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Abstract
Herein, the effect of multilayer core–shell-structured Zn/ZnO/Al2O3 particles on 
thermal conductivity and dielectric properties of epoxy composites was investigated. 
The core–shell-structured Zn/ZnO particles were obtained by a simple calcination 
method, and the multilayer core–shell-structured Zn/ZnO/Al2O3 particles were pre-
pared using hydrolysis process. The Zn/ZnO/Al2O3/epoxy composites were fabri-
cated, and atomic force microscopy (AFM) images showed that the fillers were well 
distributed in epoxy matrix. Thermal conductivity of Zn/ZnO/Al2O3/epoxy compos-
ites increased 178% by adding 12.0 wt% of Zn/ZnO/Al2O3 particles. The dielectric 
constant of composites increased obviously with the increased content of Zn/ZnO/
Al2O3 particles, while the dielectric loss is still low. These results illustrate that the 
combination of the thermal and dielectric properties tuned by multilayer core–shell 
particles gives potential application in extended domains for epoxy composites.

Keywords  Epoxy composites · Core–shell particles · Packaging materials · Thermal 
conductivity · Dielectric constant

Introduction

The multiple properties of polymer-based materials have attracted a great attention due 
to a lot of applications. Epoxy resin (ER), as one of the important polymers, is widely 
used in insulation such as electrical engineering, power electrical equipments and pack-
ing of integrated circuits [1]. Thermal management is critical to the performance, life-
time and reliability of electronic devices. With the miniaturization, integration and func-
tionalization of electronics and the emergence of new applications such as light-emitting 
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diodes, thermal dissipation becomes a challenging problem [2–4]. Moreover, for some 
specific applications, the dielectric properties and thermal conductivity need to be 
improved. Thus, the inorganic fillers with high dielectric constant (high-k) were usually 
added into the epoxy matrix to reach proper properties, and the designed composites are 
then formed. These polymeric composites are considered as heterogeneous disordered 
systems [5]. Their performances depend on many factors, such as electrical properties of 
their constituents, geometric characteristics, volume fraction of the filler and the spatial 
distribution of the fillers within the polymeric matrix [6–12]. High loading (> 50 vol%) 
of the inorganic fillers in the polymeric materials can increase k dramatically; however, 
the dielectric loss (tan δ) also increases rapidly. On the other hand, interactions between 
fillers and matrix can also influence the dielectric properties of such composites.

Nowadays, the core–shell-structured inorganic powders, especially the metal–insula-
tor particles, have been employed to prepare composites with high dielectric constant 
and low loss. In this case, the metal core is meant to increase the dielectric constant 
ascribed to the interfacial polarization, while the insulator shell is used to control the 
dielectric loss effectively by blocking the electron transfer between back-fence metal 
cores [13]. Generally, the core–shell-structured particles were prepared by chemi-
cal syntheses, and most of them are complicated and inefficient. The core–shell Ag/C 
particles were synthesized via a hydrothermal method and served as special fillers to 
enhance the dielectric constant [9]. Dang et al. [14] reported that Ag/TiO2 core–shell-
structured particles can remarkably increase the dielectric constant of polymer compos-
ites. The core–shell-structured Fe/FeO nanoparticles were also embedded in epoxy res-
ins to improve the thermal stability and introduce magnetic properties [15]. Zhang and 
co-workers [6] synthesized Zn/ZnO particles using the heat treatment of raw Zn parti-
cles under air, and they found that the dielectric constant of Zn–ZnO/PVDF composites 
enhanced dramatically, while the dielectric loss was still low. However, it remains a 
challenge to enhance the dielectric constant and thermal conductivity of thermosetting 
polymers simultaneously.

In this work, the multilayer core–shell-structured Zn/ZnO/Al2O3 particles are used 
as fillers to tune the physical properties of epoxy resins. The inner core–shell Zn/ZnO 
particles are prepared by a simple heat treatment of Zn metal particles in ambient air. 
The detailed structure and morphology in the different heat treatment conditions for Zn 
metal particles were investigated by XRD and SEM. Then, Al2O3 layers were coated on 
the surface of Zn/ZnO particles by a simple chemical process. The fracture microstruc-
ture of the composites is evaluated by a scanning electron microscope (SEM). Atomic 
force microscopic (AFM) is also used to inspect the distribution of the particles in 
epoxy resins. The thermal conductivity of the composites is evaluated, and the dielec-
tric properties are also examined by an impedance analyzer.

Experimental

Sample preparation

Raw Zn metal particles were heated in a tube furnace under air at 400–500 °C for 
2–4 h. A thin layer of ZnO was formed on the surface of Zn metallic core, and the 
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core–shell-structured Zn/ZnO particles were obtained. This process is similar to 
the previous work [6]. Then, the multilayer core–shell-structured Zn/ZnO/Al2O3 
particles were prepared by coating the surface of Zn/ZnO microsphere with Al2O3 
obtained from hydrolysis of aluminum sulfate [A12(SO4)3]. Firstly, the suspension 
of Zn/ZnO was prepared by means of ultrasonic dispersion for 1 h. After increasing 
the temperature of the suspension up to 80 °C, the proper amount of A12(SO4)3 was 
added into the solution and the PH value was adjusted to 8.5–11. The core–shell-
structured Zn/ZnO/Al2O3 particles were obtained by centrifugation and washed sev-
eral times with water and ethanol, and then dried at 80 °C for 4 h.

The core–shell-structured Zn/ZnO and Zn/ZnO/Al2O3 particles were separately 
dispersed into bisphenol A-based epoxy resins (ER, Wenzhou Gaodesheng Insulat-
ing Materials Co., Ltd.) and sonicated for 30 min. 2,2-Bis-(4-cyanatophenyl) pro-
pane (CE, Zhejiang Shangyu Chemical Co., Ltd.) was heated at 160 °C for 15 min 
with vigorous stirring. The temperature was decreased to 100 °C. Then, the mixtures 
were mixed with CE, and the whole system was stirred for 0.5 h to form a homoge-
neous liquid. A preheated mold with silicon coating on the inner surface was heated 
at 120 °C for 1 h. The as-prepared mixture was poured into the preheated mold. The 
mixture was degassed at 60 °C for 0.5 h in a vacuum oven to remove the bubbles. 
Finally, the polymeric mixture was cured by the following procedure: 100 °C/2 h, 
and post-cured at 150 °C/10 h.

Characterization techniques

The particle size and morphology were visualized by using a FEI Quanta 600 FEG 
scanning electronic microscope (SEM) and a FEI Tecnai G2 F20 S-TWIN trans-
mission electron microscope (TEM). Energy-dispersive X-ray spectrometry (EDX) 
was used to perform EDX spectra of the powders. The morphologies of core–shell 
microspheres in composite films were examined by atomic force microscope (AFM, 
Bruker Dimension Icon; operated in the PeakForce QNM mode at 0.8 Hz scanning 
rate). Platinum–iridium-coated probes (SCM-PIT, Bruker) were used in the AFM 
measurements. The thermal diffusivity (δ) and specific heat (C) were measured on 
disk samples by using a LFA447 light flash system (NETZSCH, Selb, Germany) at 
25 °C. The bulk density (ρ) of the specimen was measured by water displacement. 
The thermal conductivity (λ, W m−1 K−1) was given by the product of the thermal 
diffusivity (δ, mm2 s−1), specific heat (C, J g−1 K −1) and bulk density (ρ, g cm−3):

The broadband frequency dielectric properties of the composites were measured 
using a Concept 80 impedance analyzer (Novocontrol, Germany) over the frequency 
range of 10−1 to 106 Hz. All samples were prepared by fracturing the composites at 
liquid nitrogen temperature and then sputter coating them with a homogeneous gold 
layer to avoid accumulation of charges.

� = � ⋅ C ⋅ �
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Results and discussion

Preparation of core–shell‑structured Zn/ZnO and Zn/ZnO/Al2O3 particles

After being exposed to oxidized atmosphere, ZnO layer is easily formed on the sur-
face of metallic Zn particle and the thickness of ZnO layer could be adjusted if the 
calcined temperatures are controlled. Zhang and co-workers [6] synthesized Zn/ZnO 
particles using the heat treatment of raw Zn particles under air at different tempera-
tures; however, no detailed morphology of the particles was given in their work. 
Generally, the surface property and morphology of fillers are vital for the physical 
properties of composite polymers. Herein, SEM images of the Zn particles calcined 
at different conditions are shown in Fig.  1. The raw Zn particles showed smooth 
spheres, and the diameter is around 2–8  μm (Fig.  1a, b). After being calcined at 
400 °C for 2 h, the particles’ surface was not smoothed anymore and uneven solids 
were observed (Fig. 1c, d). The amount of uneven solids increased, while the mor-
phology of particles still maintains uniform spheres when the heating time increased 
up to 3 h (Fig. 1e, f) and 4 h (Fig. 1g, h). However, the shape of particles became 
non-uniform after increasing the heating temperature (> 450 °C). In order to prepare 
the uniform particles, it means that the optimum heating temperature for the forma-
tion of core–shell-structured Zn/ZnO is around 400 °C. Thus, the Zn/ZnO particles 
prepared at 400 °C for 4 h were selected for further study in this work.

Figure  2 shows the XRD patterns of Zn particles after calcination at different 
conditions. The peaks of ZnO were observed when Zn particles were calcined in 
air. It confirms that the ZnO layer had formed on the surface of Zn particles. From 
the EDX spectra of Zn/ZnO/Al2O3 powders in Fig. 3, it obviously demonstrates that 
the elements of Zn, Al, and O were contained in the sample. Figure 4 shows the 
XRD patterns of the core–shell-structured Zn/ZnO and Zn/ZnO/Al2O3 powders. The 
XRD peaks of Al2O3 were present, illustrating that the Al2O3 layer was successfully 
deposited on the surface of Zn/ZnO particles. Figure 5 shows SEM (Fig.  5a) and 
TEM (Fig. 5b–d) images of Zn/ZnO/Al2O3 particles, and the surface of Zn/ZnO par-
ticles became rough obviously after Al2O3 deposited. Compared to the FTIR curves 
of Zn/ZnO particles, Zn/ZnO/Al2O3 particles presented several additional absorp-
tion peaks in the range of 1000–1500 cm−1 (as shown in Fig. 6), which are ascribed 
to the characteristic absorption band of Al2O3. This result confirmed that the multi-
layer core–shell-structured Zn/ZnO/Al2O3 particles were synthesized successfully.

Thermogravimetric analysis

As fillers, Zn/ZnO and Zn/ZnO/Al2O3 particles were embedded in the epoxy 
matrix to fabricate composites films, respectively. Figure  7 shows the TGA 
curves of Zn/ZnO/epoxy composites and Zn/ZnO/Al2O3/epoxy composites as a 
function of the content of fillers. Both pure epoxy and composites are observed to 
have similar decomposition behavior and the main degradation occurring in one 
stage. In these curves, the degradation started at the temperature range from 300 
to 600 °C. The thermal stability of composites depicts to slightly decrease with 
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Fig. 1   SEM images of Zn particles treated in air at different conditions. a, b Unprocessed, c, d 
400 °C + 2 h, e, f 400 °C + 3 h, g, h 400 °C + 4 h, i, j 450 °C + 2 h and k, l 500 °C + 2 h



3962	 Polymer Bulletin (2019) 76:3957–3970

1 3

the increase in fillers. This may result from the spatial obstruction of particles on 
the formation of high cross-linked molecular structure of epoxy or increased free 
volume fractions in the polymer composites [16, 17].

Morphology investigation of epoxy composite films

Figure  8 shows the SEM images of the fracture surfaces of both pure epoxy and 
composites with different loadings of multilayer core–shell-structured Zn/ZnO/

Fig. 2   XRD patterns of Zn particles treated in air at different conditions

Fig. 3   EDX map of Zn/ZnO/Al2O3 particles
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Fig. 4   XRD patterns of Zn, Zn/ZnO and Zn/ZnO/Al2O3 particles treated at different temperatures

Fig. 5   SEM (a) and TEM (b–d) images of Zn/ZnO/Al2O3 particles
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Al2O3 powders. The cured pure epoxy shows a smooth fracture surface, while the 
composites show a rough fracture surface, as shown in Fig. 8b–e. Moreover, it can 
be observed that the core–shell-structured particles are embedded in the epoxy 
matrix. AFM studies were used to investigate the distribution of fillers in compos-
ites. In this work, PeakForce QNM modes have enabled the mapping of the regular 
height and the adhesion with high spatial resolution simultaneously. Figure  9a, b 
shows the height image and the adhesion image of Zn/ZnO/Al2O3/epoxy compos-
ite with the 3.0 wt% core–shell-structured fillers, respectively. From the figures, the 
embedded Zn/ZnO/Al2O3 particles are homogenously distributed within the epoxy 
matrix, and no obvious aggregation of the Zn/ZnO/Al2O3 particles in the composite 

Fig. 6   FTIR of Zn/ZnO and Zn/ZnO/Al2O3 particles treated at different temperatures

Fig. 7   TGA of Zn/ZnO/epoxy (a) and Zn/ZnO/Al2O3/epoxy composites (b)



3965

1 3

Polymer Bulletin (2019) 76:3957–3970	

film was found. Figure 9c, d shows that the 3D images of a Zn/ZnO/Al2O3 particle 
were vividly observed and that the particle was embedded in the epoxy matrix.

Thermal conductivity and dielectric properties of epoxy composites

Generally, there are two ways for heat transfer in solids: charge carriers (such as 
electrons and holes) and phonons (energy quanta of atomic lattice vibrations), 
respectively [2]. For most polymers, the primary mechanism of heat conduction is 
by phonons [18]. The thermal conductivity of polymers can be obtained from the 
following Debye equation:

(1)k =
Cpvl

3

Fig. 8   SEM images of different contents (x) of Zn/ZnO/Al2O3 in epoxy composites: a x = 0, b 3.0 wt%, c 
x = 6.0 wt%, d x = 9.0 wt% and e x = 12 wt%
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where k is the thermal conductivity, Cp is the specific heat capacity per unit volume, 
υ is the phonon velocity and l is the phonon mean free path. For most insulating 
polymer such as epoxy, the phonon mean free path (l) is extremely small. The reason 
is that there are lots of defects and grain boundaries in these polymers which may 
hinder the movement of some phonons. In order to improve the k in epoxy, heat 
conductive fillers such as Al2O3 are usually introduced into epoxy matrix. Figure 10 
shows the thermal conductivity of Zn/ZnO/Al2O3/epoxy composites as a function 
of filler loadings. Generally, the thermal conductivity of pure epoxy is low and the 
value is about 0.14 W m−1 K−1. It can be seen that the thermal conductivity remark-
ably increased with increasing temperature. Meanwhile, the thermal conductivity of 
the epoxy-containing Zn/ZnO/Al2O3 particles was larger than that of pure epoxy. 
This means that the introduction of core–shell-structured Zn/ZnO/Al2O3 particles 
in epoxy matrix could obviously enhance the thermal conductivity due to the high 
thermal conductive Al2O3 layer coating on the surface of Zn/ZnO particles. In par-
ticular, thermal conductivity increased 178% by adding 12.0 wt% of Zn/ZnO/Al2O3 
particles in epoxy matrix.

As shown in Figs.  11a–c and 12, the dielectric constants of the composites 
increased obviously after Zn/ZnO/Al2O3 fillers embedded in epoxy matrix, while 
the dielectric loss increased gently (Fig.  12b). It was reported that the core–shell 
Zn/ZnO/PVDF composites have larger dielectric constant than that of the Zn/PVDF 

Fig. 9   PeakForce tapping mode in AFM study of Zn/ZnO/Al2O3/epoxy composites with 3.0  wt% Zn/
ZnO/Al2O3 particles. Height image with large scan size (a), adhesion image with large scan size (b), 
local height image (c), and local adhesion image (d)
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composites due to the duplex interfacial polarizations induced by metal–semicon-
ductor interface and semiconductor–insulator interface [6]. In this work, the outer 
layer Al2O3 was deposited on the surface of Zn/ZnO, which diminishes the duplex 
interfacial polarizations and results in a slightly lower dielectric constant compared 
to the fillers without Al2O3 on the surface of Zn/ZnO. On the other hand, the dielec-
tric constant of Al2O3 is lower than that of ZnO, which can also cause the decrease 
in dielectric constant. Nevertheless, the dielectric constant of Zn/ZnO/Al2O3/epoxy 
composites is still high, while the dielectric loss maintains low. As for the dielec-
tric loss, the value of Zn/ZnO/Al2O3/epoxy composites presented a modest decrease 
compared with that of Zn/ZnO/epoxy composites (Fig. 11b, d). The change appeared 
to be tiny probably due to the incomplete coating of Al2O3 over Zn/ZnO particles.

Conclusion

In summary, the core–shell-structured Zn/ZnO particles were prepared by a simple 
calcination method, and the multilayer core–shell-structured Zn/ZnO/Al2O3 parti-
cles were synthesized successfully by coating on the surface of Zn/ZnO particles 
with Al2O3 through hydrolysis process. The Zn/ZnO/Al2O3/epoxy composites 
were fabricated, and it can be found that the particles were uniformly distributed in 
epoxy matrix. Thermal conductivity of Zn/ZnO/Al2O3/epoxy composites increased 
178% by adding 12.0 wt% of Zn/ZnO/Al2O3 particles. The relatively high thermal 
conductivity and increased dielectric constant in Zn/ZnO/Al2O3/epoxy compos-
ites are benefitted from the multilayer core–shell structure. The present approach 
may be extended to the fabrication of advanced polymeric composites with high 
thermal conductivity and dielectric constant by proper development of multilayer 
core–shell-structured fillers and selection of polymer matrix. Furthermore, the 

Fig. 10   Thermal conductivity of Zn/ZnO/Al2O3/epoxy composites as a function of filler loadings
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Fig. 11   Dielectric constant (a, c) and dielectric loss (b, d) of Zn/ZnO/epoxy composites and Zn/ZnO/
Al2O3/epoxy composites as a function of filler contents

Fig. 12   Evolution of dielectric constant with different fillers
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thermal conductivity and the dielectric properties could be further optimized by 
changing the thickness of Al2O3 layer.
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