
Vol.:(0123456789)

Polymer Bulletin (2019) 76:903–918
https://doi.org/10.1007/s00289-018-2417-8

1 3

ORIGINAL PAPER

Optical properties of PVC/Al2O3 nanocomposite films

T. A. Taha1 

Received: 28 July 2017 / Revised: 3 January 2018 / Accepted: 26 June 2018 / Published online: 29 June 2018 
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
In this work, polyvinyl chloride (PVC) polymer films doped with 0, 2, 4, and 6 wt% 
Al2O3 nanoparticles with average size of 10  nm were prepared by solution cast-
ing route. Al2O3 nanoparticles are found to possess rhombohedral crystal struc-
ture, and PVC is partly crystallized as confirmed with XRD analysis. SEM images 
showed that Al2O3 nanoparticles are well distributed in the PVC film surface. The 
direct optical energy gap (Eopt) decreased from 5.05 to 3.60 eV and Urbach energy 
(EU) increased with increasing Al2O3 concentration. The typical excitation energy 
for electronic transitions (E0), the dispersion energy (Ed), refractive index, dipole 
strength (f), average oscillator wavelength (λ0), oscillator strength parameter (S0), 
optical conductivity, and both static and high-frequency dielectric constants are 
found to increase with increasing Al2O3 content. The third-order nonlinear optical 
susceptibility (χ(3)) and the nonlinear refractive index (n2) were estimated. Also, the 
ratio of free carriers to effective mass (N/m*) increased from 2.69 × 1057 to 170.91 
× 1057 m−3 kg−1 with increasing Al2O3 nanoparticles percentage. Finally, the group 
velocity dispersion (GVD), dispersion coefficient for material dispersion (D), and 
third-order dispersion (TOD) are found to increase upon increasing Al2O3 filler 
ratio.

Keywords  Polymer nanocomposite · PVC · Al2O3 nanoparticles · Optical 
conductivity · Dispersion parameters

Introduction

Polymer nanocomposites have induced a lot of interest in each academic and indus-
trial application [1–7]. Polyvinyl chloride (PVC) polymer has been studied inten-
sively because of its attention-grabbing physical properties [8–11]. The optical prop-
erties of those materials may be altered through the addition of various nanoparticle 
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ratios that could be used in optical fibers, optical waveguides and optical storage 
systems [1, 3, 6]. Optical properties of PVC compound films doped with numer-
ous nanoparticles are investigated over the previous decades. Deshmukh et al. [12] 
considered the optical properties of PVC–PMMA thin films doped with 0.2, 0.4, 
0.6, 0.8, and 1.0 wt% polyaniline (PANI). The optical energy gap (Eopt) increased 
with increasing PANI content except for the sample doped with 0.8 wt%, but the 
band-tailing decreased with increasing PANI concentration except for the samples 
doped with 0.6 and 1.0 wt%. The refractive index and high-frequency dielectric con-
stant values indicated variety with PANI content. The ratio of free carriers to effec-
tive mass (N/m*) values are found to be within the order of 1021 cm−3/gm. Struc-
ture, optical and thermal properties of PVC/Cd0.5Zn0.5O nanocomposite films are 
explored [13]. The UV–Vis absorption spectra indicated that the prepared films are 
highly transparent and the transparency at higher slightly decreased with increas-
ing Cd0.5Zn0.5O percentage from 0 to 0.5 wt% as a results of light scattering due 
to large aggregates. Optical properties of PVC-MWCNT nanocomposite films with 
totally different concentrations (0, 0.0005, 0.005, and 0.05 wt%) are contemplated 
[14]. The optical absorption increased with increasing MWCNT content. The direct 
optical energy gap decreased from 5.56 to 4.2  eV with increasing MWCNT per-
centage. The calculated refractive index, real and imaginary dielectric constants are 
found to increase with increasing MWCNT concentration. El Sayed and Morsi dem-
onstrated that the direct band gaps and transparency of PVC/PbO nanocomposite 
films decreased with increasing PbO nanoparticles concentration [15]. The Urbach 
energies and refractive index of these nanocomposite films increased with increas-
ing PbO nanoparticles content. Al-Taa’y et al. considered the impact of ZnO nan-
oparticles addition on the optical properties of polyvinyl chloride films [16]. The 
presence of ZnO causes an increase within the absorption and decrease within the 
nanocomposite films transparency. The extinction coefficient, refractive index, real 
and imaginary parts, optical conductivity, infinitely high-frequency dielectric con-
stant, and average refractive index values increased with increasing ZnO content. 
The Urbach energy decreased with increasing ZnO concentration. The optical and 
dielectric properties of Cr2O3/PVC nanocomposite films have been explored [17]. 
The direct energy gap, single oscillator energy, and transparency decreased with 
increasing Cr2O3 concentration. However, Urbach energy, dispersion energy, refrac-
tive index at infinite wavelength, average interband oscillator wavelength, average 
oscillator strength, lattice dielectric constant and the ratio of carrier concentration 
to effective mass are found to increase with increasing Cr2O3 content. Structural, 
optical, and thermogravimetric analysis of Pb3O4/PVC nanocomposites films with 
totally different concentrations (0, 1, 2, 3, and 4 wt%) are contemplated [18]. The 
direct energy gap decreased from 5.05 to 4.34 eV with increasing Pb3O4 percent-
age. The presence of Pb3O4 nanoparticles enhanced the absorption and decreased 
the nanocomposite film transparency. Fermi energy, Urbach energy, and the solar 
material protection factor enhanced with increasing Pb3O4 wt%. This work aims to 
study the optical properties of PVC/Al2O3 nanocomposite films prepared by solu-
tion mixing and casting at room temperature. The linear optical parameters of these 
nanocomposites based on refractive index were calculated using Wemple–DiDo-
menico equation. The linear optical susceptibility (χ(1)), third-order nonlinear optical 
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susceptibility (χ(3)), and the nonlinear refractive index (n2) were investigated. Also, 
the group velocity dispersion (GVD), dispersion coefficient for material dispersion 
(D), and third-order dispersion (TOD) are analyzed.

Experimental

In a common method, PVC/Al2O3 nanocomposite films with totally different con-
centrations (0, 2, 4, and 6 wt%) were prepared at room temperature. Two grams 
of PVC (extra pure powder with density 1.4 g/ml at 25 °C manufactured by Alpha 
Chemika, India) dissolved in 40 ml tetrahydrofuran (THF) and blended for 1 h on 
a magnetic stirrer, and then various ratios of Al2O3 nanoparticles are added to the 
clear solution with continuous stirring for one h. After that, the solution was thrown 
into glass Petri dish and left to dry in air to get the nanocomposite films.

XRD measurements of PVC/Al2O3 nanocomposite films were taken using XRD, 
Bruker, AXS D8 Advance, Germany, CuKa-radiation (k = 1.542). The size and mor-
phology of Al2O3 nanoparticles were determined by transmission electron micros-
copy (TEM, JEOL 2100FX) worked at 200 kV accelerating voltage. Scanning elec-
tron microscopy (SEM) micrographs were recorded utilizing Quanta FEG250 SEM. 
The optical measurements of the synthesized PVC/Al2O3 nanocomposite films were 
taken utilizing JASCO UV–Vis–NIR double-beam spectrophotometer model V-570.

Results and discussion

Figure 1 shows XRD patterns of pure PVC and PVC + 4 wt% Al2O3 films; it is dis-
covered that pure PVC is partly crystallized and also the diffraction peaks related to 
rhombohedral Al2O3 crystal [JCPDS card number 43-1484] with positions 25.50°, 
37.68°, 43.07°, and 52.50° noticed for PVC film doped with 4 wt% Al2O3.

The average Al2O3 nanoparticles size determined from TEM micrograph (Fig. 2a) 
is 10 nm.

Scanning electron microscope (SEM) images are displayed in Fig. 2b–d that illus-
trated that Al2O3 nanoparticles are well distributed in PVC film surface.

The normalized optical absorption spectra for PVC compound films doped with 
0, 2, 4, and 6 wt% Al2O3 nanoparticles are represented in Fig. 3. It is watched that 
the polymer films absorption increase with increasing Al2O3 nanoparticles content. 
The absorption band extended from 257 to 297 nm is appointed to π–π* electronic 
transition [18–20] and the increased absorbance at wavelengths below 257  nm is 
identified with C–Cl bond [18, 21].

The transmittance spectra and the first derivative of the optical transmittance for 
the nanocomposite films were plotted versus wavelength as shown in Fig.  4. The 
absorption band edges of those films were evaluated from the maximum peak posi-
tion in Fig. 4b [22] and tabulated in Table 1. The addition of Al2O3 nanoparticles 
causes an increase in the maximum peak values from 269 to 316  nm as seen in 
Table 1. This leads to a decrease in the absorption band edge from 4.197 to 3.931 eV 
with the variation of Al2O3 percentage.
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Fig. 1   XRD spectra of a pure PVC, b PVC doped with 4 wt% Al2O3

Fig. 2   a TEM micrograph of Al2O3 nanoparticles, b SEM image of pure PVC, c SEM image of PVC + 2 
wt% Al2O3, d SEM image of PVC + 6 wt% Al2O3
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The optical band gap (Eopt) values for allowed direct transitions are calculated 
utilizing the well-known relation [23–25];

where hν is the incident photon energy and k is a constant. The direct band gaps, 
Eopt, are dictated by extrapolating the linear portion of the curves in Fig. 5a to zero 
absorption and summarized in Table 1. The addition of Al2O3 nanofiller results in 
localized states formation within the band gap and lowers the optical band gap val-
ues that are less than the band gap of pure PVC film [15, 18].

(1)�h� = k(h� − Eopt)
1∕2

Fig. 3   Normalized optical absorption spectra for PVC/Al2O3 nanocomposite films

Fig. 4   a The transmittance versus wavelength plot and b the first derivative of the optical transmittance 
versus wavelength plot for the nanocomposite films
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The width of band tails (EU) for localized states within the forbidden band gap 
that is connected with the amorphous nature of the materials can be calculated via 
Urbach equation [26];

where α0 is a constant. EU values were calculated from the inverse slope for straight 
lines of every curve in Fig. 5b.

The obtained values are found to increase with increasing Al2O3 wt% (Table 1), 
possibly due to the formation of imperfections and increased disorder within the 
nanocomposite [27, 28]. Likewise, it is seen that EU values for PVC polymer films 
doped with 2, 4, and 6 wt% Al2O3 nanoparticles are higher than that for pure PVC 
film [18].

The refractive index, n, was computed using values of reflectance calculated from 
[29, 30];

Through the subsequent equation [25, 31];

where k is the extinction coefficient (k = αλ/4π). The dependence of refractive index 
on wavelength is represented in Fig. 6.

From investigation of this figure, it is ascertained that the refractive index for the 
current polymer nanocomposite films increases with increasing Al2O3 nanoparticles 
content and higher than that of pure PVC film. Also, the obtained refractive index 

(2)ln(�) = ln
(

�0
)

+ h�∕EU

(3)R = 1 −
√

T ∗ exp(A)

(4)n =
(

1 + R

1 − R

)

+

(

4R

(1 − R)2
− k2

)
1

2

Fig. 5   a Plots of (αhυ)2 versus hυ for the PVC/Al2O3 nanocomposite films, b variation of Lnα with pho-
ton energy (hυ) for the prepared nanocomposite films
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values are higher than that in the literature [6, 14–16]. The increase in the refrac-
tive index values of these nanocomposite films may be due to the condensation of 
smaller ceramic molecules into larger clusters [32]. The high values of refractive 
index (typically >  1.65) for the PVC/Al2O3 nanocomposite films make it suitable 
in improving the performance of optical and photovoltaic devices in many technolo-
gies like solar cells [32, 33], Bragg gratings [34], photonic crystals [35] and wave-
guide-based optical circuits [36].

The refractive index dispersion of the prepared PVC/Al2O3 films is expressed by 
the formula [37];

where n is that the refractive index, hν is the incident photon energy, E0 is that the 
average excitation energy for electronic transitions and Ed is the dispersion energy 
that measure the interband optical transitions strength and is identified with the 
changes within the material structural order and also the effective oscillator energy. 
E0 and id values were calculated from the slope and intercept on the vertical axis of 
(n2 − 1)−1 versus (hν)2 plots (Fig. 7) and displayed in Table 1.

The static refractive index n0 (at zero photon energy) is calculated by extrapolat-
ing Eq. 4 to h → 0, that is obtained from the subsequent relation [37]:

The static dielectric constant is computed from the static refractive index using 
�s = n2

0
 [38, 39] and also optical oscillator strengths (f) for optical transitions are 

defined as absorption of a photon by the electron between the initial state and the 

(5)
(

n2 − 1
)−1

=
E0

Ed

−

(

1

E0Ed

)

(h�)2

(6)n0 =

√

(

1 +
Ed

E0

)

Fig. 6   Calculated refractive index as a function of wavelength for the PVC/Al2O3 films
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final state that is correlated with E0 and Ed as f  = E0Ed [30, 40]. The got values of n0, 
εs and f are recorded in Table 1 which increased with increasing Al2O3 wt%.

The moments of optical spectrum M−1 and M−3 for the PVC/Al2O3 films were com-
puted from the following relations [41];

The M−1 and M−3 moments for the PVC/Al2O3 films were obtained and are found to 
increase with the addition of Al2O3 nanoparticles in Table 1.

The linear optical susceptibility χ(1) for PVC/Al2O3 nanocomposite films could be 
computed from the relation [42, 43];

The calculated χ(1) values are given in Table  2 which are found to increase with 
increasing Al2O3 content. Additionally, the third-order nonlinear optical susceptibil-
ity χ(3) is estimated utilizing the following formula [42, 44];

The nonlinear refractive index for the prepared PVC/Al2O3 nanocomposite films 
may be written as [45–47]:

(7)E2
0
=

M−1

M−3

and E2
d
=

M3
−1

M−3

(8)� (1) = Ed∕4�E0

(9)� (3) = 6.82 × 10−15
(

Ed∕E0

)4
(e.s.u)

(10)n2 =
12�� (3)

n0

Fig. 7   (n2 − 1)−1 versus (hv)2 plots for the PVC/Al2O3 films
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The obtained χ(3) and n2 values are increased with increasing Al2O3 concentration 
(see Table 2).

The average oscillator wavelength λ0 and oscillator strength S0 parameter val-
ues for the considered nanocomposite samples can be acquired from the linear of 
(n2 − 1)−1 versus λ−2 (Fig. 8) by utilizing the single oscillator demonstrate as [39];

The obtained λ0 and S0 values are given in Table 2. It is clear that the average oscil-
lator wavelength λ0 and oscillator strength S0 parameter values increased with the 
steady increase in Al2O3 nanoparticles wt%.

The real part of the dielectric constant ε1 can be analyzed to obtain the high-
frequency dielectric constant ε∞ as indicated by the following relation [48–51];

where λ is the wavelength, e is that the charge of the electron, N is that the free 
charge-carrier concentration, ε0 is the permittivity of the free space, m* the effective 
mass of the charge carriers (kg), and c is that the velocity of light in vacuum. The 
high-frequency dielectric constant ε∞ and (N/m*) can be calculated from the inter-
cept and the slope of the linear portion in ε1 versus λ2 plots as appeared in Fig. 9. 
Moreover, the long wavelength refractive index n∞, is calculated utilizing �∞ = n2

∞
 

and furthermore the plasma frequency ωp is calculated from the relation; �2
p
=

e2N∕m∗

�0

.

(11)
(

n2 − 1
)−1

=

(

1

S0�
2
0

)

−

(

1

S0

)

�−2

(12)�1 = n2 − k2 = �∞ −

(

e2

4�2c2�0

)

(

N

m∗

)

�2

Fig. 8   (n2 − 1)−1 versus (λ)−2 plots for the PVC/Al2O3 nanocomposite films
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It is clear that the ratio of free carriers to effective mass (N/m*) increase with 
increasing Al2O3 nanoparticles content as indicated in Table 2. Likewise, the plasma 
frequency (ωp), n∞, and ε∞ are increased with increasing Al2O3 nanoparticles wt% 
for the prepared PVC/Al2O3 nanocomposite films.

The optical conductivity (σopt) comes because of the movement of the charge 
carriers by alternating electric field of the incident electromagnetic waves which is 
given by the equation below [52];

where n is that the refractive index, c is that the speed of light in vacuum, and α is 
the absorption coefficient. The calculated optical conductivity as a function of inci-
dent photon energy is displayed in Fig. 10.

The ascertained increase in polymer nanocomposite films optical conductivity 
with increasing Al2O3 nanoparticles content could also be a direct result of the for-
mation of new levels within the band gap that facilitate crossing of the electrons 
from the valence band to those local levels to the conduction band, consequently the 
band gap decreases and also the conductivity increase [53].

Dispersion in PVC/Al2O3 nanocomposite films is defined by the group velocity 
dispersion (GVD) which is related to the second derivative of refractive index with 
respect to the incident light wavelength by [54];

GVD obtained values using second derivative of refractive index with respect to 
wavelength data plotted in Fig. 11 are given in Table 3, which causes a short pulse 

(13)�opt =
nc�

4�

(14)GVD =
�3

2�c2

(

d2n

d�2

)

Fig. 9   Plots of ε1 versus λ2 for the prepared PVC/Al2O3 nanocomposite films
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Fig. 10   The dependence of optical conductivity on the incident photon energy for the PVC/Al2O3 nano-
composite films

Fig. 11   Second derivative of refractive index with respect to wavelength for the PVC/Al2O3 nanocom-
posite films

Table 3   GVD, D, and TOD 
values for the PVC/Al2O3 
nanocomposite films

Samples GVD (fs2/µm) D (fs2/µm2) TOD (fs3/µm)

PVC + 0 wt% Al2O3 326.05 − 941.39 10331.05
PVC + 2 wt% Al2O3 9477.56 − 294965005.4 343929.02
PVC + 4 wt% Al2O3 10821.32 − 334.66 389961.03
PVC + 6 wt% Al2O3 11909.10 − 0.00725 407771.46
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of light to spread in time as a result of different frequency components of the pulse 
traveling at different velocities. The dispersion coefficient for material dispersion 
(D) is related to GVD by [55];

The medium has positive dispersion, if D is less than zero. If D is greater than zero, 
the medium has negative dispersion. The third-order dispersion (TOD) is defined as 
the frequency dependence on GVD which is given by the following formula [54];

The prepared polymer nanocomposite samples have high GVD as well as TOD, 
which increased with increasing Al2O3 nanoparticles concentration as seen in 
Table 3. Also, these samples have positive dispersion, as D values are less than zero.

Conclusion

PVC/Al2O3 nanocomposite films have been prepared successfully with the well-
known solution casting route at room temperature. The optical parameters such as 
optical energy gap, Urbach energy, refractive index, dielectric constant, average 
oscillator wavelength, oscillator strength, bond strength, and optical conductiv-
ity were contemplated as a function of Al2O3 content and increase with increas-
ing Al2O3. The third-order nonlinear optical susceptibility (χ(3)) and the nonlinear 
refractive index (n2) are found to increase with increasing Al2O3 percentage that 
makes these films accommodating in optical devices technology. The group velocity 
dispersion, dispersion coefficient for material dispersion, and third-order dispersion 
were calculated and are found to increase with increasing Al2O3 percentage, which 
makes these films useful in laser pulse broadening.
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