature (Tg) was determined from the maximum peak 
of tan δ and is presented in Table 1 and Fig. 3c. Two Tg values were detected. The 
first one is attributed to relaxation of glycerol rich phases and did not significantly 
change with Al2O3 particle size. The second relaxation is attributed to starch chain 
mobility and exhibited clear changes, indicating that Al2O3 can interact with starch 
rich phases more strongly than with glycerol rich phases [66]. It was found that the 

Fig. 2   a TGA and b DTA of thermoplastic starch–TiO2–Al2O3 composites with different Al2O3 particle 
sizes
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second relaxation of starch rich phases shifted to lower temperatures with increasing 
Al2O3 particle size, indicating that small-sized Al2O3 filler hindered chain mobil-
ity of starch. This suggests that good dispersion of the finer filler was achieved. Tg 
tended to decrease with Al2O3 particle size, from 39.6 °C with 0.05 μm Al2O3 to 
15.1 °C with 5 μm Al2O3 as seen in Table 1. The increased Tg with smaller Al2O3 

Fig. 3   Evolution of a storage modulus, b loss modulus and c tan δ with temperature for thermoplastic 
starch–TiO2–Al2O3 composites with different Al2O3 particle sizes



5896	 Polymer Bulletin (2019) 76:5889–5902

1 3

particles was attributed to increased interfacial interactions with the polymer matrix, 
because the finer particles had higher specific surface and restricted molecular chain 
motions by the interactions [67]. However, the Tg of these thermoplastic starch com-
posites was not detectable by DSC. Zhang et al. [68] reported that DSC is not sensi-
tive enough to measure the heat-flow changes of starch samples.

Contact angle

The hydrophilicity of material surfaces can be characterized by water droplet con-
tact angles. A low contact angle indicates high hydrophilicity. The contact angles 
for the thermoplastic starches with different sized Al2O3 fillers are shown in Fig. 4. 
It was found that the contact angle increased with Al2O3 particle size, indicating that 
the composite surface became more hydrophobic.

Scanning electron microscopy

Figure 5 exhibits SEM images of native cassava starch and fracture surfaces for the 
thermoplastic starch matrix and the thermoplastic starch–TiO2–Al2O3 composites, 
at 2500× magnification. Spherical and truncated shapes and some oval shapes were 

Table 1   Tensile properties and glass transition temperature of the thermoplastic starch–TiO2–Al2O3 
composites with different Al2O3 particle sizes

Al2O3 size (µm) Tensile properties Tg from DMTA

E (MPa) σb (MPa) εb (%) Tg1 (°C) Tg2 (°C)

0.05 4.2 ± 1.7 1.7 ± 0.3 129.8 ± 20.8 − 52.0 39.6
1 5.9 ± 1.9 1.5 ± 0.1 166.2 ± 16.6 − 49.0 22.8
5 5.8 ± 2.1 1.2 ± 0.2 173.0 ± 38.2 − 50.7 15.1

Fig. 4   Water contact angles on the thermoplastic starch–TiO2–Al2O3 composites with different Al2O3 
particle sizes



5897

1 3

Polymer Bulletin (2019) 76:5889–5902	

observed for the native cassava starch granules shown in Fig. 5a. In addition, various 
size granules and agglomerates were found, as results reported also earlier [69, 70]. 
After adding glycerol and under heat and high shear, the original granular structure 
was transformed into a molten homogeneous TPS, as seen in Fig. 5b. The fracture 
surface of thermoplastic starch had holes and remnants of starch granules. However, 
no cracks were observed in any of the samples. Furthermore, good adhesion between 

Fig. 5   SEM images of a native cassava starch, b pure TPS, and of the TPS–TiO2–Al2O3 composites with 
Al2O3 particle sizes, c 0.05 μm, d 1 μm and e 5 μm
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the fillers and TPS phase is likely, since no holes or voids are seen from loss of filler 
particles. The smaller Al2O3 particles were more homogeneously dispersed in the 
TPS phase than the larger particles that tended to agglomerate, as seen in Fig. 5e.

Mechanical properties

Nonlinear stress–strain curves are seen in Fig. 6. The stress continuously increased 
with strain until breakage without necking, indicating typical plastic behavior 
[71]. Young’s modulus, tensile strength and elongation at break are summarized in 
Table 1.

The modulus refers to the stiffness of the material. It is obtained from the ratio 
of stress and strain in elastic region of the stress–strain curve. It was found that the 
particle size of Al2O3 in the range studied did not affect the Young’s modulus. Simi-
lar lack of particle size effects on the elastic modulus has been reported for epoxy 
resin–alumina trihydrate composite (1, 2, 5, 8 and 12 μm) [72] and for polyester-
aluminum composite (100 nm, 3.5 and 20 μm) [73]. When the particle size is larger 
than a critical limit, it will not affect modulus of the composite. In addition, the ten-
sile strength tended to decrease with filler particle size because the larger particles 
had lower specific surface and less efficient stress transfer [74]. Furthermore, the 
larger Al2O3 particles improved the matrix surface resistance to indentation, as the 
surface hardness of a composite mainly is attributed to hardness of the solid filler 
[75]. Thus, hardness increased with Al2O3 particle size because of increased contact 
of the filler, as seen in Fig. 7.

Conclusions

Biocomposites based on thermoplastic cassava starch containing TiO2 and Al2O3 
combination filler, with varied Al2O3 particle size (0.05  μm, 1  μm or 5  μm), 
were successfully prepared by melt mixing in an internal mixer followed by 

Fig. 6   Stress-strain curves of the thermoplastic starch–TiO2–Al2O3 composites with different Al2O3 par-
ticle sizes
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thermo-compression. The results showed that water contact angle, hardness and 
thermal stability slightly increased, whereas dielectric constant, dissipation factor 
and glass transition temperature decreased with Al2O3 particle size. However, the 
tensile properties were not significantly affected by Al2O3 particle size. Aggregates 
of the larger sized Al2O3 particles were observed in SEM images.
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